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An ultra-low thiourea catalyzed strain-release
glycosylation and a multicatalytic diversification
strategy
Chunfa Xu1,2 & Charles C.J. Loh 1,2

The utility of thiourea catalysis in selective glycosylation strategies has gained significant

momentum lately due to its versatility in hydrogen bonding or anionic recognition activation

modes. The use of these non-covalent interactions constitute a powerful means to construct

glycosidic linkages as it mimics physiologically occurring glycosyltransferases. However,

glycosyl donor activation through the currently employed catalysts is moderate such that, in

general, catalyst loadings are rather high in these transformations. In addition, thiourea

catalysis has not been well explored for the synthesis of furanosides. Herein, we demonstrate

an ultra-low loadings stereoselective and stereospecific thiourea catalyzed strain-release

furanosylation and pyranosylation strategy. Our ultra-low organocatalyzed furanosylation

enables a multicatalytic strategy, which opens up a unique avenue towards rapid diversifi-

cation of synthetic glycosides. In-situ NMR monitoring unravel insights into unknown reaction

intermediates and initial rate kinetic studies reveal a plausible synergistic hydrogen bonding/

Brønsted acid activation mode.
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Carbohydrates are among the most prevalent biomolecules
that spans a wide spectrum of physiological processes
including cellular respiration, cell-cell interaction and

adhesion1,2, in modulating transcription and complex signal
transduction cascades3, inflammation and post-translational
modifications4. Carbohydrates are also pivotal in modulating
pathways crucial in cancer research5,6. Interestingly, the transfer
of nature’s catalytic ingenuity in the utility of non-covalent
interactions in enzymes such as glycosyltransferases into the
synthesis lab7, to construct a plethora of O, N, C, and S glycosides
has proven to be challenging8–15. Very recently, large attention
has been given to hydrogen-bonding catalyzed glycosylations
especially in thiourea catalysis which provides a miniaturized
organocatalyst mimic to glycosyltransferases16,17. Thiourea cata-
lysis uniquely leverages mild and highly directional non-covalent
hydrogen bonding or anionic recognition interactions to effec-
tively construct mainly O- and to a smaller extent S-glycosidic
linkages on pyranoses18.

The first demonstration of a thiourea catalyzed glycosylation
was elegantly reported by Galan and McGarrigle et. al. in 2012,
where D-Galactal derivatives functionalized by a wide range of
protecting groups were converted to 2-deoxyglycosides selectively
(Fig. 1a) by the employment of the Schreiner’s thiourea catalyst
419–21. The interest in this activation mode was later picked up by
Schmidt et. al. in 2013 (Fig. 1b), where 4 was effective as a co-
catalyst in the presence of a phosphoric acid catalyst 8 in gly-
cosylations utilizing Schmidt’s trichloroacetimidate donors22.
While the thiourea itself does not catalyse the glycosylation, it is
critical in accelerating the reaction, improving the yields and α/β
selectivities. This cooperativity effect was utilized by Galan et al.
in 2017, where the substrate scope of the glycal addition was
expanded towards D-Glucal and L-Rhamnal derivatives when
thiourea 4 was used in conjunction with an axial chiral BINOL
based phosphoric acid catalyst23. Galan et al., Yoshida and Takao
et al., as well as Schmidt et al. contributed to thiourea catalyzed O
and S-glycosylation of 2-nitroglycals24–26. In 2016, Toshima et al.
reported a photoinduced glycosylation by the utility of Schreiner’s
thiourea catalyst 4 (30 mol%) as an organophotoacid on a
Schmidt’s trichloroacetimidate donor (Fig. 1c)27.

Another significant breakthrough was reported by Ye et al. in
2016, where the first Koenigs–Knorr glycosylation catalyzed by a
hydrogen-bonding urea catalyst (20 mol%) was demonstrated
(Fig. 1d), and a marked α/β selectivity improvement was observed
upon addition of a phosphine on glucose derived donors28.
Jacobsen disclosed in 2017 a powerful example utilizing a spe-
cially designed macrocyclic bis-thiourea catalyst 18 (5 mol%) to
stereospecifically catalyse the Koenigs–Knorr glycosylation of
glycosyl-chlorides (Fig. 1e), and demonstrated effectively the
access of cis-1,2, trans-1,2-, and 2-deoxy-β-glycosidic linkages29.
Noteworthy is also the recent spike in the utility of chiral phos-
phoric acid catalysis in stereoselective glycosylations30–32.

While great strides in thiourea catalysis are exemplified in the
above mentioned reports, considerable challenges still remain in
the employment of thiourea/urea catalysis on a broader scale in
carbohydrate chemistry. The glycosyl donors employed in
thiourea catalysis have remained in the pyranose realm and
thiourea catalysis is rarely known to effectively catalyse glycosy-
lations with donors bearing the furanose scaffold33–36. In fact,
effective furanosylation protocols are scarce in catalysis34–36. This
is a fundamental synthetic gap since furanosides are highly pre-
valent in nature and are ubiquitous in the ribose-phosphate
backbones of nucleic acids such as DNA, RNA, and signaling
molecules such as ATP. Furanosides are also important compo-
nents in the cell-wall biosynthesis of pathogens, such as Myco-
bacterium tuberculosis37–40. In addition, both (D)- and (L)-
furanonucleoside motifs have found utility in anti-viral

therapeutics41. Hence, effective furanosylation at ultra-low cata-
lyst loadings will be a significant step towards accessing furano-
side derivatives efficiently. Moreover, another unsolved challenge
lies in the plausibility of thioureas to catalyze N- and C-glyco-
sylations, an important transformation to access nucleoside
analogs.

Herein, we describe a highly selective and stereospecific ultra-
low thiourea catalyzed strain-release furanosylation that enables
O, N, S, and C-glycosylations on a unique class of strained deri-
vatized furanosyl donors (Fig. 1f)42–46. A low thiourea catalyzed
strain-release O and N-pyranosylation is also demonstrated.
Significantly, by incorporating multicatalysis and alkyne-azide
cycloaddition (AAC) or CLICK chemistry into our furanosylation
protocol47–49, a sugar diversification concept is developed. This
opens up a general path to access synthetic glycosides bearing
varying donor structure, linker length, biological warheads, and
molecular shapes with potential biological utility. Deeper NMR
investigations of the reaction profile and initial rate kinetics
studies also shed light into the mechanism of the strain-release
glycosylation.

Results
Optimization of strain-release glycosylation. This investigation
was initiated by utilizing a (D)-furanoxylose, (D)-Xylf derived
strained glycosyl donor 19a and a (D)-Galactose derived acceptor
21a as the model furanosylation reaction (Table 1)50–52. We
hypothesize that utilizing such cyclopropane fused furanosides
might provide an advantage in activating the furanosyl donor via
thermodynamic strain release, and the ketone functionality pro-
vides a functional handle for thiourea to activate via bidendate
hydrogen bonding. Initial screening of various thiourea, urea, and
squaramide catalysts (Entry 1–5, Table 1) revealed the superiority
of the Kass catalyst A53. This recently reported charge enhanced
thiourea not yet employed in glycosylations gave 77% yields and a
very high α/β ratio at 5% catalyst loadings at RT. The effect of
different solvents was probed (see Supplementary Table 1) and
the solvent screen revealed that fluorobenzene is optimal.

With promising results in hand, we further studied the
temperature effect (see Supplementary Table 1), reducing the
temperature to 0 °C almost completely stopped the reaction,
however, an increase in temperature to 50–70 °C gave almost
quantitative yields with very high α/β ratios. To our delight,
reduction to 1 mol% of the charged enhanced thiourea A gave
quantitative yields preserving the α/β ratios. The optimal
conditions were achieved when we reduced the catalyst loadings
to 0.2 mol%. A further control experiment at the exact reaction
conditions in the absence of catalyst A showed negligible
conversion.

To deepen our understanding of the nature of catalysis by A,
since pyridinium salts are known to also catalyse alcohol addition
to glycals54, catalyst F, the charged bis-fragment of catalyst A, was
synthesized, and subjected (0.4 mol%, Entry 8, Table 1) to the
reaction mixture, which yielded negligible product. This control
experiment revealed the criticality of the thiourea component in
this methodology. We also tried the Schreiner thiourea D in
similar conditions (Entry 9, Table 1) as our conditions in catalyst
A. A slightly lower yield of 86% is obtained with slightly elevated
α/β ratios of 97:3, which provided a good alternative protocol in
our subsequent investigation to accommodate a wider variety of
substrates.

Substrate scope of strain-release furanosylation. With an opti-
mized furanosylation protocol in hand, we further proceeded to
expand the substrate scope of this ultra-low loadings thiourea
catalyzed reaction.
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Our investigation revealed that the O-glycosylation proceeded
with good to excellent anomeric selectivity. This protocol
tolerates glycosyl donors such as (D,L)-furanoxylose, (D)-Xylf
derived 19a, (L)-Xylf derived ent-19a and (D)-furanoarabinose,
(D)-Araf derived 19b. We discovered in our investigation that the
anomeric selectivity was highly stereospecific29. When 19a or ent-
19a were employed, anomeric selectivity was consistently biased
towards the α-anomer. When 19b was utilized, the major anomer
obtained was the β-anomer.

The anomeric preference observed pointed strongly towards a
mechanism that proceed via anchimeric assistance from the C2-
ketone moiety. Moreover, we were delighted with the broad range
of O-acceptors that were tolerated which include various
protected monosaccharides containing unprotected hydroxyl
groups in varying positions (Table 2). Even monosaccharides
bearing two unprotected alcohols showed excellent regioselec-
tivity on the less sterically hindered primary alcohol with
complete α-selectivity to form 20d. We also demonstrated a rare
furanosylation on an anomeric C1-hydroxyl acceptor which
proceeded with diminished yields to give 20e. Other biologically
relevant acceptors such as protected amino-acid derivatives of
(L)-Serine and (L)-Threonine showed excellent reactivity to
generate 20 l and 20m, which would potentially open up
interesting avenues in glycopeptide research. Lipids such as
cholesterol and testosterone bearing hydroxyls in different
positions also proceeded smoothly, generating glycolipid type
derivatives 20p-20s that has applications in glycolipids as well as
cardiac glycoside research55.

Significantly, we extended our O-glycosylation methodology to
include a multitude of alcohols with important functional
handles. The tolerable range of these alcohols spans from
sterically less hindered primary alcohols, including allyl alcohols,
propargyl alcohols, and azido containing alcohols, which opens
up numerous opportunities to incorporate CLICK chemistry for
our proposed multicatalytic diversification49, and allows facile
tethering of various structural motifs via multicatalysis. Interest-
ingly, sterically more hindered secondary alcohol acceptors such
as L-menthol, 2-adamantanol as well as highly hindered tertiary
alcohols like 1-adamantanol proceeded smoothly in this protocol,
generating O-furanosides 20w-20y with good to excellent
anomeric selectivities. Utility of p-bromo-benzylalcohol as an
O-acceptor allows access of 20n, which facilities further
transformation using Pd-catalysis on the C-Br functionality.
Hydroxylamine, a rarely utilized acceptor can also be used in this
protocol to generate 20o56. There is an exceptional case where
bicyclic 20k is obtained instead of a direct attack on the anomeric
carbon, when donor 19b is used. It is postulated that the unusual
regioselectivity observed might be due to a dual steric clash effect
of a congested anomeric carbon due to the anchimeric effect of
the C2 ketone and a bulky acceptor, which then allowed
preferential attack on the less congested distal ketone, (See
Supplementary Figure 3 and Supplementary Discussion 1).

Furthermore, we probed the limits of our methodology by
investigating S-furanosylation and N-furanosylation (Table 3),
two important yet understudied aspects in catalytic glycosyla-
tions. The N-glycosylation study revealed that our protocol works
excellently with bicyclic heterocyclic N-acceptors, generating the
majority of N-glycosides 20aa-ah with complete anomeric
selectivity except for 20ag (Table 3). The N-acceptors tolerable
in this protocol include derivatized purines and pyrimidines, as
well as other structurally similar mimetics of purines, such as
benzotriazoles and indolines. We also demonstrated that
S-furanosylation works well to generate protected cysteine
derivatives 20ak and thiophenol analogs 20ai, 20aj, and 20al,
providing excellent anomeric selectivity on (L,D)-Xylf and
(D)-Araf derived donors.

Significantly, expanding our concept into S-furanosylation
opens up potential opportunities for cysteine glycol-tagging in
proteins, especially with recent discovery of S-glycosylation also
as a vital post-translational modification57,58. The isolation of a
by-product 20al-side further augments the intermediacy of C2-
anchimeric assistance in the reaction mechanism. While the
search for a suitable acceptor in the C-furanosylation was
extremely challenging, we managed to obtain a rare case of a
Friedel–Crafts-type C-furanoside by subjecting 1,3,5-trimethox-
ylbenzene to our reaction conditions, which generates the
corresponding C-glycosides 20am-ao with good yields and
selectivity. Other less reactive C-nucleophiles, such as mesitylene,
1,3-dimethylbenzene, 3-cyanocoumarin, and anthracene gave no
observable product (See Supplementary Note 4).

Substrate scope of strain-release pyranosylation. In addition, we
were curious to understand the wider applicability of our thiourea
catalyzed protocol in strain-release pyranosylations (Table 4).
Initial optimizations on our strained pyranosyl donor revealed
subtleties in reaction conditions distinct from furanosylation
which we needed to take into account (see Supplementary
Table 2).

While the pyranosylation reaction was still rather facile which
proceeded well at room temperature (RT), we needed to increase
the catalyst loadings to 1% possibly due to the increased donor
stability as a result of ring strain relief in six-membered ring
containing substrates 22a-c. A range of pyransoyl donors 22a-22c

Table 1 Representative reaction optimization and screening
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with varying stereogenic information and protecting groups were
well tolerated (Table 4). Moreover, different O and N-acceptors
were found to be suitable for this methodology, generally
providing the β-anomer of 23 stereoselectively and
stereospecifically.

When di-O-isopropylidene-α-D-glucofuranose was used as the
glycosyl acceptor, bicyclic product 23e (Table 4) was generated
analogous to the formation of 20k from arabinose derived
furanoside donor 19b (Table 2). We postulate that the trans
relative stereochemistry between C1 and C5 of the pyranoside
and furanoside donors 22a-c and 19b seems to be the key
contributory factor to the observed distal regioselectivity to ease
steric congestion, which is rendered more pronounced by such
bulky acceptors (See Supplementary Figure 3 and Supplementary
Discussion 1).

Mechanistic studies and control experiments. In order to gain a
deeper understanding of the mechanistic intricacies of the
thiourea catalyzed strain-release furanosylation, NMR monitoring

of the reaction progress and preliminary initial rate kinetic studies
were conducted. In-situ NMR monitoring of the reaction revealed
an unexpected finding (Fig. 2a and see Supplementary Figure 6).

Two different intermediates 27a and 27b detected during the
RT in-situ studies appear to be responsible for the strain-release
furanosylation. As 27a and 27b are both non-isolable inter-
mediates, the postulated structures drawn (Fig. 2a) are based on
in-situ 1H, 13C, COSY, HSQC elucidation from the reaction
mixture (see Supplementary Figure 12–15 and Supplementary
Note 4).

In the reaction monitoring profile at RT (Fig. 2a and see
Supplementary Figure 6), there was almost rapid disappearance of
donor 19a in less than 5 min into the reaction, which also
corresponded to the rapid formation of product 20a. Concomi-
tantly, we noticed the depletion of the short lived transient
intermediate 27a in the initial rapid phase till ~9 min into the
reaction. 27a seems to be responsible for the steep increase in 20a
formation till almost 75% conversion at 9 min, where inter-
mediate 27a completely disappeared.

Table 2 O-Furanosylation substrate scope using sub-molar catalyst loadings
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After the initial rapid phase, there is a more gradual formation
of 20a and depletion of a second non-isolable intermediate 27b at
a similar gradual rate (Fig. 2a and see Supplementary Figure 6).

The bulk of the obtained product 20a (till 83% conversion) is
postulated to arise from intermediate 27a and 27b. It must also be
mentioned that trace amounts of transient unidentifiable
intermediates bearing doublets in the 5.30–5.85 ppm range were
detected (See Supplementary Figure 8, 9), but their identities
could not be determined from the crude NMR mixture.

Moreover, to better understand the effect of the strained
glycosyl acceptor, the glycosyl donor, as well as the catalyst on the
rate determining step, initial rate kinetics were performed by
varying the concentration of each of the above mentioned
reagents and monitoring the reaction using 1H NMR spectro-
scopy (Fig. 2b and see Supplementary Figure 10).

Our preliminary kinetic studies revealed that modifying the
concentrations in each of these three reagents had a
corresponding initial rate effect, with the initial rate (slope
at t= 0) increasing with increasing reagent concentration.

Further deriving the slope of the ln rate vs the ln concentra-
tion plots (See Supplementary Figure 11) revealed a first order
kinetics dependence for acceptor 19a, as well as donor 21a.
Interestingly, we arrived at a fractional order kinetics
dependence for catalyst A. These early studies are also
indicative of a termolecular mechanism in the rate deter-
mining step, which suggest a close interplay between
hydrogen bonding and Brønsted acid mechanisms in the
catalytic cycle.

We propose according to these results a concomitant hydrogen
bond activation of the alcohol oxygen on the acceptor by the
thiourea catalyst, which then weakens the O-H bond, resulting in
a subsequent relay of the acidic alcohol proton towards carbonyl
activation of 19a in the rate determining step (Fig. 2c)19. The
interplay between hydrogen bonds and proton shuttling is also
indicative of the biomimetic nature of the thiourea mechanism
similar to glycosyltransferases, whereby acidic amino acid side
chains and hydrogen bonding in the active enzyme pocket play
pivotal roles in glycosylation18.

Table 3 N, S, C -Furanosylation substrate scope
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Reaction conditions: 19 (0.2 mmol, 1 equiv.), 21 (0.24 mmol, 1.2 equiv.), and 0.5 mol% catalyst A, in PhF (1.2 mL), 50 °C, 16 h; α/β ratio determined by 1H NMR on the crude reaction mixture.
*0.2 mol% catalyst A. +TMS protected substrate (0.4 mmol) was used. §Acceptor 21 (0.4 mmol, 2 equiv.). #RT. †21 (0.2 mmol, 1 equiv.), 19 (0.3 mmol, 1.5 equiv.), LiClO4 (1 equiv.), 0.5 mol% catalyst A, 80 °
C, 16 h
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Additionally, a series of control experiments (See Supplemen-
tary Table 3 and Supplementary Discussion 2) using various
bidentate hydrogen-bonding catalysts on the strain-release
furanosylation such as thioureas and squaramides were con-
ducted to further understand the cruciality of the bidentate
hydrogen bond alignment in the methodology, since hydrogen
bonds are directional. We also attempted thiourea derivatives
with hydrogen bond alignments distorted from the conventional
bidentate mode to access monodentate hydrogen-bonding
catalysts, by either protecting one thiourea N-H with a methyl
group or by utilizing 2-thiouracil, which constraints the two
thiourea N-H in a cyclic system, hence precluding a bidentate
hydrogen bond activation. These studies demonstrated that both
bidentate and monodentate hydrogen-bonding thiourea catalysts
can catalyze the strain-release furanosylation, although the
bidentate congeners provided superior yields, further augmenting
the participation of hydrogen-bonding activation in the
mechanism.

Non-hydrogen-bonding-based Brønsted acids with slightly
higher and lower pKa compared to the Schreiner’s thiourea
(pKa= 8.4 in DMSO), such as triethylammonium chloride
(pKa= 9.0 in DMSO) and meldrum acid (pKa= 7.3 in DMSO)
were also conducted as orthogonal experiments to probe acidic
effects19. In both cases, the reaction yields were inferior to the
Schreiner’s thiourea, which provides another evidence that while
Brønsted acidity might play a role in the mechanism, solely
drawing upon Brønsted acidic explanations might be insufficient
to describe the intricate synergism between hydrogen bonding
and Brønsted acid mechanism we propose in this methodology59.

An additional control experiment was also conducted by
simply first adding catalyst A to 19a without addition of acceptor
21a in an NMR tube, we noticed that after 8 h at RT, 27b was
formed with 49% NMR yield (Fig. 2d). No 27a could be detected

without addition of acceptor 21a, further proving the cruciality of
the acceptor for the major pathway to occur (Fig. 2c). The
sequential addition of acceptor 21a subsequently gave 20a in 92%
NMR yield, confirming that while product formation in our
protocol through 27b via a step-wise reaction is the minor route,
it is also viable en route to 20a.

One-pot multicatalytic diversification. With a facile and effec-
tive furanosylation protocol in hand, our protocol can be exten-
ded into a tractable multicatalysis concept for diversification
(Table 5)60, which allows rapid generation of diversified synthetic
carbohydrates with varying sugar donors, acceptors, and linker
length.

We sought to introduce stereochemical and morphological
diversity in our synthesized glycosides by tapping upon various
carbohydrate donors present in the chiral pool, such as (L,D)-Xylf
and (D)-Araf derived donors. By coupling the strained donor unit
19 with an O-acceptor bearing alkyne or azide alcohols 21 with
varying carbon chain (n= 0, 1, 2), a pool of O-glycosides
functionalized with a CLICK handle (alkyne or azide) with
multiple linker length can be generated (Table 5). Without
isolating the O-glycoside in the linker pool, our developed
furanosylation protocol is compatible with a one-pot second
catalytic step where two diversification parameters can be
permutated through the sequential CLICK reaction. Firstly,
acceptors bearing an azido or alkyne functional group provides
a direct mean to incorporate various moieties of biological
interest which include either carbohydrates or biologically active
motifs such as isatins and coumarins. Secondly, by orthogonally
selecting a Cu(II) catalyzed CLICK or a Ru(II) catalyzed CLICK,
differential regioselectivities was exploited to generate either a
linear-shaped disaccharide or a bent disaccharide (Table 5)61,62,

Table 4 O, N-Pyranosylation substrate scope
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Reaction conditions: 22 (0.1 mmol, 1 equiv.), 21 (0.2 mmol, 2 equiv), catalyst A (1 mol%) in PhF (1 mL), Ar, RT, 12 h; α:β ratio determined by 1H NMR on the crude reaction mixture. *Catalyst A (5 mol%),
4 Å MS (43mg), PhF (1 mL), Ar, 70 °C, 12 h
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paving the way to access oligosaccharides with different
molecular morphologies. A representative scope 25–26 of
accessible disaccharides by diastereomeric (sugar donor) or
regioisomeric (CLICK) permutations via this multicatalytic
strategy is demonstrated in Table 5. An analogous strategy was
also demonstrated by azido containing acceptors, which allowed
us to access analogs containing a reversed triazole and
introducing biological warheads, such as isatin 25d or coumarin
25e. Additionally, CLICK functionalized triazole derivatives
of carbohydrates are also known to be potent inhibitors of
α-glucosidases, further augmenting the biological potential of the
multicatalytically generated compounds63.

Gram scale synthesis and further derivatizations. To demon-
strate the scalability of our protocol, we performed a gram scale
strain-release furanosylation at a reduced loading of 0.05 mol%
(Fig. 3a). To our delight, the upscaled reaction proceeded
smoothly to yield 75% of 20a with slight increase in anomeric
selectivity (α:β 95:5). A further attempted hydrogenolysis of the
benzyl protecting groups gave a surprising result, the deprotected
hydroxyl groups underwent a hemiketalization/ketalization cas-
cade (Fig. 3b and see Supplementary Figure 5) to form an
architecturally complex caged ketal 28 with 86% yield. The
availability of the functional C2-ketone was advantageous for the
attachment of a biotin label via hydrazone formation to yield 66%
of 29 (Fig. 3b), a known useful strategy that has been employed in

chemoenzymatic labeling approaches in pyranose based
probes64,65. By exploiting the C-Br bond in glycoside derivatives
such as 20n, we are able to employ facile Pd-catalyzed Suzuki
coupling to form 31 quantitatively (Fig. 3c). Furthermore, a facile
one-pot multicatalytic synthesis was achieved by combining
our strain-release glycosylation with a Cu-catalyzed non-CLICK
[3+ 2]-cycloaddition of alkynes with o-iodotosylanilines to gen-
erate a C2- indole glycoside 32 (Fig. 3d) which opens up a route
towards related indolyl-glycosides with anti-cancer activities66,67.

Discussion
We report a highly efficient extremely low loading thiourea cat-
alyzed stereoselective strain-release furanosylation strategy, which
accommodates a wide variety of O, N, S, and C-acceptors. We also
demonstrated that this protocol is also extendable towards O and
N-strain-release pyranosylations. In-situ NMR monitoring and
in-situ characterization of non-isolable transient intermediates
also provided deeper mechanistic insights into the intricacies of
hydrogen bonding and proton shuttling of thiourea catalyzed
strain-release glycosylations. Preliminary initial rate kinetics
study provided insightful understanding of the possible termo-
lecular nature of the strain-release furanosylation in the rate
determining step. A one-pot multicatalytic diversification concept
is also introduced, which merges thiourea catalysis and CLICK
chemistry to expedite the access of diverse synthetic furanosides
with varying linker length, molecular shape, and biological

a Reaction monitoring profile in fluorobenzene-d5

b Initial rate kinetic studies at 50 °C
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warheads. We envision that our unique demonstration of a
multicatalytic diversity concept paves the way as a general
diversification strategy in other catalytic glycosylation protocols.
Further investigation into the biological activities of these com-
pounds are currently underway.

Methods
General techniques. Unless otherwise stated, all reactions were set up under inert
atmosphere (argon) utilizing glassware that were oven dried and cooled under
argon purging. Silica Gel Flash Column Chromatography was performed on
deactivated Silica gel Merck 60 (particle size 40–63 μm) (Triethylamine (5% v/v)
was used as the deactivating reagent). Starting materials were purchased directly
from commercial suppliers (Sigma Aldrich, Acros, Alfa Aesar, VWR) and used
without further purifications unless otherwise stated. All solvents were dried
according to standard procedures or brought from commercial suppliers. Reaction
solvent (Fluorobenzene) was stored over activated 3Ǻ molecule sieves. Reactions
were monitored using thin-layer chromatography (TLC) on Merck silica gel alu-
minum plates with F254 indicator. Visualization of the developed plates was
performed under UV light (254 nm) or KMnO4 stain or H2SO4-EtOH (10% H2SO4

v/v). Dry loading was performed on Silica gel 9 due to observed product decom-
position on normal silica gel.

NMR characterization data (1H NMR, 13C NMR and 2D spectra) were collected
at 300 K on a Bruker DRX400 (400MHz), Bruker DRX500 (500MHz), INOVA500
(500MHz), and Bruker DRX700 (700 MHz) using acetone-d6, CD2Cl2 or CDCl3
as solvent. Data for 1H NMR are reported as follows: chemical shift (δ ppm),
multiplicity (s= singlet, d= doublet, t= triplet, q= quartet, m=multiplet,
br= broad), coupling constant (Hz), integration with the solvent resonance as
internal standard (acetone-d6: δ= 2.05 ppm for 1H, δ= 29.92 ppm for 13C;

CD2Cl2: δ= 5.32 ppm for 1H, δ= 54.00 ppm for 13C; CDCl3: δ= 7.26 ppm for
1H, δ= 77.16 ppm for 13C).

High resolution mass spectra were recorded on a LTQ Orbitrap mass
spectrometer coupled to an Accela HPLC-System (HPLC column: Hypersyl
GOLD, 50 mm × 1mm, particle size 1.9 μm, ionization method: electron spray
ionization). Optical rotations were measured in a Schmidt+Haensch Polartronic
HH8 polarimeter equipped with a sodium lamp source (589 nm), and are reported
as follows: [α]D T °C (c= g/100 mL, solvent). Melting point ranges were taken from
solids which were obtained from the solvents as indicated. They were determined
on a BÜCHI Melting Point B-540 Apparatus. The microwave reaction was
conducted on the Discover SP-Microwave Synthesizer and 10 mL tube with a
proper cap was used.

The ratio of anomers was determined by 1H-NMR and HSQC analysis of the
crude reaction mixture via integration of characteristic signals of the anomeric
proton in the 1H NMR spectra. Chemical yields refer to isolated substances after
flash column chromatography, combined yield of both anomers reported. NMR
yields were determined using dibromomethane or 1,3,5-trimethoxybenzene as
internal standard.

General procedure for thiourea catalyzed furanosylation. An oven dried tube
with a stirrer bar was charged with strained cyclopropanated furanoside 19a, ent-
19a, or 19b (0.2 mmol, 1.0 equiv.), and glycosyl acceptor 21 (0.4 mmol, 2.0 equiv.).
Then the tube was purged with argon and sealed with a rubber stopper. After that,
anhydrous fluorobenzene (1.1 mL) and a solution of catalyst A (100 µL, 4 mM,
0.002 equiv., freshly prepared) was added. The tube was further sealed with par-
afilm and immersed in a preheated 50 °C oil bath for 16 h. Upon completion of the
reaction, the reaction mixture was subsequently dry loaded onto silica 9 and
subjected to flash column chromatography with deactivated silica gel for pur-
ification to yield 20.
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PhCH3 (2 mL), 80 °C, 4 h or CuSO4•5H2O/sodium ascorbate (10 mol%), CH2Cl2/H2O (1:1 v/v, 2 mL), RT, 6 h; α/β ratio determined by 1H NMR on the crude reaction mixture
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General procedure for thiourea catalyzed pyranosylation. An oven dried tube
with a stirrer bar was charged with strained cyclopropane pyranoside 22 (0.1 mmol,
1 equiv.), glycosyl acceptor 21 (0.2 mmol, 2 equiv.), catalyst A (1 mol%). Then the
tube was purged with argon. Subsequently, anhydrous fluorobenzene (1 mL) was
added to the tube under argon, subsequently the tube was sealed with parafilm and
stirred at RT for 12 h. Upon completion of the reaction, the reaction mixture was
subsequently dry loaded onto silica 9 and subjected to flash column chromato-
graphy with deactivated silica gel for purification.

General procedure for multicatalytic diversification. An oven dried tube with a
stirrer bar was charged with strained cyclopropanated furanoside 19a, ent-19a, 19b
(70.5mg, 0.2mmol, 1.0 equiv.), and glycosyl acceptor (0.4mmol, 2.0 equiv.). Then the
tube was purged with argon and sealed with a rubber stopper. After that, anhydrous
fluorobenzene (1.1mL) and a solution of catalyst A (100 μL, 4 mM) was added. The
tube was further sealed with parafilm and immersed in a preheated 50 °C oil bath for
16 h. Upon completion of the reaction, the solvent was removed under reduced
pressure to give a residue. Then Cp*RuCl(PPh3)2 (5mol%) was added to the residue.
The tube was purged with argon and added with azide (0.4mmol, 2.0 equiv.) toluene
(2.0mL) solution, and sealed and heated at 80 °C for 4 h. The mixture was absorbed
onto silica 9 and purified by silica gel column chromatography (dry loading).

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information Files.
Additional data are available from the corresponding author upon reasonable
request.
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