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TCM visualizes trajectories and cell populations
from single cell data
Wuming Gong 1, Il-Youp Kwak1, Naoko Koyano-Nakagawa1, Wei Pan2 & Daniel J. Garry1

Profiling single cell gene expression data over specified time periods are increasingly applied

to the study of complex developmental processes. Here, we describe a novel prototype-based

dimension reduction method to visualize high throughput temporal expression data for single

cell analyses. Our software preserves the global developmental trajectories over a specified

time course, and it also identifies subpopulations of cells within each time point demon-

strating superior visualization performance over six commonly used methods.
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S ingle cell expression analyses such as single cell RNA-seq
(scRNA-seq) and single cell PCR (scPCR) provide unpre-
cedented opportunities to study the complex cellular

dynamics during various developmental processes1–6, stem cell
differentiation7,8, reprogramming9 and stress responses10.
Because of the heterogeneity of the single cell data due to the
stochastic nature of gene expression at the single cell level8,11,
asynchronized cellular programs12,13 and technical limitations14,
the high dimensional expression profiles are initially examined on
two dimensional latent space in the form of an x-y scatter plot.

Diffusion map6 and t-Distributed Stochastic Neighbor
Embedding (t-SNE)15 are among the most popular dimension
reduction methods for single cell analyses. Diffusion map, as well
as similar methods such as Principal Component Analysis (PCA),
captures the major variance from the expression profiles and is
suitable for reconstructing the global developmental trajectories,
while t-SNE focuses on the definition and discovery of sub-
populations of cells. Additional methods such as diffusion pseu-
dotime16, Wishbone17, Monocle8 and TSCAN12 are based upon
the high dimensional information embedded within the two
dimensional scatter plot.

The time series expression data are usually characterized by
large variance between time points during the developmental

program. Therefore, cells from the same time points tend to
cluster together on the latent spaces produced by diffusion map
and t-SNE. The subpopulations of cells within each time point are
usually indistinguishable, due to minor expression differences
compared with the more dominant temporal differences. Thus,
there is a need for an efficient algorithm to visually inspect large-
scale temporal expression data on a single two-dimensional latent
space that preserves the global developmental trajectories and
separates subpopulations of cells within each developmental
stage.

Here, we develop a dimension reduction and data visualization
tool for temporal single cell expression data, which we name
Topographic Cell Map (TCM). We demonstrate that TCM pre-
serves the global developmental trajectories over a specified time
course, and identifies subpopulations of cells within each time
point. We provide the R implementation of TCM as a Supple-
mentary Software Program.

Results
TCM is a novel prototype-based dimension reduction algo-
rithm. TCM is a Bayesian generative model that is optimized
using a variational expectation-maximization (EM) algorithm
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Fig. 1 TCM reduces the variance due to temporal factors on the latent space. a Graphical model representation of TCM. The boxes are “plates”
representing replicates. The left plate represents prototypes, the middle plate represents cells and the right plate represents genes. b In TCM, the cells
from each time point are simultaneously mapped to multiple time point specific latent spaces, preventing the cells from the same time points crowding
together due to the high temporal variance usually present in the time series expression datasets. To reconstruct the global developmental trajectories, the
time point specific latent spaces are convolved together to produce a single latent space where cells from early and late time points distribute at the center
and periphery, respectively. c The heatmap indicates the percent of variance explained by non-temporal factors on the two dimensional latent space
produced by TCM, t-SNE, diffusion map (DM), diffusion pseudotime (DP), Wishbone, Monocle, and TSCAN on 11 examined single cell expression datasets.
The lower percentage suggests the latent space is more dominated by the temporal variance. The red asterisk indicates the method that provides the
highest percent of variance explained by non-temporal factors
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(Fig. 1a). TCM approximates the gene-cell expression matrix by
the product of two low rank matrices: the metagene basis that
characterizes gene-wise information and metagene coefficients
that encode the cell-wise features. The cells represented as
Gaussian metagene coefficients are mapped to a low-dimensional
latent space in a similar fashion as non-linear latent variable
models such as generative topographic mapping (GTM)18. To
prevent a single latent space from being dominated by temporal
variances, cells from different developmental stages are simulta-
neously mapped to multiple time point specific latent spaces, so
that the subpopulations within each time period or develop-
mental stage can be revealed on their individual latent spaces. To
reconstruct the global developmental trajectories, the time point
specific latent spaces are convolved together to produce a single
latent space where the cells from early time points or develop-
mental stages are located at the center and the cells from the later
time points or developmental stages are located at the peripheral
area (Fig. 1b and Supplementary Fig. 1).

First, we systematically examined the performance of TCM on
synthetic temporal scRNA-seq datasets with synchronized and
two types of asynchronized developmental processes (forward
and delayed differentiation models) with multiple (from two to
ten) lineages (Fig. 2 and Supplementary Fig. 2). We found that
TCM successfully revealed the lineage trajectories and had the
best performance of cell separation from different lineages
compared to other tested methods, such as t-SNE and diffusion
map, under various conditions (see Supplementary Note 1 for the
details of simulating the temporal scRNA-seq dataset, Supple-
mentary Note 2 for three cell differentiation models, and
Supplementary Note 3 for evaluation of the performance of
TCM on four types of synthetic temporal scRNA-seq datasets;

Supplementary Figs. 2 and 3). We also observed that TCM had
decreased generation of artificial branches on homogenous
scRNA-seq datasets with random time index and temporal
scRNA-seq datasets with a single lineage (Supplementary Fig. 3).

TCM preserves the global developmental trajectories. Next, we
compared the performance of the visualization of 11 temporal
single cell expression datasets between TCM and six other algo-
rithms. We found that TCM produced latent spaces with a sig-
nificantly higher percent of variance explained by non-temporal
factors compared to six commonly used tools on nine of 11
datasets (Fig. 1c and Supplementary Fig. 4a). To examine the
capability of TCM to preserve the global developmental trajec-
tories, we performed the TCM analysis on a recently published
scRNA-seq dataset from human embryonic stem cell (hESC)-
derived mesodermal lineages7. In this study, human ESCs (day 0)
were initially differentiated into two distinct lineage paths: the
anterior and mid-primitive streak (PS) (day 1). The anterior PS
then differentiated into paraxial mesoderm (day 2), somitomeres
(day 2.25), and early somites (day 3), while the mid-PS differ-
entiated into lateral mesoderm (day 2), followed by cardiomyo-
cytes (day 3). TCM successfully revealed the bifurcation of two
major mesodermal lineages toward somites (outer circle, cyan
dots) and cardiomyocytes (outer circle, pink dots) (Fig. 3a). In
contrast, t-SNE and Wishbone failed to distinguish the trajec-
tories of two mesodermal lineages (Fig. 3b and Supplementary
Fig. 5b). The diffusion map, as well as diffusion pseudotime,
Monocle and TSCAN, on the other hand, failed to separate more
than 60% of the subpopulations of cells (e.g., hESCs, anterior PS,
and mid PS), although the bifurcation of the two mesodermal
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Fig. 2 TCM has improved performance for the detection of subpopulations of cells in simulation study. a The heatmap shows the sampling probabilities for
the sequential differentiation models. In the sequential cell sampling, the sampling time is positively correlated to the developmental speed. b-c The
simulated temporal scRNA-seq datasets with five lineages under sequential differentiation models (N= 2000 genes and M= 500 cells, with an
exponential decay model for the dropout noise), with the color indicating (b) the cell lineages or (c) time index. d TCM was able to successfully reveal the
lineage trajectories for the sequential differentiation models. e-f The visualization of simulated temporal scRNA-seq datasets under three differentiation
models by (e) t-SNE and (f) diffusion map

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05112-9 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2749 | DOI: 10.1038/s41467-018-05112-9 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


lineages was generally recovered (Fig. 3c and Supplementary
Fig. 5a, c and d).

As another example, we compared the performance of defining
developmental trajectories of human primordial germ cells (PGC)
and neighboring somatic cells from weeks 4 to 19 post-gestation
datasets4. TCM clearly identified two major lineages of somatic
cell and PGC development and a bifurcation of female (17 weeks)
and male (19 weeks) PGCs (Fig. 1d). In contrast, other tools did
not preserve the bifurcation of female and male PGCs or resolve
the majority of somatic cells and PGCs from weeks 7 to 11, as
well as part of the male week 19 PGCs (Fig. 1e, f and
Supplementary Fig. 6a–d).

TCM identifies subpopulations of cells within each time point.
Time series single cell expression analysis is usually utilized to
study dynamic biological process where the cells from the later
time points (or later developmental stages) demonstrate increased
heterogeneity than the earlier ones. We found that TCM has con-
sistently significantly better performance with the separation of the
subpopulations form the final or last time point on all 11 datasets,
as measured by the Hartigan’s Dip statistics of the cells’ distribution
on the latent space (Fig. 4a and Supplementary Fig. 7)19.

On three single cell expression datasets from mouse and
human preimplantation embryonic development2,3,5, we verified
the capability of TCM to define the bifurcation of the inner cell
mass (ICM) and trophectoderm (TE) from the blastocyst stage,
while other algorithms were unable to separate the ICM and TE
populations on two scRNA-seq datasets (Supplementary Figs. 8–10).

On scRNA-seq dataset of mouse mesodermal diversification1,
TCM not only identified multiple populations from E7.5 Flk1+,
Flk1−/Cd41+, and Flk1+/Cd41+ cells along the principal
anterior/posterior axis, but also identified four distinct
hematopoietic subpopulations (Cd41+ cells) from E7.75 cells
(Fig. 4b and Supplementary Fig. 11a–c). The C1 population co-
expressed genes from multiple lineages: increased expression of
mesodermal genes Hand1 and Fgfr1, and decreased expression
of Gata1 and Hba-x, suggesting that cells are in progenitor
states during hematopoiesis (Supplementary Fig. 11c, d,
and g)20. C2 and C3 populations were characterized by the
strong expression of Zfpm1 (Fog1) and Gata2 that were related
to the primitive erythrocyte differentiation (Supplementary
Fig. 11e and h)21, while hemoglobin genes such as Hbb-bh1 and
Hba-x were highly expressed in the C4 population (Supple-
mentary Fig. 11f and i). In contrast, the latent space produced
using other algorithms were unable to distinguish these four
subpopulations (C1-C4) as they clustered together due to the
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Fig. 3 TCM preserves the global developmental trajectories for the visualization of temporal single cell expression data. a-c TCM shows superior
performance pertaining to the discovery of two major lineages of anterior and mid primitive streak (PS), and separating individual subpopulations
compared to (c) t-SNE and (d) diffusion map on the visualization of a scRNA-seq dataset of hESC derived mesodermal lineages. d–f TCM shows superior
performance compared to (e) t-SNE and (f) diffusion map on the reconstruction of the bifurcation of somatic and primordial germ cells (PGCs), and the
female (17 weeks after gestation) and male (19 weeks after gestation) PGCs on a temporal scRNA-seq dataset of human somatic cell and PGC
development from weeks 4 to 19 after gestation
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high temporal variance present in this dataset (Supplementary
Fig. 11j–o).

Then, we used TCM to visualize the scRNA-seq dataset of the
differentiation of human primary myoblasts, where the expres-
sion pattern of 372 single cells were profiled from 0, 24, 48, and
72 h post-serum switching, respectively (Fig. 4c)1–3,5,6,8,22. TCM
successfully identified three distinct subpopulations: skeletal
muscle (SM), interstitial mesenchymal cells (MC) and myocyte-
like cells (ML) from the last time point (72 h), as suggested by the
expression profiles of known gene markers (Supplementary
Fig. 12a–f). In contrast, other algorithms were unable to separate
these three subpopulations from the remaining cells, including
Monocle, which was used in the original study (Supplementary
Fig. 12g–l)7,8.

Next, we differentiated human induced pluripotent stem cells
(hiPSCs) to cardiomyocytes (CMs) and used TCM to recon-
struct the developmental trajectories from the scRNA-seq data
of 315 cells captured from hiPSCs and following differentiation
(days 6, 10, 30 and 60) (Supplementary Fig. 13). TCM revealed
the dynamic changes in gene expression pattern during
differentiation (Supplementary Fig. 14a–k) and identified three
differentiation trajectories and four subpopulations from

54 single cells at day 60 (post-differentiation) (Fig. 4d). Among
them, C1 and C2 populations were characterized by robust
expression of mature CM markers such as TNNT2 and MYL2,
while some atrial genes such as NPPA and NPPB had higher
expression levels in C1 than C2, suggesting diversification of
CMs at day 60 (Supplementary Fig. 14d–g, l). On the other
hand, C3 and C4 populations represented the minor endothelial
and cardio-fibroblast (CF) lineages, supported by the expres-
sion of lymphatic endothelial markers such as NR2F2 and
AVR1 in the C3 population, CF markers such as CDH11 and
CFH in the C4 population, and diminished expression of
cardiomyocyte-specific markers (Supplementary Fig. 14h, i, m).
In contrast, other algorithms failed to preserve the global
developmental trajectories from day 0 to day 60 and to uncover
or identify the minor endothelial population from day 60 cells
(Supplementary Fig. 14o–t).

Finally, using three additional published temporal single cell
expression datasets6,9,10, we demonstrated the capability of TCM
to discover various subpopulations of cells from the late
developmental stages, which were visually indistinguishable on
the latent space produced by the other six algorithms (Supple-
mentary Figs. 15–17).
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Fig. 4 TCM identifies subpopulations of cells from the last time points for the visualizing of temporal single cell expression data. a The heatmap indicates
the capability of separating subpopulations from the last time point on the two dimensional latent space produced by TCM, t-SNE, diffusion map (DM),
diffusion pseudotime (DP), Wishbone, Monocle, and TSCAN on 11 examined single cell expression datasets. The performance is quantitatively measured
by Hartigan’s Dip statistics using the cells’ coordinates on the latent space. The high Dip score suggests the cells from the last time point are separated to a
greater extent on the latent space. The red asterisk indicates the method that provides the highest Dip score. b TCM is used to visualize the scRNA-seq
dataset of mouse mesodermal diversification. The principal anterior-posterior axis is highlighted along the single cells captured at E7.5. TCM identifies four
hematopoietic (Cd41+, red circle Flk1−/Cd41+, and green circle Flk1+/Cd41+) subpopulations from E7.75 cells (C1-C4). c TCM is used to visualize the
single cell RNA-seq data following the differentiation of human primary myoblasts, where the expression pattern of 372 single cells were profiled from 0,
24, 48, and 72 h post-serum switching, respectively. TCM successfully identifies three distinct subpopulations: skeletal muscle (SM), interstitial
mesenchymal cells (MC) and myocyte-like cells (ML) from the last time point (72 h). d TCM is used to visualize the scRNA-seq dataset of human induced
pluripotent stem cells (hiPSCs) to cardiomyocytes (CMs) differentiation, where the single cell transcriptomes were profiled at days 0, 6, 10, 30, and 60
following differentiation. TCM identifies four terminal subpopulations of cells from day 60 (C1-C4)
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Discussion
We provide evidence that TCM overcomes the problems
regarding the balance between the capability of preserving the
global structure of gene expression and the sensitivity of dis-
covering subpopulations of cells. Compared with other algo-
rithms, the average percent of variance explained by non-
temporal factors on 11 examined temporal expression datasets
increases to 78.6% by using TCM, suggesting a significant
reduction of the crowding problem10,15 of cells from the same
time points (Fig. 1a). Downstream analysis such as trajectory
inference8,11, cell clustering13,23 and differential expression ana-
lysis14 could be readily performed on the latent space produced
by TCM. Furthermore, TCM provides a function for inferring
developmental trajectories (Supplementary Note 8). We also
recognize the limitations of this novel algorithm. TCM requires
the scRNA-seq datasets with complete time index and the time
index needs to be correlated with the underlying dynamic
expression pattern. Otherwise, we recommend the use of the
pseudotime index in conjunction with TCM or other generic
dimension reduction tools (Supplementary Note 6). In addition,
TCM does not provide immediate biological interpretation of cell
clusters on the latent space, and further pathway analysis will
need to be conducted to elucidate the biological meaning of each
trajectory. In the future, the flexibility of the TCM framework will
allow the extension of TCM to incorporate additional informa-
tion such as spatial expression patterns and other–omics data and
to provide accurate and comprehensive visual inspection of the
biological progression and subpopulations of cells for the single
cell studies. In summary, TCM is a novel tool to visualize
developmental trajectories and discover hidden cell populations
from time series single cell expression data. We provide the R
implementation of TCM as a Supplementary Software Program.

Methods
The topographic cell map (TCM). The topographic cell map (TCM) is a flexible
probabilistic graphical model for modeling the temporal single cell RNA-seq
(scRNA-seq) or single cell PCR (scPCR) data (Supplementary Fig. 1a).

Let X(t) be a N×M(t) observed read count matrix for N genes and M(t) cells from
time point t, in a temporal scRNA-seq expression dataset with total M0 cells and T

time points, where t = 1,…,T and M0 ¼
PT
t¼1

M tð Þ, and xn;m tð Þ be the read count of

gene n in cell m(t). We first introduced the modeling of scRNA-seq data from a
single time point on a single 2D latent space, then extended the description to
multiple time points on multiple latent spaces. To reduce the clutter of the
notations, we first dropped the time index (t), and described how TCM models
single cells from a single time point.

We modeled the observed read count xnm, as the sum of K auxiliary parameters,
sn;1;m; � � � ; sn;k;m; � � � ; sn;K;m , which represents the number of reads that can be
explained by K components, respectively. We denoted each component as a
metagene. The read counts that can be explained by the k-th metagene, Sn,k,m,

further modeled as a Poisson distribution with the mean parameter μn,k,m:

xnm ¼
XK
k¼1

sn;k;m ð1Þ

p SjU;Vð Þ ¼
YN
n¼1

YK
k¼1

YM
m¼1

Pois sn;k;mjμn;k;m
� �

ð2Þ

This formulation takes advantage of the additive property of the Poisson
distribution and was often used for modeling non-negative count data to simplify
the following inference24,25.

The mean parameter μn,k,m for the Poisson distribution for each metagene was
further modeled as the product of two parts:

μn;k;m ¼ unkexp am þ vkmð Þ ð3Þ

The cell independent metagene basis, unk, models the non-negative expression
levels of gene n in the k-th metagene, with a Gamma distribution prior with pre-

specified shape parameter c0 and rate parameter d0, that is,

p Uð Þ ¼
YN
n¼1

YK
k¼1

Gamma unkjc0; d0ð Þ ð4Þ

The metagene coefficient, vkm, is a real variable, indicating the contribution of
the k-th metagene for cell m. To account of the individual cell effect, we introduced
a scaling parameter am for each cell m, which is positively correlated with the
library size of cell m and allows vkm to only model the random effects of cell m of
the k-th metagene.

Modeling the cell-to-cell relationships. To capture the cell-to-cell relationships,
TCM assumes cells reside on a low dimensional latent space, consisting of H units
(prototypes), similar to the prototypes in self-organizing map (SOM)26 and gen-
erative topographic mapping (GTM)18. The prototypes form a pre-specified
topographic structure, for example, a regular grid, as used in SOM and GTM
modeling. In TCM, a R by S radial grid design is used to facilitate the convolution
of prototypes between neighboring time points, where R represents the number of
layers of prototypes and S represents the number of prototypes per layer (Fig. 1b,
Supplementary Fig. 1a). The total number of prototypes on the latent space is
therefore defined as H = R×S.

Each prototype on the latent space is represented by a unique K-dimensional
metagene coefficient ϕhðh ¼ 1; � � � ;HÞ and has respective coordinates yh on the 2D
space. We modeled each cell as a Gaussian mixture of all prototypes on the latent
space, that is,

p πð Þ ¼ Dir πjα0ð Þ ð5Þ

p Zjπð Þ ¼
YM
m¼1

YH
h¼1

πhð Þzmh ð6Þ

p VjΘ;Zð Þ ¼
YM
m¼1

YH
h¼1

N vmjϕh; βIð Þ�1� �zmh ð7Þ

where vm is the K-dimensional metagene coefficient for cell m, β is the inverse
variance and α0 is a pre-specified parameter for the Dirichlet prior.

Prototype coordinates on the 2D latent space. The 2D coordinate of the h-th
prototype on the 2D latent space is represented as:

yh ¼ lrcosωs; lrsinωsð Þ ð8Þ

assuming that the prototype locates at the r-th layer with the polar angle ωs,
where r 2 1; � � � ;R½ �, s 2 1; � � � ; S½ �, ωs ¼ s

S 2π, and lr ¼ r
R.

It should be noted that since TCM is a prototype-based dimension reduction
method, multiple cells could possibly be mapped onto one prototype, and these
cells would be visually indistinguishable. In order to separate the cells mapped onto
one prototype, their 2D coordinates were added random Gaussian noise.

Gaussian process (GP) prior for free prototypes. To ensure the neighboring free
prototypes have similar metagene coefficients so that the transition from every
prototype toward its neighboring prototypes is smooth, a Gaussian process (GP)
prior was used to regularize the free prototypes, similar with the formulation in the
GTM18. Specifically, for each metagene k, let θk;1:H be a vector of length H con-
sisting of the k-th metagene of θ1 though θH. Consider a Gaussian prior dis-
tribution on the center location given by

p Θð Þ ¼
YK
k¼1

N θk;1:H j0;B
� �

ð9Þ

where B is a positive definite matrix. The theory of Gaussian process regression
allows B to be quite general. The covariance between θki and θkj can be taken to
depend on the 2D coordinates of their respective prototype yi and yj, so that Bij = f
(yi,yj), where f �ð Þ is a covariance function. In this study, we used a simple radial
basis function (RBF) kernel, that is:

Bij ¼ exp �
yi � yj

��� ���2
2

2s0

0
B@

1
CA ð10Þ

where s0 is a pre-specified scaling parameter for controlling the tightness of
underlying 2D latent space (i.e., how similar the neighboring prototypes should be).

It should be noted that the prototype coordinates (y) on the 2D latent space
were only used to determine the covariance structure B of the prototypes, along
with a suitable covariance function. The 2D latent space, however, does not assume
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that the cell evolution process is linear on a 2D space, and can also be used to
describe non-linear process. Moreover, running TCM on a scRNA-seq dataset
without time index can be viewed as a process of clustering single cells on the 2D
latent space (Supplementary Note 5).

Modeling temporal scRNA-seq using multiple latent spaces. TCM assigns cells
from one time point to a corresponding time point specific latent space (e.g., cells
from the t-th time point are mapped onto the t-th latent space). In the meanwhile,
TCM also constrains the neighboring latent spaces so that the similar cells from the
different time points should have a similar polar angle ω. This constraint is
achieved by using the convolving prototypes. The convolving prototypes are a subset
of prototypes on the latent space and convolve the neighboring latent spaces to
produce a single latent space representing cells from all time points (Supplemen-
tary Fig. 1b).

Specifically, the convolving prototypes serve to associate the latent spaces from
the previous time points. The convolving prototypes are defined as (R-ρ) inner
layers of prototypes on the t-th latent space, thus the total number of convolving
prototypes on the t-th latent space is Hconv ¼ R� ρð Þ ´ S.

On the other hand, the free prototypes are defined as ρ outer layers of non-
convolving prototypes on the t-th latent space where 1<ρ � R, thus the total
number of free prototypes on the t-th latent space is Hfree = ρ×S.

Thus, we iteratively define:

ϕ tð Þ
h ¼

θ tð Þ
h ; h is a free prototype

PH
i¼1

w tð Þ
hi ϕ

t�1ð Þ
i ; h is a convolving prototype

8><
>: ð11Þ

where θ tð Þ
h represents the metagene coefficients of the free prototype h on the t-th

latent space. The metagene coefficients of the convolving prototypes on the t-th
latent space are deterministically computed as the convex combination of metagene
coefficients of all prototypes on the (t-1)-th latent space:

w tð Þ
hi ¼

exp � R
R�ρ y

tð Þ
h � y t�1ð Þ

i

��� ���2
2

� �

PH
j¼1 exp � R

R�ρ y
tð Þ
h � y t�1ð Þ

j

��� ���2
2

� � ð12Þ

where y tð Þ
h is the coordinate of prototype h on the t-th latent space. We assume that

all the prototypes are free prototypes for the first time point (t=1). Therefore, any
convolving prototypes on the latent spaces can be represented as a linear function
of all free prototypes.

After the fitting of TCM, every cell’s m(t) from the t-th time point is assigned to

the most similar prototype on the t-th latent space ϕ tð Þ
h where h ¼ argmax p z tð Þ

m tð Þ ;h

� �

and the 2D coordinates for prototype h is y tð Þ
h ¼ l tð Þr cosω tð Þ

s ; l tð Þr sinω tð Þ
s

� �
. We define a

single latent space to visualize cells from all time points together. The coordinates on

such single latent space for y tð Þ
h is represented as y′h ¼ ln λ tð Þ

r cosω tð Þ
s ; ln λ tð Þ

r sinω tð Þ
s

� �
,

where ln λ tð Þ
r is the new radius for prototype h on the single latent space (the polar

angle remains the same). We recursively define λ tð Þ
r ¼ R

R�ρmax λ t�1ð Þ
� �

l tð Þr and λ 1ð Þ
r ¼

l 1ð Þ
r for the first time point.

Human iPSC differentiation. To induce the hiPSC (PLZ) toward the cardiovas-
cular fate, we added Activin A and small molecule CHIR-99021, an activator of the
Wnt signaling pathway (GSK3 inhibitor) on differentiation day 0, followed by
adding FGF2 and BMP4 on day 1 to induce the mesodermal specification27. On
day 3, we added IWP4 (Wnt inhibitor) to block the accumulation of β-catenin,
increasing CM differentiation efficiency28. A base medium containing RPMI 1640
(Hyclone) and B27 supplement without insulin (RPMI-) was used from day 0 until
day 4 of the differentiation. From day 5 until collection, cells were cultured in
RPMI 1640 and B27 supplement with insulin (RPMI+) until collection. The
324 single cells from differentiation day 0 (D0), 6, 10, 30, and 60 were captured by a
Fluidigm 10-17μm integrated fluidics circuit (IFC), followed by viability screening,
lysis and library amplification on a C1 Single-Cell Auto Prep System. All cells were
collected by dissociation using TrypLE Express (Life Technologies) with aliquots
taken for single cell capture, flow cytometry, immunohistochemistry, and Total
RNA.

Flow cytometry analysis for cTNT. Cell samples were fixed using 1% paraf-
ormaldehyde (PFA) in PBS at 37 °C for 10 min in a dark water bath and per-
meabilized in 90% methanol on ice for 30 min. A FACS buffer (PBS without Ca/
Mg2+, 0.5% BSA, 0.1% NaN3, and 0.1% Triton X-100) was used to wash the cells
and after centrifugation to dilute each sample in with primary antibody (cTNT,
Thermo Scientific, clone 13-11) in 200 μL. Samples were incubated at 4 °C over-
night in the dark. Cells were then washed in 1 mL of FACS buffer after cen-
trifugation and the secondary antibody (Donkey α-mouse IgG with APC,
Jackson ImmunoResearch), was applied diluted in FACS buffer with a final volume
of 200 μL at a 1:500 dilution. Samples were incubated at room temperature for 30

min and then washed with FACS buffer. After centrifugation, the cells were
resuspended in FACS buffer with propidium iodide (Life Technologies) diluted
1:2,000 for analysis. A FACSAria (BD) was used to collect data and analyzed using
FlowJo (v10.0.8r1).

Immunostaining. Cell samples were plated on glass coverslips coated with Matrigel
on the day of capture and cultured for 24 h at 37 °C in RPMI+with Y-27632 (10
uM, ATCC). After 24 h, coverslips were washed with PBS and fixed using 4% PFA
in PBS for 10 min at room temperature. Coverslips were then washed 3 times with
PBS before staining.

qRT-PCR. Cell samples were collected in a 1.5 mL Eppendorf tube and centrifuged
at 200×g in a refrigerated microcentrifuge (Eppendorf). The supernatant was
aspirated and 300 μL of lysis buffer (Invitrogen) with 1% 2-Mercaptoethanol
(Sigma) was added to the tube.

Single cell RNA-seq of differentiated human iPSCs. All libraries were sequenced
using 75-bp paired end sequencing on MiSeq (Illuminia). The cells with less than
100 K paired reads were removed, resulting in 315 cells for analysis. The raw read
counts for each gene were obtained with TopHat (v2.0.13) and HTSeq (v0.6.0) with
default parameters29,30. The median mapping rate was 89.2%. The raw read counts
were normalized by the size factor31.

Code availability. TCM was optimized by a standard variational inference algo-
rithm (Supplementary Note 4) or a fast stochastic variational inference (SVI) based
method (Supplementary Note 7). The TCM R package is freely available under the
MIT license at https://github.com/gongx030/tcm and as Supplementary Software.

Data availability. The single cell RNA-seq data that support the findings of this
study have been deposited in NCBI Sequence Read Archive (SRA) database with
the project accession number PRJNA438778. The TCM software was freely
available at https://github.com/gongx030/tcm. All other relevant data are available
from the authors.
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