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Harnessing synthetic lethality to predict the
response to cancer treatment
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While synthetic lethality (SL) holds promise in developing effective cancer therapies, SL
candidates found via experimental screens often have limited translational value. Here we
present a data-driven approach, ISLE (identification of clinically relevant synthetic lethality),
that mines TCGA cohort to identify the most likely clinically relevant SL interactions (cSLi)
from a given candidate set of lab-screened SLi. We first validate ISLE via a benchmark of
large-scale drug response screens and by predicting drug efficacy in mouse xenograft models.
We then experimentally test a select set of predicted cSLi via new screening experiments,
validating their predicted context-specific sensitivity in hypoxic vs normoxic conditions and
demonstrating cSLi's utility in predicting synergistic drug combinations. We show that cSLi
can successfully predict patients’ drug treatment response and provide patient stratification
signatures. ISLE thus complements existing actionable mutation-based methods for precision
cancer therapy, offering an opportunity to expand its scope to the whole genome.
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he success of precision oncology depends on its ability to

translate accumulating genomic data into actionable

treatment options tailored for individual patients. This
requires identifying a genomic signature from patient tumor
samples, then matching it with the most effective therapeutic
options. With the ever-increasing volume of genomic data, the
bottleneck now lies on how to extract patient-specific vulner-
abilities from the data and connect them to patient prognosis and
drug response. One promising way to tackle this challenge is
based on the concept of synthetic lethality (SL). SL describes the
relationship between two genes whereby an individual inactiva-
tion of either gene results in a viable phenotype, while their
combined inactivation is lethal"2. SL has long been considered a
foundation for the development of selective anticancer thera-
pies’?=>, which aim to inhibit the SL partner of a gene that is
inactivated de novo in the cancer cells. Beyond guiding the
development of novel selective cancer therapies, it has been noted
that the network of SL interactions can provide a bird’s eye view
on the genomic state of a given tumor that can be leveraged to
identify tumor-specific vulnerabilities and develop effective
synergistic drug combination therapies in a precision-based
manner®’.

Given the importance of SL, considerable work has been
devoted to identifying such interactions in cancer—both experi-
mentally>® and computationally®. Experimentally, extensive
efforts have been made to tease out the wiring9 of genetic inter-
actions in cancer cells based on single cell lines’~2° or large-scale
knockout screens?®=’,  Computationally, various machine
learning methodologies have been applied to predict genetic
interactions in different species®*!=3> and cancer (by utilizing
yeast SL)*>%, utilizing metabolic modeling®”8, evolutionary
characteristics?>%,  transcriptomic  profiles®*~*!, and more
recently cancer patient data®?~*®, Nevertheless, so far the utility of
SL in the clinic has been primarily limited to SLi in DNA damage
pathways?’, and as we show further below, many of the SLs
identified in current screens manifest a poor predictive signal in
actual patients’ data.

Here we present a statistical approach for identifying clinically
relevant SL interaction (SLi) in a genome-scale manner, termed
identification of clinically relevant synthetic lethality (ISLE). ISLE
takes lab-screened SL interactions as inputs and analyzes tumor
molecular profiles, patient clinical data, and gene phylogeny
relations to identify SLi that are predictive of patients’ drug
response. The ISLE-identified SL interactions are shown to pre-
dict drug response to a wide variety of drugs both in vitro and
in vivo, providing a basis for rational design of synergistic drug
combinations. We first benchmark ISLE with large-scale in vitro
drug response screens and in mouse xenograft models. We then
experimentally test and validate predictions involving context-
specific gene essentiality and drug efficacy, and synergistic drug
combinations in patient-derived cell lines. We finally show that
cSLi, which are inferred from mining untreated patients’ data, can
successfully predict treatment outcomes in cancer patients with-
out any need for training on specific patient cohorts of drug
response data. Taken together, these results offer a novel
approach for precision-based cancer therapy from the patients’
tumor data.

Results

Identifying clinically relevant SL interactions via ISLE. ISLE
takes the initial pool of lab-identified candidate SL pairs as input
and identifies among those the subset that is more likely to be
clinically relevant, that is, supported by tumor data (see below).
The initial pool is determined either by direct isogenic (or double-
knockout) cell line screens (Initial Set I, Supplementary Data 1) or
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guilt-by-association?>4>48 using large-scale single gene knock-out

experiments®®~>C (Initial Set II), creating a pool of total 16 million
candidate SL pairs (see Methods, Supplementary Note 1). The
two initial SL input sets show significant overlap, confirming
findings of Wang et al.?>. (hypergeometric P<1.4E-28) (see
Supplementary Data 2). To identify putative cSLi from the initial
pool; ISLE analyzes molecular, and survival data of patient tumor
samples from The Cancer Genome Atlas (TCGA)* and evaluates
the extent to which clinical data support in vitro screens. Con-
ceptually, ISLE selects the clinically relevant SL pairs that satisfy
all of the three conditions outlined below. From a computational
standpoint, however, it applies them in a specific sequential
manner that minimizes the computational cost of their identifi-
cation (Fig. 1a, see Methods for full details):

First, ISLE mines gene expression and SCNA data of the input
patient tumor samples to identify under-represented candidate
gene pairs, whose co-inactivation is significantly less frequent
than expected by their individual inactivation frequencies,
testifying that their co-inactivation is under negative selection
(using hypergeometric test; see Methods, Supplementary Note 1).

Second, ISLE selects SL pairs where the tumor samples with a
given pair in a co-inactive state exhibit better patient’s survival
than the samples where it is not, testifying that this SL pair is
likely to reduce tumor fitness when co-inactive. ISLE uses a
stratified Cox proportional hazard model to establish this
association while controlling for confounding factors including
cancer type, genomic instability®® and patients’ gender, age, and
ethnicity (see Methods).

Third, ISLE selects SL pairs composed of genes having high
phylogenetic similarity, motivated by the observation that
functionally interacting genes tend to co-evolve!?%>173 (Supple-
mentary Note 1). Those candidate pairs passing all steps compose
the final output set of SL pairs predicted by ISLE (see Methods).

We applied ISLE to the initial input pool of candidate SL pairs
identified above. ISLE analyzed SCNA, gene expression, mutation
and survival data of 8749 clinical samples in TCGA across 28
cancer types®*, to identify a pan-cancer clinical-SL-network
(Fig. 1a). The initial input set consisted of 16,375,526 candidate
SLs, out of which 9.1% passed the first step, 0.4% of the initial
pool pass the second step, and 0.1% of the initial pool pass the
third step and constitute the final cSL network. The resulting cSL
network is comprised of 8511 genes and 21,534 interactions
(Supplementary Fig. 1, Supplementary Data 3, all networks are
available online via an interactive interface, see Supplementary
Note 2, the core SL network is presented in Fig. 1b, where a
striccer FDR<0.1 is used to obtain a smaller network for
visualization purposes). The cSL genes are highly enriched in cell
proliferation, migration, apoptosis, and signal transduction (FDR-
corrected hypergeometric P < 1E-8, Supplementary Data 4). The
identified cSL interactions are enriched with physical protein
interactions (hypergeometric P < 6.6E-3)>°, consistent with pre-
vious observations in the literature?>>®. The final cSL pairs
successfully predict the survival response in an independent
cohort of breast cancer patients®’, as expected (Supplementary
Note 1).

Throughout the manuscript, we term the candidate SL pairs
that withstand the three ISLE steps as clinically relevant SL (cSL),
while those that are filtered out are termed non-clinically relevant
SL (ncSL). Surprisingly, the ISLE analysis shows that only a small
fraction of the gold standard initial pool (Initial Set I) is cSL: (1)
only 12.5% of the pairs identified in the isogenic or double
knockdown screens show evidence of negative selection in tumor
samples (i.e., their co-downregulation is significantly less frequent
than expected by chance, Step I). An even smaller selection of
0.2% of the original candidate pairs is associated with improved
patient survival when co-downregulated (as would be expected
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from cSLs, Step II). Importantly, to estimate the clinical relevance
of these interactions, we used mutation data for isogeneic screens;
and for double knockdown screens, we used copy number and
transcriptomics data (see Supplementary Note 1 for details).
Furthermore, in addition to pan-cancer tests, we also performed
the clinical estimations outlined above in the specific cancer types
of relevance, aiming to uncover the potential clinical relevance of
the SLs screened in as comprehensive manner as possible (see
Methods, Supplementary Note 1 for details). (2) A similar trend
emerges when evaluating the clinical relevance of the SLi inferred
via analyzing single knockdown screens (Initial Set II), with only
2.7% of the pairs from initial pools showing such evidence of
negative selection (Step I) and 0.4% of pairs showing better
prognosis (Step II), respectively (see Supplementary Data 5).
Beyond these tests, our analysis shows that ncSL pairs are not
predictive of drug response in cancer patients, and their
predictive signal of in vitro drug response is markedly lesser
than that of cSLs (see below).

Validating ISLE-identified SL interactions. We performed three
validation steps to evaluate the capability of ISLE to identify
clinically relevant SLi. First, to validate individual ISLE-inferred
SL interactions, we analyzed an in vitro large-scale drug response
screen®® covering 24 drugs in 500 cancer cell lines. We tested
whether a drug is more effective in cell lines where the ISLE-
inferred cSL partner(s) of its targets are downregulated (accord-
ing to the cell lines gene expression), thus confirming the exis-
tence of pertaining SLi (Methods). The cSLi inferred by ISLE are
markedly more predictive (Area under the curve (AUC) =0.75,
Fig. 2a) than the ncSL pairs (AUCs of 0.47, and precision-recall
analysis in Supplementary Fig. 2). ISLE’s performance level is also
markedly superior to that of DAISY (AUCs of 0.37), and to that
obtained by randomly shuffled networks (empirical P < 1E-3).
Second, we tested whether ISLE-identified cSLi predict single
and combination drug response in patient-derived mouse
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xenograft (PDX) models. We analyzed 375 samples of mouse
models of 15 cancer types, which were treated with 36 single
drugs™. As the first step in this analysis, ISLE was applied to
identlfy the relevant drug-cSL interactions; that is, to identify the
SL partners of each of the given drug targets (Methods; this
results in an extended set of interactions compared to those
identified in the overall cancer cSL network as the space of
hypotheses that needs to be corrected for is now obviously much
smaller). Second, to make the drug response predictions for each
drug, we define its cSL-score in each sample, by denoting the
number of its predicted drug-cSL partners that are downregulated
in that sample according to its gene expression data divided by
the number of drug targets (Eq. (4) in Methods). As expected,
responders show significantly higher cSL-scores than non-
responders for five out of seven drugs that have sufficient tumor
response data available (using Wilcoxon rank sum test; Fig. 2b,
Methods). Furthermore, the cSLi network successfully predicts
the progression-free survival in mouse models (defined as the
time for the tumor size to grow to twice the size of the
baseline, see Methods, Supplementary Note 1) (overall log rank
P<290E-6, AAUC=0.15), which remains significant after
controlling for cancer types (Cox hazard ratio=1.28 (P<
3.82E-3)). Neither DAISY nor ncSL partners are predictive of
any of the drugs considered, and ISLE’s performance is
significantly superior to that of randomly assigned SL partners
(empirical P < 1E-3).

Third, to benchmark the cSL-based drug response predictions,
we analyzed the DREAM7 challenge data®®. We focused on 15 of
the 28 drugs that have specific targets and applied ISLE to infer
their cSL partners (see Methods, Supplementary Note 1). Drug
efficacy in a cell line is predicted via its cSL-score inferred from
the cell-line’s transcriptomic profiles (as described in the previous
paragraph). The resulting ISLE-based prediction is comparable to
the top 5 supervised a §orithms (trained in this specific data)
reported in DREAM7° (Fig. 2c (left columns)). To predict
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Fig. 1 ISLE framework and the clinical-SL-network. a The three step inference procedure of ISLE and the datasets used in each step (Methods). b The core
clinical-SL-network (with FDR < 0.1) includes 2326 interactions between 2153 genes, where the gene names having more than 10 cSL partners are marked;
the size of nodes is proportional to the number of interactions they have). The complete network with FDR < 0.2 (the correction level used in all analyses
presented in the paper) is provided in Supplementary Fig. 1 and in an interactive form at GitHub: https://github.com/jooslee/ISLE/
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guide visualization, mean and s.e.m). (* marks the five drugs that are significantly predicted after multiple hypothesis correction (FDR-corrected Wilcoxon
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networks (gray)

double-drug response, we hypothesized that a pair of drugs will
be synergistic if there exists a strongly predicted SL between their
gene targets (Methods). We used the ISLE inferred SL strength
between the drug targets (cSL-pair-score) as the predictor of
synergism, focusing on 12 inhibitor compounds (66 combina-
tions) excluding two non-specific drugs from the data. ISLE
prediction accuracy ranks higher than the best five supervised
algorithms reported in the DREAM7%! (Fig. 2¢ (right columns)).
Importantly, ISLE does not use any drug response data from the
training set cell lines or post-treatment transcriptomic profiles
that were used to train all the other competing approaches in the
original challenge. This makes ISLE less prone to the risk of over-
fitting and broadly applicable for drug response prediction
without the need of further training. The performance of
randomly selected, DAISY-identified and most importantly, ncSL
partners is markedly inferior to that of ISLE (Supplementary
Fig. 3).

Fourth, we analyzed large-scale compound synergy screens
from a more recent AstraZeneca-Sanger Drug Combination
Prediction DREAM Challenge 20152, which covers a set of

4 NATURE COMMUNICATIONS | (2018)9:2546

pairwise combinations of 69 drugs (169 drug combinations and
535 candidate gene pairs total) in 85 cancer cell lines. We predict
synergistic drug combinations based on the working hypothesis
that if there is a predicted cSLi between the gene targets of each of
the two drugs, they are likely to be synergistic as described above.
We labeled a drug pair as overall synergistic if it experimentally
exhibits synergism across many cell lines (see Methods). The
simple, unsupervised cSL-based predictor described above
provides a fairly accurate prediction (AUC=0.79, Fig. 2d,
Methods), significantly higher than the random (empirical P <
1E-3), DAISY-SL, or ncSL networks (Fig. 2d, Supplementary
Fig. 4). We further tested whether the ISLE-identified cSL predict
combinations’ drug response in PDX models, which includes
375 samples of mouse models of 15 cancer types, which were
treated with 26 double-drug combinations®. Our unsupervised
cSL-based predictor classifies drug pairs as synergistic vs. non-
synergistic (AUC = 0.78, Fig. 2d, Supplementary Fig. 5).

Experimentally testing cSLi via phenotypic screens. We per-
formed three layers of experiments to test the performance of
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ISLE in predicting gene essentiality and drug response for single
agents and drug combinations.

First, we used ISLE-identified SL interactions to predict gene
context-specific essentiality®. To this end, we conducted a large-
scale shRNA knockdown (KD) screening in two different
environmental conditions (21% O,, “normoxia” and 0.1% O,
“hypoxia”) in a liv7k oral cancer cell line (Supplementary Data 6).
As described in the previous section, we computed the cSL-score
of each gene targeted, by identifying how many of its SL partners
are downregulated in the condition studied (Methods). The
computed scores are predictive of the individual KD effects on
cellular growth (FDR-corrected ¢-test P < 0.2 between every bin,
Fig. 3a), and of the context-specific differential KD effects in the
two conditions (predicted correctly for 71% of the genes analyzed,
Fig. 3b). Both context-generic and specific predictions were
inferior when using either randomly selected, DAISY-identified,
or ncSL partners (Supplementary Note 1).

Second, we examined the cSL network’s ability to predict
in vitro drug response. To this end, we performed two sets of
experiments. (1) We treated liv7k oral cancer cell line studied
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above with 463 drugs (including non-cancer drugs) under
hypoxia and normoxia conditions (Methods). We labeled the
drugs within the top 33% observed growth inhibition in the
experiments as effective and computed the drug-cSL-scores of
their targets in the two specified conditions as before, but divided
by the number of targets per each drug (Supplementary Data 7,
Methods). Drugs with high cSL-scores show stronger drug
response in each condition separately (AUCs of 0.75, AUPRC
=0.71, empirical P<1E-3), and randomly permutated SL
networks, DAISY, and ncSL network failed to obtain a predictive
signal (Methods, Supplementary Fig. 6A). Analogous to the gene
knockout experiment, the cSL-score successfully predicted in
which condition (hypoxia vs normoxia) the drug would be more
effective for 95% of the drugs tested (Spearman R=0.36
(P <0.01), Supplementary Note 1). (2) We additionally conducted
a large-scale drug response screen covering 142 small molecule
inhibitors in seven breast cancer cell lines of different subtypes
(Supplementary Data 8). cSL-scores inferred from the transcrip-
tomic profiles of these cell lines successfully predicted drug
response (AUC = 0.73, AUPRC = 0.48, Supplementary Fig. 6B),
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Fig. 3 New experiments to test ISLE-based predictions on growth inhibition and drug combinations. a, b cSL-based prediction of growth inhibition in a
knockdown screen in oral cancer. a Growth rate prediction: The number of downregulated cSL partners of a gene (X-axis; cSL-score) is associated with the
percentage of growth inhibition observed after its knockdown (Y-axis; quantified as percent-growth inhibition compared to control, mean and s.e.m). Each
bin of cSL-score shows significant differences (FDR-corrected t-test P < 0.2*, see Supplementary Note 1). b cSL-based context-specific prediction of growth
inhibition in hypoxic vs normoxic conditions. The fold change of cSL-score (X-axis in logscale) in normoxia vs. hypoxia shows a positive correlation with the
corresponding growth inhibition fold change (Y-axis in logscale), correctly predicting the differentially observed growth inhibition in more than 71% of the
38 cases observed experimentally (marked as red dots in the Ist and 3rd quadrants). ¢, d The figures depict the representative dose response curves (see
Supplementary Fig. 7B, C for other cell lines) of the predicted synergistic drug combinations of € ABT263 (BCL2L1 inhibitor) and the OSI906 (IGFIR
inhibitor) and d GDC0941 (PIK3CA inhibitor) and the MK2206 (AKT1 inhibitor). The percentage of cell line survival (Y-axis) was measured at varying
doses of OSI906 (respectively MK2206), with and without ABT263 (respectively GDC0941) treatment at 5uM (X-axis). The dashed lines denote the
percentage of cell line survival at varying levels of OSI906 (MK2206) without ABT263 (GDC0941) treatments, and the solid lines denote the percentage
of cell line survival at varying levels of OSI906 (MK2206) in the presence of 5 pM of ABT263 (GDC0941). The combined drug treatments are significantly
more effective than the single treatments based on the analysis of variance (P < 3.17E-11 (¢) and P < 2.71E-8 (d)). The Fa-Cl curve for all drug combinations
are in Supplementary Fig. 7D, and the full experimental measurements are presented in Supplementary Data 11, 12

| (2018)9:2546 | DOI: 10.1038/541467-018-04647-1 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Table 1 SL partners and corresponding drug combinations tested in patient-derived melanoma cell lines

SL interaction Drug combinations Cell line 1 Cell line 2 Cell line 3 Cell line 4
BCL2L1-IGFIR ABT263-0S1906 0.47 0.54 0.68 1.12
PIK3CA-AKTI GDC0941-MK2206 0.75 0.23 0.77 0.59

The table shows the top two predicted cSL interactions tested in melanoma, the corresponding drugs tested and the experiments’ outcome as evaluated by the combination index (CI) at 50% of cells are
affected (Cl<0.7: strong synergism (blue), Cl <1: moderate synergism (green), and Cl>1: no synergism (white)).

while randomly selected partners are not predictive. DAISY-SL or
ncSL partners are also not predictive for this task (AUC = 0.50
and 0.51, respectively in Supplementary Fig. 6).

Third, we conducted new drug combination experiments in
patient-derived melanoma cell lines. Focusing on key melanoma
drivers®®, we selected the top target pairs among the strongest
ISLE-predicted cSLi between them—AKT1 and PIK3CA, and
BCL2L1 and IGFIR (Table 1, Supplementary Data 9). We
performed the experiments in cell lines where each gene of a
selected pair was highly expressed (Supplementary Data 10),
successfully validating seven out of the eight predicted cases
(Table 1, see examples in Fig. 3c, d; see Supplementary Note 1 for
details, Supplementary Fig. 7D for full Fa-CI curves and
Supplementary Data 11, 12 for measurement data).

cSL-based prediction of drug response in patients. We next
inferred the drug-cSL-network of clinically approved cancer
drugs (Methods, Supplementary Fig. 8) and tested its capacity to
predict drug response in three different patients’ datasets of dif-
ferent tumor types®+>7. Following the procedure described
before regarding in vitro drug prediction, for each drug we pre-
dict its response in each sample by computing its cSL-score; the
cSL-score of a drug denotes the number of its target genes’ SL
partners that are downregulated in the specific sample divided by
the number of the drug’s target genes (this number is determined
from the sample’s transcriptomics data; Eq. (4) in Methods). The
first dataset is composed of 508 tumor biopsies of HER2-negative
invasive breast cancer patients before treatment with taxane-
anthracycline chemotherapy®®. Patients with high cSL-scores
have significantly longer distant relapse-free survival (DRFS) rates
compared to those predicted as non-responders, as expected (Cox
hazard ratio 1.40 (P <6.0E-3), log rank P of 9.2E-4, Fig. 4a).
Indeed, patients annotated as responders show significantly
higher cSL-scores than non-responders (Wilcoxon rank sum P <
0.028 with breast cancer subtypes controlled). The cSL partners of
other drugs with the same degree distribution had no predictive
signal, and so do ncSLs and DAISY based predictions (log rank P
>0.37).

Second, we applied the network to predict the response of 25
patients with recurrent or metastatic non-small cell lung cancer
(NSCLC) to the EGFR-inhibitor erlotinib®>%, All patients had
EGFR wild-type tumors. The number of downregulated EGFR-
cSL partners is a marker of better prognosis (Fig. 4b) and shows
significant association with patient survival (Cox hazard ratio =
2.15 (P<6.5E-3), Supplementary Fig. 9A, B), which is signifi-
cantly better than the predictive performance of the randomly
permuted networks (empirical P < 0.05). The cEGFR-cSL part-
ners predict specific response to erlotinib, as opposed to merely
predicting patient survival: It failed to predict patients’ response
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in an independent arm of the same trial in which 37 NSCLC
patients were treated with sorafenib, a VEGFR inhibitor (log rank
P>0.95, Supplementary Fig. 9C, D). The performance of the ISLE
is superior in predicting disease progression after eight weeks of
treatment (f-test P=1.5E-3) compared to the original EMT
signature (t-test P=0.052)’, and on par with other supervised
clinical drug response predictors®® (see Supplementary Note 1).
Finally, DAISY or ncSL networks failed to predict the clinical
response to erlotinib (log rank P> 0.56).

Third, we analyzed an International Cancer Genome Con-
sortium (ICGC) cohort of 80 ovarian cancer patients treated with
taxane-cisplatin chemotherapy®’. The corresponding drug-cSL
partners are underexpressed in responders compared to non-
responders, as expected (Wilcoxon rank sum P < 9.1E-3, Fig. 4c).
Reassuringly, the ISLE-based prediction is significantly better
than random or shuffled SL partners (empirical P < 0.04 and 0.03,
respectively); DAISY-SL or ncSL partners were not predictive
either (Wilcoxon rank sum P >0.17).

Finally, we predicted drug response in the TCGA compen-
dium®*, We considered six drugs that have response evaluation
criteria in solid tumors (RECIST) information following treat-
ment for at least 12 patients (for available cancer types). Four out
of these six drugs show significantly higher cSL-scores in
responders’ tumors (blue bars) than in those of non-responders
(red bars) (Fig. 4d, empirical P < 0.05). (Notably, the cSL network
was inferred only from the samples that have no drug treatment
record (N =6268) so that the testing is performed strictly on
unseen samples, Methods.) The predictive signal is completely
lost when using random, shuffled, DAISY or ncSL partners (both
experimentally identified and inferred).

Discussion

Many SL lab screens have led to the discovery of numerous
important leads for further in vivo follow-up. However, our
analysis revealed that only a small fraction of the SLs candidates
emerging from such in vitro screens analysis show an evidence of
negative selection or effect on patients’ prognosis in the TCGA
cohort (Supplementary Note 1). This realization has led us to
develop ISLE, a method for identifying the subset of these in vitro
SL pairs that are more likely to be clinically relevant. As we have
shown throughout the paper, by and large cSL pairs enable suc-
cessful prediction of response to a wide panel of targeted thera-
pies in cancer patients, which is markedly superior to the
predictive power of ncSL pairs.

The clinical significance estimation of the initial pool of can-
didate SLs should be distinguished between two different cases:
(1) First, in the case of the specific candidate SLs that arise from
isogenic (or double-knockout) cell lines screens, we specifically
performed their clinical significance estimation by considering
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Fig. 4 Drug-cSL-network predicts treatment outcomes in cancer patients. a The KM plot of predicted responders (blue) vs non-responders (red) to taxane-
anthracycline chemotherapy®*. We divided the patients into responders vs non-responders based on the median value of their cSL-scores. b The gene
expression of the cSL partners in patients treated with erlotinib®>©®, ordered according to their months-to-progression (on-top). As predicted, patients
with many downregulated cSL partners progressed slower. ¢ The responders (blue) to taxane-cisplatin therapy for ovarian cancer show significantly higher
ISLE cSL-scores than the non-responders (red) (Wilcoxon rank sum P <9.1E-3). The X-axis shows the different groups of partners studied, and Y-axis
provides their cSL-scores in responders vs non-responders. d TCGA patients with a large number of downregulated drug-cSL partners in their tumors show
better response based on RECIST criteria. X-axis shows six drugs that have considerable (>12 samples) drug response information in TCGA, and Y-axis
represents the cSL-score (divided by total number of SL partners to guide visualization, mean and s.e.m) of their drug targets, where cancer types are
controlled for (* marks the four drugs that are significantly predicted after multiple hypothesis corrections (FDR-corrected Wilcoxon rank sum P< 0.2, and
epirubicin FDR < 0.23), drugs are listed in order of significance). Blue (red) bars denote the cSL-scores of the responders (non-responders), and the
numbers marked in blue (red) below the figure indicate the number of responders (non-responders) for each drug. All the analyses were performed using

the drug-cSL-network (presented in Supplementary Fig. 8) based on the drug-target mapping available listed in Supplementary Data 13

the corresponding mutation (or copy number and expression)
data in the tumors and also by scanning the specifically relevant
cancer types in which they have been inferred, so we believe that
their clinical significance estimations are quite robust. (2) Second,
the clinical significance estimations of the candidate SLs emerging
from the single-knockdown screens are however probably less
tight, as they are both tested and inferred via a pan-cancer ana-
lysis (Methods), while some of these candidate SLi may still be of
clinical value in specific cancer types and contexts (see Supple-
mentary Note 1 for details).

The cSLi inferred are identified by analyzing a large cohort of
untreated cancer samples, and then utilized to predict the
response to cancer drugs without any further training, showing
strong predictive power in a wide range of different data types
(Supplementary Data 14). The absence of specific training on
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post-treatment data reduces the risk of over-fitting and poor
generalization and enables the prediction of response to new,
untested drug candidates. ISLE’s performance level is on par with
numerous supervised prediction approaches employed for drug
response prediction in the DREAM challenge (Fig. 2¢). Impor-
tantly, it provides straightforward predictive cSLi signatures for
each drug, which can be used to guide the selection of cell lines
and models for further experimental screens, and for future
patient stratification.

Like any other genome-wide computational prediction
method, ISLE has several limitations that should be acknowl-
edged: (1) first; the tumor data are noisy, both on the molecular
and the survival side. To achieve a strong and robust predictive
signal, we infer a common pan-cancer network by combining
data from different tumor types, while obviously there is
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variability in SLi at different cancer types. (2) Second, the current
version of ISLE considers multitude types of evidence to increase
the signal and controls for many potential confounders. However,
additional ones could be further considered in the future when
more data accumulates. (3) Third, by requiring that cSLi pass
both molecular and survival filters we may miss true
cSLs. Nevertheless, we prefer to take this more conservative
approach that minimizes the number of ¢SLs that turn out not to
be clinically relevant even if it incurs a higher rate of missed true
interactions. Indeed, the results show that cSLi are markedly more
predictive than non-cSLi, across the board.

Drugs targeting such genes that are high degree hubs in the cSL
network may kill different sub-clones harboring different inacti-
vated cSL partners and may reduce the likelihood of emerging
resistance in heterogeneous tumors. With the accelerated accu-
mulation of new patients’ data, ISLE may be further improved by
analyzing new types of omics data (e.g., more extensive sequence
and epigenetic data) and lead to the generation of cancer type/
context-specific SL networks. Taken together, ISLE complements
existing mutation-based targeted approaches®® by extending their
scope to the whole genome.

Methods

Gene activity and FDR threshold settings. Throughout the paper, we define the
following unless specified otherwise: (A) A gene to be inactive in a sample if its
gene expression (or SCNA) is below 1/3-quantile across samples in each cancer
type. This is to account for the distinct basal expression levels of the gene in
different cancer types (see Supplementary Note 1). We used both transcriptomic
and SCNA profiles for identifying SLi using ISLE, but used only transcriptomic
profiles for drug response prediction throughout the paper.

(B) A candidate SL pair to be significant when FDR-corrected p-value < 0.2 in
identifying the cSL network. In the three steps of ISLE, the significant pairs were
selected and passed to the next step. In all multiple hypothesis correction, we
consistently used a uniform FDR threshold of 0.2.

ISLE. The first step incorporates the union of candidate SL pairs derived from two
separate procedures. Initial Set I: the experimentally identified SL were collected
from 17 screens, each performed in a single cell line®~2°. The screens spanned
altogether 154,707 potential pairwise interactions tested in eight different cancer
types, among which 6033 pairs compose the positive set (about 4%, see Supple-
mentary Data 1). We excluded from the screens those interactions that focus on
activatin; driver mutation or copy number amplification, such as KRAS!*17,
PTTG1Y, and MYC!, resulting in 4252 unique candidate SL pairs. Initial Set II:
the SLi were inferred from five large-scale shRNA/sgRNA single gene knockout
screens?630, spanning a total of 9,253,974 measurements in 315 cancer cell lines
from 19 different tissues of origin, through ‘guilt-by-association’?>4>48; By defi-
nition, it is expected that gene A will be essential only when its SL partner gene B is
inactive in a given cancer cell line. Using a set of input genome-wide shRNA/
sgRNA screens in a reference collection of cell lines, ISLE examines all current
candidate SL pairs to identify those pairs that show conditional essentiality: Gene A
is defined as conditionally essential with gene B if its essentiality is significantly
higher in the samples where gene B is underexpressed (defined above) using
Wilcoxon rank sum test. SCNA based conditional essentiality is determined ana-
logously. The candidate SL pairs that show significance either by mRNA or SCNA
data selected in the set (see Supplementary Note 1). The union of Initial Set I and II
has resulted in a total of 16,375,526 candidate SLi.

First, we identify under-represented SL pairs by analyzing tumor molecular
data. The step searches for gene pairs whose co-inactivation are under negative
selection. We mine gene expression and SCNA data of input tumor samples to
identify gene pairs A and B whose co-inactivation (defined above) is significantly
less frequent than expected (identified via a hypergeometric test). Formally, if N is
the total number of tumor samples, 15 (1) is the number of samples with gene A
(gene B) underactive, respectively, and n,p is the number of samples with co-
inactivation of A and B, the significance of depletion was determined by
hypergeometric(nap, 14, N, np) (see Supplementary Note 1). The depletion of the
activity state using SCNA is inferred analogously.

Second, we identify survival-informative pairs by analyzing patient survival
data. The step selects a gene pair A and B as SL if tumor samples with co-inactive
A-B exhibit significantly better patient’s survival than tumor samples without the
co-inactivation. Specifically, ISLE uses the following stratified Cox proportional
hazard model to check this association, while controlling for various confoundin(%
factors including the effect of respective genes, cancer types, genomic instability’,
sex, age, and race (shown here for expression analysis and a similar model is used
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to analyze SCNA data):

hy (¢, patient) ~ hy, (t) exp(B,1(A, B) + B,g(A) + B;g(B) + B,age + B;GIL), (1)

where g is an indicator variable over all possible combinations of patients’
stratifications based on cancer type, race, and sex. h, is the hazard function (defined
as the risk of death of patients per unit time), and kg, (t) is the baseline-hazard
function at time ¢ of the gth stratification. The model contains four covariates: (i) I
(A, B): indicator variable if the SL is functionally active in the patient’s tumor, (ii) g
(A) and (iii) g(B): gene expression of A and B, (iv) age: age of the patient, (v) GIL:
genomic instability index. GII measures the relative amplification or deletion of
genes in a tumor based on the SCNA. Given s; be the absolute of log ratio of SCNA
of gene i in a sample relative to normal control, GII of the sample is given as in
Bilal et al.>:

GII = 1/Ni1(si>1). 2)

The Bs are the regression coefficient parameters of the covariates, which
quantify the effect of covariates on the survival. All covariates are normalized to N
(0,1). The s are determined by standard likelihood maximization of the model”®
using the R-package “Survival”. The significance of f;, which is coefficient for the
SL interaction term is determined by comparing the likelihood of the model with
the null model without the interaction indicator I(A, B) followed by a likelihood
ratio test’”, ie.,

hoang (£, patient) ~ by, () exp(B,g(A) + Bsg(B) + Byage + BsGII).  (3)

The p-value obtained by the likelihood ratio test is corrected for multiple
hypotheses. Pairs exhibiting the significant survival improvement either in gene
expression or SCNA are passed on to the next screen.

Third, we identify phylogenetically linked SL pairs by analyzing phzflogenetic
profiles. SL pairs were found to be conserved across different species'?*. Based on
this notion, we further filter and select SL pairs composed of genes having high
phylogenetic similarity. This is done by comparing the phylogenetic profile of the
two genes A and B in a candidate SL pair across 86 species (adopting the method of
Tabach et al.#%41). We then calculate the phylogenetic similarity between A and B
using a non-negative matrix factorization (NMF)”, which measures the Euclidian
distance while taking into account their phylogeny. To determine the threshold
used for this step, we used the median phylogenetic similarity of the pairs in Initial
Set I as it optimally separates the positive and negative sets among these pairs (see
Supplementary Note 1).

ISLE-based drug response prediction. For drug response and essentiality pre-
dictions, we applied ISLE to a limited set of candidate SL pairs between the
inactivated genes (either by drug or gene knockout) and all protein-coding genes,
performing multiple hypothesis correction at each drug or gene level with a single
uniform FDR threshold of 0.2 throughout the paper. The drugs were mapped to
their targets primarily based on DrugBank’?, and we referred other sources such as
CCLE®®, GDSC”? and the literature with exception to target genes whose
mechanism of action is explicitly denoted as an agonist in DrugBank (Supple-
mentary Data 13). We excluded those drugs whose target information is not
concrete from such databases and the literature. As an example, Supplementary
Fig. 8 depicts the drug-cSL-network that was used for predicting drug response in
patients, that covers 232 SLi, involving 14 drug targets (blue), their corresponding
16 drugs (green), and their 207 SL partners (red).

Throughout the manuscript, we made predictions for drug response to (1)
single agents and (2) drug combinations using ISLE. We focused on inhibitory
compounds with specific targets because only targeted inhibitors are relevant to SL.

For single agents, we use the following procedure, which we term Procedure (1).
We hypothesize that a drug will be more effective in cell lines/samples that have
more underactive cSL partners of its targets. To this end, we (i) identified the cSL
partners of the genes targeted by each of the drugs (using ISLE pipeline as
described above), (ii) defined cSL-score for individual samples/cell lines (defined
below), and (iii) used cSL-score to predict the drug response and evaluated the
prediction accuracy by comparing it with experimentally/clinically measured drug
response data.

Ne
cSL-score; = ;I(mRNAij<q1j)/NT, (4)

where cSL-score; denotes the cSL-score of the jth sample, mRNA;; is the pre-
treatment gene expression of ith cSL partners in the jth sample; g; is the 1/3-
quantile threshold of the cancer type to which the jth sample belongs, I(x) is an
indicator function whose value is 1 if x is true and 0 otherwise. Np is the number of
cSL partners of the given gene of interest, and Ny is the number of the targets of a
given drug.
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For drug combinations, we use the following procedure, which we term
Procedure (2). ISLE SL-network was applied to predict synergistic drug
combinations based on the working hypothesis that a synergy between two
compounds arises from an underlying SLi between the gene targets of each of the
two drugs. Accordingly, we (i) applied ISLE to all possible pairs between the drug-
target genes, (ii) predicted the compound synergy using the best cSL-pair-score
(defined below) between their target genes, and (iii) evaluated the prediction
accuracy versus experimentally measured synergy.

cSL-pair—score = rypyy + 71 + 1y + T, (5)

where cSL-pair-score is a qualitative measure combining the significance levels at
the initial candidate SL pool and the subsequent three statistical tests, ripitia denotes
the significance based on the experimental in vitro screens. r, r1j, and ry; denote the
rank-normalized values (between 0 and 1, with 1 representing a pair with the
highest significance and 0 with the lowest) of the statistical significance levels across
all gene pairs tested for step I, II, and III, respectively.

We compared the performance of ISLE against control networks, including
ncSL network (defined below), and random networks. (1) For gene essentiality
prediction, the gene’s SL partner was assigned randomly. (2) For drug response to
single agents, the cSL partners of a drug was assigned either by (i) random genes or
(ii) the randomly selected cSL partners of other drugs. (3) For drug response to
combinations, the random networks were created by randomly shuffling the drug’s
identities. Also, we compared the performance of ISLE with that of DAISY?” (see
Supplementary Note 1).

To evaluate the importance of patient data in predicting drug response, we
consider ncSL pairs, which are the SLi that belong to the initial pool of in vitro SL
screens (see “Building an initial pool of candidate SL pairs” in Methods) but do not
pass the three steps of ISLE. For gene essentiality or single drug response
prediction, we compared the performance of ISLE cSL partners to that of ncSL
partners by selecting the most significant N ncSL partners (determined by the
significance of in vitro screens) per each drug, where N is the number of the ISLE
cSL partners. For drug synergism, we used the predictive performance of riniia (Eq.
(5)) from in vitro screens like that of ncSL because the performance of each ISLE
steps is independently evaluated.

Validating ISLE-identified individual SL interactions. To validate individual
ISLE-inferred SLi, we analyzed a large-scale drug response screen (Cancer Cell
Encyclopedia (CCLE)®, covering IC50 values of a total of 24 drugs across 500
cancer cell lines with their corresponding gene expression). We focused on the
inhibitor compounds whose response is highly variable across different cell lines
(see Supplementary Note 1).

We test whether inactivation of cSL partners (P) of a drug target (T) is
associated with better response to the drug (hence supporting the presence of SLi
between P and T). We thus used the cSL-pair-score of the P-T pair (i.e. the
features, as produced by ISLE pipeline) to predict the association between the low
expression of P and better response to the drug targeting T (i.e. the labels, 1 if the
low expression of P is associated with the better response to the drug targeting T, 0
otherwise) using Wilcoxon rank sum test with FDR <0.2 and fold change >0.35
(see Supplementary Note 1). We evaluated the prediction accuracy of ISLE based
on the standard ROC and precision-recall analysis and compared it to the
performance of the control SL networks.

Validating ISLE with in vivo drug response data. For in vivo analysis, we ana-
lyzed the large-scale mouse xenograft dataset, which collects 36 single drug
response screening of 375 mouse samples in 15 cancer types®. The drug response
was marked based on in vivo response evaluation criteria in solid tumors for mouse
(mRECIST) criteria, namely complete response (CR), partial response (PR), stable
disease (SD), and progressive disease (PD) based on tumor size reduction over time
after treatment compared to the baseline (see Methods in Gao et al.?). Following
Procedure 1 (see ISLE-based drug response prediction’ in Methods above) using
the drug-cSL-network, we evaluated our prediction (cSL-score) vs. experimentally
measured drug response. Based on the in vivo pathological drug response anno-
tation, the samples were divided into responders (CR, PR, SD) vs non-responders
(PD) and their cSL-score were compared using a Wilcoxon rank sum test. We
focused on seven drugs that show sufficient variability in best average response
(BestAvgResponse)® across different samples per drug (variance >10-percentile)
and sufficient sample size for robust comparison (Supplementary Note 1). Also, we
tested our prediction against in vivo Progression Free Survival (PFS) data, which
measures the time for the tumor to grow double of the baseline tumor size (see
Methods in Gao et al.*%). We tested whether high cSL-score is associated with
improved survival using Cox regression analysis while controlling for confounders
such as cancer types.

Benchmarking ISLE with DREAM7 challenge data. For single drug response, we
focused our analysis on a set of 20 inhibitor compounds that have highly specific
targets (Niarget < 3) and significant SL partners predicted by ISLE (with FDR
threshold of 0.2). We followed Procedure 1 (see ISLE-based drug response pre-
diction” in Methods above) using drug-cSL-network to make ISLE-based drug
response prediction, and evaluated and compared the performance using weighted
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probabilistic concordance index (wpc-index), that is the collective measure of
concordance index for each drug, taking the variance of the response to individual
drugs into account, as defined in Costello et al.%.

For drug combination, we used the ISLE inferred SL significance (cSL-pair-
score) between the drug targets as the predictor for synergism. We followed
Procedure 2 (see ‘ISLE-based drug response prediction’ in Methods above) to make
synergistic compound prediction, and evaluated and compared the performance
using probabilistic concordance index (pc-index), taking the variance of the
response to individual drugs into account, as defined in Bansal et al.%!. (see
Supplementary Note 1 for further details).

Validating ISLE drug combination screens. We followed Procedure 2 (see ISLE-
based drug response prediction’ in Methods above), and evaluated the prediction
accuracy based on ROC analysis and prediction-recall statistics. We applied this
approach to a recent DREAM challenge®?, which covers 169 drug combinations
that involve 535 target gene pairs in 85 cancer cell lines (AstraZeneca-Sanger Drug
Combination Prediction DREAM challenge 2015, different from the DREAM7
challenge. In this dataset, the single and double-drug response were measured
across multiple dose conditions, and a synergism was defined by the difference
between the actual combination response and the additive effect of the respective
single agents. This was implemented based on Loewe model, summarized into a
single synergy score’>747> (see the Data Description of the AstraZeneca-Sanger
Drug Combination Prediction DREAM challenge®?). We labeled a drug pair to be
synergistic based on its maximal synergy score.

For in vivo synergistic combination, we applied the same approach to a
collection of in vivo mouse xenograft models that cover 26 drug combinations in
375 samples™. We define a drug pair is synergistic if it shows synergism in more
than 2/3-quantile of the samples it was tested. In each sample, a drug pair is
synergistic, if the double treatment effect is greater than the summation of
respective single treatments. Specifically, we used the best drug response metric
(BestAvgResponse), which measures the averaged value of the maximal tumor size
reduction over multiple time points (see Methods in Gao et al.*®) to quantify the
effect of the double and single treatment.

Testing cSL network with functional and drug screens. We use liv7k cell line, an
aggressive (T3N2b), HPV-negative cell line derived from a primary tumor of the
tongue, in a patient who received no chemo/radiotherapy before tumor excision.
Generously gifted by Professor Richard Shaw (Head and Neck Cancer Consultant,
Liverpool, UK). Cells are maintained in keratinocyte SFM (Life Technologies),
supplemented with 2 mM L-glutamine, 0.2 ng/ml epidermal growth factor (EGF)
and 25 pg/ml bovine pituitary extract (BPE). The cell line was tested for myco-
plasma contamination and authenticated by exome sequencing and CNV.

For drug repurposing screen in liv7k cell line, a panel of drugs comprised from
FDA-approved and clinically tested agents (NIH Clinical Collection (Evotec, San
Francisco, CA), LOPAC Pfizer (Sigma Aldrich), and the FDA-Approved Drug
Library (Selleck Chemicals)) were tested at a single concentration of 10 uMin
dimethyl sulfoxide (DMSO). We focused on inhibitor compounds that have single
target genes (N = 237). Compounds were first diluted 1:50 in serum-free media,
and then further diluted 1:20 into 96-well plates containing 5000 cells in 190 pl of
keratinocyte SFM as described. Vehicle control (0.1% DMSO) was used as a
negative control, and 1 uM staurosporine (Sigma Aldrich) was used as a positive
cell lethality control in all plates. Each drug was tested for 72h under 21 and 0.1%
O, The cells were fixed using 4% formaldehyde and stained with DAPI dilactate
(Sigma Aldrich). We assess viability by quantifying the number of stained nuclei
using the Operetta High-Content Imaging System (Perkin Elmer).

For gene knockout screening in liv7k cell line, transfections were performed in
384-well plates in 21% O, and 0.1% O,. A complex of siRNA (Dharmacon, GE
Healthcare) and 0.125 uL RNAiMax (Life Technologies) was added to each well
and incubated for 30 min (final siRNA concentration 25 nM). 5000 cells were
added per well in keratinocyte serum-free medium. The screen was conducted
using siGenome RNAIi pools and included All-Stars Cell Death control (Qiagen)
and ON-TARGETplus Non-targeting Control Pool (Dharmacon, GE Healthcare).
72 h later, cells were fixed and stained with DAPIL The number of nuclei per well
was counted using the Operetta High-Content Imaging System (Perkin Elmer).

For drug response screen in breast cancer cell lines, a panel of 7 breast cancer
cell lines was screened using the drug repurposing libraries and workflow detailed
for the liv7k cell line, under normoxic conditions only. All cell lines were
maintained in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% FBS
and 10% glutamine, with MCF10A cells receiving additional EGF (20 ng/ml),
hydrocortisone (0.5 mg/ml), cholera toxin, (100 ng/ml) and insulin (10 pg/ml)
supplementation. Cells were seeded at concentrations which resulted in
approximately 80% well confluence after 72 h incubation (2000 > 8000).

For gene essentiality and drug response prediction, a gene was marked
underactive if its expression level is less than 1/3-quantile of its level across all
CCLE cell lines (N> 1000)°8 (see Supplementary Note 1). The growth inhibition
induced by individual gene knock-outs was predicted by cSL-score of the gene, i.e.,
counting the number of inactive cSL partners in the given condition. The c¢SL
network was inferred with FDR < 0.2 at the individual gene or drug level starting
from the initial SL pool. We performed a large-scale gene knock-out screen to
measure the growth inhibition effect of the genes over both the conditions
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(Supplementary Data 6, Supplementary Note 1). To predict the conditional
essentiality, we compared the cSL-score to hypoxic and normoxic conditions for
the genes that are differential by essentiality and by cSL-score (Supplementary
Note 1). The prediction accuracy was quantified by simple fold change comparison
between our prediction and measured essentiality values.

For drug response prediction, we followed Procedure 1 (see “ISLE-based drug
response prediction” in Methods above). We focused on 237 and 92 single-target
drugs respectively for liv7k and BC cell lines. We considered %Growth Inhibition
>top 33% as a positive set (responsive), and the rest as a negative set (non-
responsive). We performed ROC and precision-recall analysis using the cSL-score
as a prediction for drug response. We performed an analogous analysis to predict
drug response in breast cancer cell lines. To predict the conditional essentiality in
liv7k cell line, we compared the cSL-score of the drug targets and the drug’s
effectiveness in hypoxic and normoxic conditions (see Supplementary Note 1). The
prediction accuracy was quantified by simple fold change comparison between our
prediction and measured drug response values analogous to conditional essentiality
analysis described above.

Testing cSL-based drug synergy in patient-derived cell lines. All DNA samples
used in this study were derived from metastases. Samples used for whole-exome
capture were extracted from cell lines established directly from patient tumors as
described previously’®. Briefly, a panel of pathology-confirmed metastatic mela-
noma tumor resections, paired with apheresis-collected peripheral blood mono-
nuclear cells, were collected from patients enrolled in IRB-approved clinical trials at
the Surgery Branch of the National Cancer Institute. Pathology-confirmed mela-
noma cell lines were derived from mechanically or enzymatically dispersed tumor
cells, which were then cultured in RPMI 1640 + 10% FBS at 37 °C in 5% CO2 for
5-15 passages. Genomic DNA was isolated using DNeasy Blood & Tissue kit
(Qiagen, Valencia, CA). For all samples, matching between germline and tumor
DNA was verified by direct sequencing of 26 single nucleotide polymorphisms
(SNP) at 24 loci. A subset of cell lines used in the study was derived from a panel of
pathology-confirmed metastatic melanoma tumor resections collected from
patients enrolled in institutional review board (IRB)-approved clinical trials at the
Surgery Branch of the National Cancer Institute. Pathology-confirmed melanoma
cell lines were derived from mechanically or enzymatically dispersed tumor cells,
which were then cultured in RPMI-1640 supplemented with 10% FBS at 37 °C in
5% CO, for 5-15 passages. All cell lines tested negative for mycoplasma.

For proliferation assay, cells were seeded at a density of 4000 cells per well in
96-well plates. The next day, cells were treated with several concentrations and
combinations of IGFIR inhibitor OSI906 (linsitinib, Selleckchem, 0.15-20 uM),
Bcl-2 inhibitor ABT-263 (navitoclax, Adooq, 0.15-20 uM), or AKT inhibitor MK-
2206 (Adoog, 0.15-20 uM) and PI3K inhibitor GDC-0941 (Adoogq, 0.15-20 uM).
After 72-96 h days, cell proliferation was assessed using the CellTiter-Glo reagent
(Promega). ICs, graphs were determined using GraphPad Prism. All experiments
were conducted in triplicates.

From the drug-cSL-network derived from pan-cancer screening, we first filtered
the actionable targets relevant to melanoma, prioritizing the pathway alterations
associated with the key melanoma drivers®>. We then selected two among the top
five pairs of the drug targets with the strongest ISLE-predicted cSL between them,
quantified by cSL-pair-score (see Supplementary Note 1 for details) - AKT1 and
PIK3CA, and BCL2L1 and IGFIR (Supplementary Data 9). Among the 29 patient-
derived melanoma cell lines available to us, we selected for each gene pair the top
three or four cell lines in which the target genes are highly expressed
(Supplementary Data 10). Then we chose to continue our validation for the
BCL2L1/IGF1R pair with three patient-derived cell lines (PDCs) and a melanoma
cell line 501Mel and for the AKT1/PIK3CA pair with four PDCs, two of which
overlaps with those used for BCL2L1/IGFIR. The synergy values were calculated
according to the Chou-Talalay method””, using the CompuSyn software
(ComboSyn, Inc., Paramus, NJ). The drug interaction is quantified by Combination
Index (CI) values, where CI<1, CI=1, and CI> 1 indicate synergistic, additive,
and antagonistic effects, respectively.

Predicting clinical drug response based on cSL. We followed Procedure 1 (see
‘ISLE-based drug response prediction’ in Methods above) in predicting treatment
outcome in patients, using transcriptomic data from tumor samples to determine
the cSL-score, calculated based on the drug-cSL-network (Supplementary Fig. 8).
To avoid any circularity in patients’ drug response prediction, we excluded TCGA
samples of patients who have treatment records (resulting in N = 6268) from the
data used for SL identification (Step II). We evaluated our prediction vs. inde-
pendent measures of drug response. In drug response prediction with TCGA
samples, we have an explicit RECIST annotation regarding the pathological drug
response, namely complete response (CR), partial response (PR), stable disease
(SD), and progressive disease (PD) for a subset of patient samples. Based on this
annotation, we divided the samples into responders (CR, PR, SD) vs. non-
responders (PD) and compared their cSL-score using a Wilcoxon rank sum test.
For each drug, we focused on highly specific drugs (Niarge<3) and the cancer types,
which involves a sufficient number of samples (N> 12) per cancer type in TCGA
(suggesting the drug is primarily used for the treatment of the cancer type) to
eliminate noise. Vinka alkanoid drugs were removed from the analysis because
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their mechanism of action is not compatible with SL. We confirmed that the
significance is not achieved by randomly assigned cSL-score to the samples under
consideration, and the empirical P-value is provided. The same approach was
applied to distinguish the sensitive vs. resistant cases in ICGC ovarian cancer
dataset.

For other datasets, we used patient survival as a surrogate for drug response,
assuming that responders would have a better prognosis than non-responders. Our
predictions were tested against patient survival data by examining if the patients
that have high cSL-score show significantly better prognosis using Cox regression
analysis while controlling for other confounders such as patient’s age, cancer
subtypes, and driver mutation, wherever they are available. Specifically, for taxane-
anthracycline data, patient’s age and breast cancer subtypes were controlled; and
for erlotinib analysis, KRAS mutation was controlled. For erlotinib analysis, we
identified top 76 SL partners of EGFR (based on cSL-pair-score) to compare with
the 76-gene EMT signature of the original study® (see Supplementary Note 1).

Code availability. ISLE is implemented in R, using the SLURM distributed parallel
computation infrastructure. The code and resulting cSL networks (genome-wise
clinical-SL-network (Supplementary Fig. 1) and the above drug-cSL-network) are
available on GitHub: https://github.com/jooslee/ISLE/. The networks can be

explored using a freely available Cytoscape software”’.

Data availability. All relevant data are available in the Supplementary Data files, or
from the corresponding author upon request.
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