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Nonlinear optical components for all-optical
probabilistic graphical model
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The probabilistic graphical models (PGMs) are tools that are used to compute probability

distributions over large and complex interacting variables. They have applications in social

networks, speech recognition, artificial intelligence, machine learning, and many more areas.

Here, we present an all-optical implementation of a PGM through the sum-product message

passing algorithm (SPMPA) governed by a wavelength multiplexing architecture. As a proof-

of-concept, we demonstrate the use of optics to solve a two node graphical model governed

by SPMPA and successfully map the message passing algorithm onto photonics operations.

The essential mathematical functions required for this algorithm, including multiplication and

division, are implemented using nonlinear optics in thin film materials. The multiplication and

division are demonstrated through a logarithm-summation-exponentiation operation and a

pump-probe saturation process, respectively. The fundamental bottlenecks for the scalability

of the presented scheme are discussed as well.
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One of the major challenges in electronic computation is
the optimization problem that usually occurs in a large
data set where each variable depends on or has influence

on other variables. The PGM is a standard and extremely pow-
erful approach to calculate the joint probability distribution for a
large number of variables where each element of the set depends
on other variables1–5. PGM methods are used in a variety of fields
including social networks6, artificial intelligence7, 8, machine
learning8–11, decision-making, speech recognition, image pro-
cessing12, and computational biology13–19. Electronic central
processing units are not the best tools to address these problems.
Introducing multicore technology and parallel computing archi-
tectures such as sub-threshold very large-scale integration,
application-specific integrated circuit (ASIC) and a custom ASIC,
the Tensor Processing Unit from Google20, have improved speed/
power cost for optimization problems, but optimization problems
for big data remain a big challenge. Heat generation and band-
width limitations of electronic devices are the main reasons for
this, and reports of Moore’s law being exhausted have become
common21–23. For these reasons, hybrid optical-electronic
accelerators have recently been explored to improve electronic
digital computing in terms of speed enhancement and energy
efficiency for several problems such as signal processing24–29,
spike processing30–32, and reservoir computing33–35.

The SPMPA is commonly used in graphical models. In this
algorithm, a message (µS→R) containing the influence that node S
exerts on node R is passed to R. When node R is connected to
multiple nodes, the message received at R is the normalized
product of the influences from all other nodes,

p x1; x2; ¼ xnð Þ ¼ 1
Z

YN
n¼1

xn ð1Þ

where Z is a normalization factor, p is the probability dis-
tribution and N is the total number of nodes. Graphically, each
variable is represented by a node and its potential to be influenced
by other nodes is represented by the connections to other nodes
or edges2 (Supplementary Note 1). For instance, Fig. 1a shows a
graph for image processing with each node representing a pixel in
the image that is being influenced by its four nearest neighbors;
thus 4 edges for each node with an alphabet K, defined by the
potential intensity of each pixel, K= 256 for 8-bit encoding in
each pixel. Figure 1b shows a fully connected graph that is
applicable to, e.g., an Ising problem with each node representing
an electron in a solid with its spin influenced by all other elec-
trons with K= 2 for spins up or down.

A fully optical implementation of PGMs, using a wavelength
multiplexing architecture could offer a promising approach to
efficiently solving large data set problems, potentially providing
benefits such as increased speed and lower power consumption
(Supplementary Note 2). However, we must note that with cur-
rent coherent laser technologies and known nonlinear optical
materials in nature, there are some fundamental problems in
order to scale the number of nodes to very large number (e.g.,
106). We discuss the fundamental challenges later in the Results
section. In this paper, we present our experimental results on the
optical implementation of the wavelength multiplexed archi-
tecture of message passing algorithm of PGMs for N= 2 and
demonstration of the mathematical functions, including multi-
plication and division, using nonlinear optics.

Results
Wavelength multiplexing architecture. The multiplier of the
message passing algorithm of Eq. (1) can be written with natural
logarithmic (ln), summation and exponential operations (Fig. 2a)

as,

Yj

m¼1

Ym ¼ exp
Xj

m¼1

ln Ymð Þ
 !

ð2Þ

This embodiment of the multiplier is easier to implement opti-
cally. In the wavelength multiplexing architecture of Fig. 2b, each
node is represented by a different wavelength shown by a dif-
ferent color, since the spectral bandwidth can be equally divided
and used for each node.

The graph in Fig. 2b has N nodes and the alphabet size is K. To
find the updated probability vector of the target node (node m in
Fig. 2b), each message from its neighbor nodes is first multiplied
with a compatibility matrix whose elements are conditional
probabilities2. This operation is called vector-matrix-
multiplication (VMM). The outputs of the VMM are then
multiplied element-wise and normalized to yield the updated
probability vector of the target node. The product of all messages
is replaced with logarithmic, summation and exponential
operations as shown in Eq. (2). These operations are applied to
every node in order to determine its updated probability vector.
The updated vectors are then used in subsequent iterations until
their values reach steady state. Thus, the two most important
mathematical operations required to compute the probability
vector are multiplication and division for normalization36. The
natural logarithmic function can be implemented optically by two
photon absorption37 (TPA), while the exponential function can
be optically realized through saturable absorption (SA), and the
summation function by the fan-in process, respectively. However,
using analog optics to implement the mathematical functions and
operations can induce noise38–40, which can affect the perfor-
mance of the optical solution of the PGMs. Therefore, we
performed simulations to determine the effect of noise on the
failure rate of the sum-product message passing algorithm. Our
results indicate a 99% success rate for a graph with one-million
nodes, an alphabet size of 100 and 20% connection density. In
other words, the optical implementation of the sum-product
message passing algorithm is very tolerant to the noise
(Supplementary Note 3).

Multiplication. Inserting the saturable absorption equation
α Ið Þ ¼ α0= 1þ I=Isatð Þ in the differential equation for the non-
linear absorption41, dI=dz ¼ �α Ið ÞI and solving leads to

Ioute
Iout
Isat ¼ Iine

Iin
Isat

�α0L ð3Þ

Here Isat is the saturation peak irradiance, α0 is the weak field
absorption, L is the thickness of SA material and Iin and Iout are
the input and output peak irradiance, respectively. A numerical

a b

Fig. 1 Graphical maps with different node connectivity. a Locally connected
graph. b Fully connected graph
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solution of Eq. (3) and its fit with an exponential function are
plotted in Fig. 3a. Including the TPA term in the nonlinear
absorption differential equation42 dI / dZ=−α0I− βI2, leads to
an explicit analytical solution,

Iout ¼
Iine

�α0L

1þ βLeff Iin
ð4Þ

where β is the TPA coefficient and Leff ¼ 1 � e�α0Lð Þ=α0. A
numerical solution of Eq. (4) is plotted in Fig. 3b as well as its fit
with a natural logarithm function. The result of combinations for
29 identical logarithm inputs and an exponentiation gives the
multiplication of the inputs as illustrated in Fig. 3c. The ideal
multiplication result is plotted as a linear fit in Fig. 3c. Note that

the peak irradiance in Eq. (3) and (4) can be replaced with energy
per pulse (fluence or photon number as well) without any change
in concept of their comparison with the exponential and loga-
rithm functions. We use energy per pulse (E) for simulation as the
experimental data were measured in terms of energy per pulse. In
Fig. 3a and Fig. 3b we need to limit the range of fitting in order to
get maximum overlap of the exponential and natural logarithm fit
functions with SA and TPA solutions. Also the normalized-root-
mean-square error (NRMSE) should be less than 1% and is
defined as

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h Eout � Efitð Þ2

q
i

Emax � Emin

ð5Þ
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Fig. 3 Numerical simulation of multiplication. a Comparison of the saturable absorption (SA) solution with an exponential function Eout= h.exp(q.Ein). Fit
coefficients are h= 2.906 and q= 0.041 and parameter values of the numerical simulation are α0= 5(arb.u.),Esat= 70(arb.u.) and L= 0.3(arb.u.). b
Comparison of two photon absorption (TPA) solution with a natural logarithm function Eout=H.ln(Q.Ein). Fit coefficients are H= 0.646 and Q= 0.723 and
parameter values of the numerical simulation are α0= 5(arb.u),L= 0.3(arb.u.) and β=0.5(arb.u.). c The blue squares show the composite mathematical
operations of ln-sum-exp for 29 inputs and the solid red line represents ideal multiplication. The normalized-root-mean-square (NRMSE) of less than 1%
(between simulated multiplication and the ideal multiplication) occurs between the bounded range, which is input energies between about 19 (arb.u.) to 32
(arb.u.)
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Fig. 2 Wavelength multiplexing architecture. a ln-sum-exp scheme to multiply two numbers. b Schematic representation of the sum-product message
passing algorithm (SPMPA) for node m. The spectral bandwidth is divided equally as a representation of each node (different color indicates different
wavelength). The summation unit sums across wavelength for each probability vector that emerges from the natural logarithm (ln) modules

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04578-x ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2128 | DOI: 10.1038/s41467-018-04578-x | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Limiting the ranges also comes from the natural behavior of the
SA and TPA process where Eq. (3) and (4) start from zero for no
input energy. However, we know that e0= 1 and ln(0) is unde-
fined. Therefore, bounding the input intensity range for fitting is
necessary for convergence and adequate fitting of the solutions of
the TPA and SA equations with the target functions. The criteria
are the maximum error acceptable to reproduce the function.

We have performed the multiplication experiment to multiply
two energies in thin film materials. Fig. 4a denotes the
experimental setup for the multiplication experiment. The
thickness of the TPA and SA devices are 50 ± 2 nm and 3 µm,
respectively. The material that was used to produce the natural
logarithm function in the TPA units was amorphous carbon
made by the pyrolyzing photoresist film (PPF) technique43, 44

(Supplementary Note 5) and a nonlinear optical dye (thiopyr-
ylium-terminated heptamethine cyanine) as the SA45 to achieve
the exponential function (Supplementary Note 6). Fig. 4b, c, d
show Eout vs. Ein and the nonlinear fit functions with the natural
logarithm and exponential functions for the TPA blocks and SA
block, respectively. As we expected, according to the TPA and SA
simulations, the logarithm and exponential function fits do not
have exact mathematical form of ln(x) and ex due to the weak
field, TPA, scattering, and the insertion loss from optical
components. However, the fit coefficients (H, Q, h, q) are known
and constant, so that we can take these coefficients into account
as imperfections that cause deviations from the exact mathema-
tical multiplication. Considering the Maclaurin expansion of Eq.
(3) and the fit function in Fig. 4d up to third order, we define the
coefficient q to be proportional to α0L=IsatAeff , where Aeff is the
spot size of the optical beam. On the other hand, as we explained
in Fig. 2a, the composite function of the sum of two natural

logarithm functions and subsequent exponentiation yields the
product of input values. Now taking the fit coefficients from
Fig. 4b and Fig. 4c in account, we get the summation of the two
output values from the TPA blocks as:

H:ln Q:E1ð Þ þH:ln Q:E2ð Þ ¼ ln Q2:E1 ´ E2
� �Hh i

ð6Þ

Here the polarization beam combiner (PBC) does the summation
operation and this is the value out of the PBC and the input to the
SA. The SA operates on the input values based on the fit equation
in Fig. 4d:

h:exp q:ln Q2:E1 ´ E2
� �H� �h i

! h Q2H:q
� �

E1 ´ E2ð ÞH:q ð7Þ

Eq. (7) reduces to σ(E1×E2)γ, where σ= hQ2Hq and γ=Hq. The
numerical values for the experimental setup and materials that we
used are σ= 0.375 and γ= 0.059. These coefficients capture all of
the imperfections and fundamental material characteristics of the
setup. However, in order to get pure mathematical multiplication
of two numbers as desired, we can add two gain blocks in the
setup to eliminate the σ and γ coefficients and get exactly E1 × E2.
Fig. 4f shows a schematic of these modification where G1 and G2

must be equal to 1/γ and 1/(hQ2), respectively. Note that, based
on conservation of energy, fundamentally we cannot take two
energy values and detect their direct multiplication. Hence,
adding gain blocks is quite reasonable although this increases the
power consumption of the computation. However, If we want to
multiply more than two numbers in which σ or γ or both become
greater than one, we need to add attenuation blocks instead of G1

or G2. The selection of gain block(s) or attenuation block(s)
depends on the size of the graph, number of edges, and the
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in which the values of the gains depend on the material and the experimental setup
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material characteristics. Fig. 4e shows the measured output
energy as a result of appropriate manipulations of the two inputs,
vs. the desired multiplication of the two numbers. We have
included the optical constants σ and γ in the output values to
demonstrate that the simulation matches with the experiment. As
can be seen, the range of E1 × E2 values between 0 and 1.3 has a
minimum error of less than 1%, as we expect to observe. Based on
Fig. 4b, c, the dynamic range for which the TPA blocks provide
the natural logarithm function is between 0.5 µJ to 1.1 μJ (3.5 dB).
Therefore, multiplication of these numbers results in a maximum
of 1.21. For numbers outside of the dynamic range of the TPA
and SA units, the output values exhibit greater deviation from the
desired multiplication values as can be seen from comparison
with the solid green line in Fig. 4e.

Normalization. According to Eq. (1) the normalization factor (Z)
must be taken into account to ensure that the probability vector
distribution is mapped between zero and one. For normalizing
the probabilities that we get from the multiplication of each node,
we decided to use an optical pump-probe saturation setup fol-
lowed by an electrical feedback-loop system. For this operation,
we employ a SA such that by increasing or decreasing the pump
intensity, approaching saturation, we can increase or decrease the
optical intensity of the probe beam. The concept for normal-
ization of two power inputs A and B is described in Fig. 5a. The
SA is used to (1) make the sum of all elements of each normalized
probability vector constant and (2) integrate over the input
spectrum and translate to proper node-specific output wave-
length. In the feedback-loop, the adjustable power P0 is such that
for any value of A and B, C′+D′ remains constant, where C′=
P0A/(A+ B) and D′= P0B/(A+ B). According to the message
passing algorithm, implemented via a wavelength multiplexing
approach, the information in the probability vector should be
recirculated for the next iteration and they must be monochro-
matic. However, the receipt node receives multiple wavelengths
from the pump. The pump is a broadband coherent source that
enforces the value of the probability vectors and the probe is a
constant signal at the node’s wavelength. The output power is
modulated with pump intensity and has the same wavelength as
the probe. We should also note that the individual elements of the
probability vector must be spatially separated in the SA. Thus the
element will be modulated separately in the presence of pump
intensity. Fig. 5b shows a schematic of the wavelength remapping
through the pump-probe saturation process.

Fig. 6a denotes the experimental setup for normalizing two
powers where we used chemical vapor deposition (CVD) grown

graphitic pyro-carbon (GrPyC)46, 47 thin films that were
transferred onto two fiber tips as the SAs. The thickness of the
samples was 50 ± 2 nm. (Supplementary Note 4). Figure 6b shows
the simulation of an ideal normalization of two input powers A
and B and the result of C′+D′= 1 (arb.u.). Here we assume that
the optical power B is constant and the feedback-loop mechanism
is employed to control P0 such C′+D′ remains constant. Fig. 6c
shows the experimental result and demonstrates good agreement
with the simulation. In the experiment we kept B at a constant
value of 100 µW and set the output of the CW laser after SAs to
be 10 µW, which is the desired constant value that we want to
achieve in presence of laser powers A and B. It has been shown
that increasing the intensity of laser A, increases the output of the
probe laser at the corresponding arm, C′, and accordingly, the
output in the other arm, D′, decreases because of the feedback-
loop that keeps the C′+D′ to be almost constant. The NRMSE of
the experimental result vs. the ideal normalization in Fig. 6c (Red
solid line) is about 1%.

Discussion
One of the major challenges in the wavelength multiplexing
architecture to solve PGMs is the scalability for a very large
number of nodes (e.g., 106). Hypothetically, increasing the spec-
tral bandwidth of the coherent laser sources can result in an
increase of the number of nodes. However, considering the cur-
rent coherent source technologies, dividing the spectral band-
width of the coherent source to a very large number, in order to
represent each node, reduces the peak irradiance by several order
of magnitudes. This reduction of the peak irradiance does not
leave enough fluence to access the nonlinear TPA and SA beha-
viors of most known nonlinear optical materials in nature
(Supplementary Note 7). Although, materials engineering may
provide a route towards tuning the atomic line-shape, so that the
lifetime can be longer. Coupling this with the tuning of the input
frequency to that of one and two photon excited states, can
enhance the cross section of TPA and SA processes such that a
lower peak irradiance TPA and SA can be achieved.

We investigated, both theoretically and experimentally, the
essential required mathematical functions to optically implement
the message passing algorithm for probabilistic graphical models.
The two basic and central mathematical operations, multi-
plication (through natural logarithm-sum-exponent operation),
and division (normalization), which are required for the SPMPA,
are optically implemented. Nonlinear thin film optical materials
were employed for TPA (PPF43, 44) and SA (thiopyrylium-ter-
minated heptamethine cyanine45) to demonstrate optical
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implementation of natural logarithm and exponentiation func-
tions, respectively. We also used another type of nonlinear thin
film as a saturable absorber (GrPyC46, 47) to implement nor-
malization through a pump-probe-saturation experiment. Fur-
thermore, with respect to the enormous breadth of applications
that these two fundamental mathematical operations (multi-
plication and division) provide, the presented techniques can be
used widely to enable these operations where they are used
heavily. To estimate the speed of computation of the proposed
optical PGM machine, we note that the multi photon excitation
processes in the SA and TPA components, are extremely fast, in
the sub-femtosecond range. So the rates of generating and
detection of the light are the main time constraint of the overall
system. For pulsed lasers the repetition rates can be larger than
100 Gbps48, while photodetectors can be as fast as 100 GHz49 as
well. It should be pointed out that one of the advantages of the
optical analog computation is that the speed of calculation will
not increase as the problem increases in scale. Contrary to their
analogous electrical devices, all the mathematical units presented
here (ln, sum, exp, and norm) use optical components that do not
require an external source of energy to perform the operation on
the signal. In principle, using such passive elements could be a
great benefit in terms of energy consumption21. However, optical
insertion loss, as well as linear and nonlinear absorptions should
be included into the energy budget, especially when the signal
(which carries the energy) needs to be recirculated and when
performing cascading operations50. For this reason, buffering
amplifiers are required for optical implementation of the SPMPA

approach for the PGMs. As a proof-of-concept an optical
implementation of the PGM message passing algorithm for a two
node graph (N= 2) has been shown successfully. A large-scale
system-level demonstration for a larger number of nodes with
high connectivity is the subject of ongoing work.

Methods
Data analysis. All numerical simulations for multiplication and normalization are
done with MATLAB R2016a (MathWorks) and FORTRAN 90.

Multiplication experiment. The optical laser source that has been used for this
experiment was an 810 nm Ti-Sapphire laser, producing 150 fs pulse width (at
FWHM) and a 50 Hz repetition rate. The original repetition rate out of the
amplifier locked to the laser was 1 kHz, and using an optical chopper, synchronized
and externally triggered with the amplifier pulses’ phase, allowed us to reduce the
repetition rate to 50 Hz in order to reduce the probability of heat damage and
thermal effects in the samples. Figure 4a is the schematic of the experimental setup,
where in the TPA portion two convex lenses are used to increase the intensity and
access the nonlinear absorption behavior of the samples, while the other two
convex lenses are used for collecting and re-collimating the beam. The spot size at
the focus was 76 µm. A half-wave plate and polarizer are placed in the path of one
arm to insure that the output polarization result is perpendicular to the other arm’s
polarization and a polarization beam combiner (PBC), which preserves the inputs
polarizations orientation, combines the two beams with a perpendicular polar-
ization orientation. Therefore, these two beams do not interfere at the SA even
though they have same wavelength. Furthermore, a delay stage is installed for pulse
synchronization, followed by an auto-correlator at the SA with femtosecond
resolution. A variable optical attenuator and a beam splitter (BS) are used to
monitor the input energies to the TPA units.

Normalization experiment. Two femtosecond mode-locked fiber lasers were used
as the pump sources, together with a CW laser probe. We have also used a half-
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Fig. 6 Simulation and experimental results of normalization. a Experimental setup to normalize two powers A and B. The pump sources are two mode-
locked fiber lasers. The characteristics of these lasers are as follows: λA= 1559 nm with 8MHz repetition rate and 200 fs pulse width, and the other one λB
= 1557 nm, 109MHz, and 240 fs pulse width. The probe was a continuous wave (CW) diode laser λprobe= 1480 nm. Three variable optical attenuators
(VOAs) and two beam splitters (BS1 and BS2) were used to monitor input powers to saturable absorbers (SAs). The polarization beam combiners (PBCs)
were also used to combine the pump lasers powers with probe laser power with preserving their polarization. And a wavelength-division multiplexing
(WDM) device was used in order to separate the modulated probe laser from the modulated pump lasers (see Methods for detail). b Simulated result to
normalize two numbers A and B where we assume B is constant. c Experimental result to normalize two powers. In both b, c, the feedback-loop system
adjusts the modulated power of C′+ D′ to remain constant
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wavelength plate and a polarizer in one of the probe laser’s path to avoid inter-
ference at detector number 3. BS1 and BS2 are used for power monitoring of A and
B values. PBC1 and PBC2 combine power A with C and power B with D and make
them collinear at the SAs, where the powers of C and D are modulated in the
presence of pump lasers A and B, respectively. PBC3 combines all powers and a
wavelength-division multiplexing (WDM) separates the two wavelengths since the
wavelengths of lasers A and B are so close. An electronic feedback-loop system is
used to control the probe laser power such that C′+D′ remains constant for
arbitrary numbers for A and B. However, this system has a finite dynamic range
where C and D can be modulated in presence of A and B due to the weak field and
nonlinear absorption range of SAs, as well as the damage thresholds of the samples.
A LabVIEW-based code (National Instruments) was used for the feedback-loop
system and adjusted the power output of the probe laser based on the reading from
the three power meters.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author on reasonable
request.
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