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The homeobox protein VentX reverts immune
suppression in the tumor microenvironment
Yi Le1, Hong Gao2, Ronald Bleday3 & Zhenglun Zhu1

Immune suppression in the tumor microenvironment (TME) is a central obstacle to effective

immunotherapy. Tumor-associated macrophages (TAMs) are key components of the TME.

Although TAMs have been viewed as an ideal target of intervention to steer immunity in

cancer treatment, the approach has been hampered by the lack of knowledge of how TAM

plasticity is controlled by cell intrinsic factors. VentX is a homeobox protein implicated in

proliferation and differentiation of human hematopoietic and immune cells. Using clinical

samples obtained from cancer patients, we find that VentX expression is drastically reduced

in TAMs. We show here that VentX promotes M1 differentiation of TAMs, and that VentX-

regulated TAMs, in turn, revert immune suppression at the TME. Using a NSG mouse model

of human colon cancers, we demonstrate that VentX regulates TAM function in tumor-

igenesis in vivo. Our findings suggest a mechanism underlying immune suppression at TME

and potential applications of VentX-regulated TAMs in cancer immunotherapy.
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The role of immunity in oncogenesis has been long appre-
ciated and increasingly exploited. Nevertheless, the efficacy
of cancer immunotherapy remains limited, especially for

solid tumors. Immune suppression at the tumor microenviron-
ment (TME) has been accounted for cancer evasion of immune
destruction and regarded as a potential venue of intervention1.
However currently, mechanisms that underlie immune suppres-
sion at TME remained largely elusive2, 3. Tumor-associated
macrophages (TAMs) are key components of TME4 and have
been implicated in growth, invasion, and metastasis of nearly all
tumors. Derived from circulating monocytes, TAMs display a
broad spectrum of phenotypes, ranging from the pro-
inflammatory M1-like phenotype in early stages of some
tumors to the M2-like phenotype in most advanced tumors4, 5.
The M2-like TAMs show an elevated expression of interleukin
(IL)-10, matrix metallopeptidase (MMP), and vascular endothe-
lial growth factor (VEGF), but decreased expression of pro-
inflammatory tumoricidal cytokines, cytotoxic inducible nitric
oxides (iNOs) and reactive oxygen intermediates (ROIs), and are
thought to be supportive of tumor growth6. Besides their func-
tions in promoting tumorigenesis, TAMs also help generate a
pro-tumor immune suppressive milieu at TME by altering the
composition and function of tumor-infiltrating lymphocytes
(TILs)3, 6. The plasticity of TAMs has been well recognized. It has
been proposed that by converting the pro-tumor M2-like TAMs
into the anti-tumor M1-like phenotype, the TAMs might be
converted into an effective modality of anti-tumor therapy7, 8.
Nevertheless, this potential application of modulating TAM
function in cancer treatment has been hampered by our ignor-
ance of how TAMs plasticity is controlled by cell intrinsic
factors5, 9.

Dorsoventral axis formation represents coordinated cell pro-
liferation and differentiation during early vertebrate embry-
ogenesis. In trying to understand the molecule basis of the
process, our recent work led to the appreciation of the Xenopus
homeobox protein Xom, a unstable protein of the ventral
BMP4 signaling pathway10, as a novel lymphoid enhancing
factor/T-cell factor (LEF/TCF)-associated factor that antagonizes
β-catenin of the dorsal Wnt signaling pathway during dorso-
ventral polarization of Xenopus embryos11. To explore the
potential clinical relevance of the findings, we performed
sequence homology search and functional analysis, which led to
the identification of human homeobox protein VentX as a human
homolog of Xom12, 13. We found that VentX is primarily
expressed in hematopoietic cells and controls proliferation and
differentiation of hematopoietic cells from early ontogenesis to
terminal differentiation12, 14–16. Interestingly, comparative
genomic studies showed that VentX is preserved in primates and
human but lost in mice since the evolutionary divergence of
rodent and primate lineages17. Using an in vitro culture of human
monocyte-derived macrophage model, we found that VentX
promotes and is required for M1 but not M2 activation14. These
findings inspired us to explore whether VentX has a role in
regulating plasticity and function of TAMs.

Using clinical samples obtained from primary colorectal cancer
patients, our current studies showed that VentX expression is
drastically reduced in TAMs in comparison with its expression in
macrophages isolated from normal mucosa of the same patients.
We found that TAM VentX expression profile correlates with
TAM phenotypes, and that ectopic expression of VentX con-
verted the M2-like phenotype of TAMs into M1-like phenotype.
Moreover, we found that VentX-regulated TAMs revert immune
suppression at TME by inhibiting regulatory T-cell (Treg) dif-
ferentiation and promoting CD8 TIL activation. Using a NOD
scid γ (NSG) mouse model of patient-derived xenograft (NSG-
PDX) of colon cancers, we showed that VentX-modulated-TAMs

function in tumorigenesis in vivo. Taken together, our studies
suggested a key role of VentX in regulating TAM plasticity and
immune status at TME. Targeting VentX, therefore, may open
novel venue of cancer immunotherapy.

Results
VentX expression is decreased in TAMs. In advanced tumors,
TAMs display a pro-tumor M2-like phenotype7, 18, 19. The
plasticity of TAMs has been well appreciated, however, the
transcriptional machinery that controls the TAM polarization
remains largely unknown. Using TAMs isolated from discarded
specimens from colon cancer resection as well as macrophages
from normal mucosa 10 cm away from the tumor sites, we sought
to explore the potential involvement of VentX in TAM plasticity.
Consistent with prior findings, we showed that TAMs express
significant higher levels of cell surface markers associated with
M2 phenotypes, such as CD163 and CD20620–23 (Fig. 1a, b). The
elevated expression of M2 surface markers was accompanied by a
decrease of M1 surface markers, such as CD40 and7 CD80
(Supplementary Fig. 1); however, there was no significant dif-
ference in the expression of non-discriminating myeloid marker
CD33 in TAMs and control macrophages (Fig. 1a, b). Similar to
the cell surface markers, there is an increased expression of
markers associated with M2 differentiation but decreased
expression of M1 markers in TAMs (Supplementary Fig. 2). To
determine whether VentX has a role in TAM plasticity, we
quantified VentX expression in TAMs by quantitative reverse-
transcription PCR (qRT-PCR) and found that, in comparison
with its expression in control macrophages, VentX expression is
decreased about 77% in TAMs (Fig. 1c). The decreased expression
of VentX in TAMs was further verified by western blot analysis,
using VentX-specific antibodies (Fig. 1d).

VentX drives TAM towards M1 phenotype. To determine
whether VentX is involved in TAM plasticity, we examined the
correlation of VentX expression with TAM phenotypes. Using
lipopolysaccharide (LPS) as an M1 phenotype inducer24. we
found that VentX expression is significantly elevated in TAMs
after them being exposed to LPS (Fig. 2a). The elevated expres-
sion of VentX is accompanied by elevated expression of M1
markers in TAMs, including the secretion of inflammatory
cytokines and cytotoxic iNOs (Fig. 2b, c). Similar to LPS, we
found that TAMs can also be activated by pro-inflammatory
cytokines, such as interferon-γ (IFNγ) (Supplementary Fig. 3). To
determine whether VentX has a required role in TAM plasticity,
we examined the effects of knockdown VentX on TAM pheno-
types. As shown in Fig. 2d, treatment of TAM with VentX
morpholino oligos (VentX-MO) led to around 80% reduction of
VentX expression. The decreased VentX expression, which is
verified by western blot analysis (Supplementary Fig. 4), is
accompanied by decreased secretion of inflammatory cytokines
and cytotoxic iNOs (Fig. 2d–f). Corresponding to the changes of
M1 phenotype, there is also a change of the M2 phenotype. As
shown in Fig. 2g, we found that the effect of LPS on the
expression of CD206, a M2 marker highly expressed in TAMs
(Supplementary Fig. 1a)25, was abolished by VentX-MO
treatment.

The correlation between VentX expression levels and TAM
phenotypes prompted us to explore the potential direct effect of
VentX on TAM phenotype. Using transfection studies, we found
that TAMs transfected with GFP-VentX displayed a characteristic
M1 morphology with elongated/fibroblast-like cell shape, whereas
there was no such changes in TAMs transfected with the control
green fluorescent protein (GFP) (Fig. 3a). In comparison with the
control GFP-transfected TAMs, the surface expression of M1
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marker CD40, CD80, and CD86 was significantly increased in
TAMs transfected with GFP-VentX (Fig. 3b). In addition, the
secretion of pro-inflammatory cytokines tumor necrosisfactor-α
(TNFα), IL-1β, and IL-12 were significantly increased, whereas
secretion of the M2 cytokine, IL-10, was significantly reduced
(Fig. 3c). Using qRT-PCR analysis, we showed a characteristic
increased expression of of M1 genes, such as IL-1β, IL-6, IL-12,
TNF-α, and iNOs (Fig. 3d), and decreased expression of M2
genes, such as CCL18, MMP9, VEGFA, and Arg1 in TAMs
transfected with GFP-VentX (Fig. 3e). In comparison, there was
no significant changes of non-discriminating macrophages
markers, such as the CD33 and CD68 upon the transfection of
GFP-VentX in TAMs (Supplementary Fig. 5a, 5b). The changes
of cell surface markers are associated with changes of intracellular
signaling molecules such as the STAT1 and STAT3, which are
associated with M1 and M2 phenotype, respectively (Supplemen-
tary Fig. 5c)26. Taken together, our data suggested that VentX
functions as a master switch of TAM plasticity and drives TAMs
toward M1 phenotypes through alternating intracellular signaling
pathways involved in the process.

VentX-regulated TAMs modulate TILs differentiation. TILs
have key roles in anti-tumor immunity3. The regulatory CD4
+CD25+ Treg and tumoricidal CD8+ TILs are key components
of TME. The ratio of CD4+CD25+ Tregs and CD8+ TILs, as
well as functional defects of CD8 TILs, have been implicated in
pathogenesis and prognosis of solid tumors6, 27–30. Consistent
with prior findings31, we found that there was a significantly
increased number of the CD4+CD25+/CD4+Foxp3+ Treg cells
and a significantly decreased number of CD8+ TILs in tumor
tissues (Supplementary Fig. 6 and 7). As CD4+
CD25+/CD4+Foxp3+ Treg cells are derived from
CD4+ T cells, to explore the potential involvement of VentX-
regulated TAMs in compositions of TILs, we sought to determine
whether VentX-regulated TAMs modulate CD4+ T-cell differ-
entiation. To attend our goal, CD4+ T cells isolated from per-
ipheral blood were co-cultured with autologus TAMs transfected
with either GFP-VentX or control GFP for 5 days. As shown in
Fig. 4a, co-culture of CD4+ T cells with TAMs led to significant
induction of CD4+CD25+/CD4+Foxp3+ cells. In contrast,
ectopic expression of VentX in TAMs abolished the induction. To
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corroborate the functional relevance of the findings, CD4+ T cells
isolated from normal tissues were co-cultured with autologus
TAMs transfected with either GFP-VentX or control GFP for
5 days. We found that TAMs induced T-cell expression of inhi-
bitory IL-13, but the induction function was abolished by ectopic
expression of VentX (Supplementary Fig. 8). To further deter-
mine whether VentX-regulated TAMs modulate TIL function,
CD8+ TILs were co-cultured with TAMs transfected with GPF-
VentX or control GFP. As shown in Fig. 4b, co-culture of CD8+
TILs with VentX-modified TAMs led to significant activation of
CD8+ TILs, as indicated by CD8+ activation markers, such as
IFNγ and granzyme B. Taken together, our data suggested that
VentX-regulated TAMs modulate TIL differentiation and
function.

VentX-regulated TAMs modulate composition of TILs in
TME. Our findings that VentX-regulated TAMs modulate dif-
ferentiation and function of T cells prompted us to test the
hypothesis that VentX-regulated TAMs control immune status at
TME by modulating the differentiation and function of TILs. To
test this hypothesis, en bloc primary tumor tissues were co-
cultured with autologous TAMs transfected with GPF-VentX or

control GFP for 5 days. CD4+CD25+Treg cells and CD8+ TILs
were then isolated and quantified by flow cytometry, following
established protocols (Supplementary Fig. 9)32, 33. As shown in
Fig. 5a, b, co-culture of the tumors with GFP-VentX-modified
TAMs led to a significant decrease of the CD4+
CD25+Tregs and a significant increase of the CD8+ TILs. In
addition to the significant increase in the number of CD8+ TILs,
there is a significant increase in the expression of IFNγ and
granzyme B in CD8+ cells in tumor tissues after being incubated
with VentX-modified TAMs (Fig. 5c).

VentX regulates TAM function and tumorigenesis in vivo.
Converting the M2 phenotype of TAM into the M1 phenotype
has been viewed as a promising venue for cancer treatment5, 8.
Our findings that VentX promotes M1 polarization of TAM
prompted us to explore whether VentX-modulated TAM plasti-
city has a role in tumorigenesis in vivo. As VentX does not have a
mouse homolog17, to achieve our goal, we adapted a NSG mouse
model, which support heightened engraftment of human hema-
topoietic cells34. Following established protocol35, a NSG-PDX of
human colon cancers was generated by engrafting small pieces of
primary human colon cancer tissues into subcutaneous space on
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the abdominal side of the NSG mice. The growth of the tumors in
the NSG mice was observed for 8 weeks (Fig. 6a). The tumors
were then dissected out and sectioned and the growth of human
colon cancers was confirmed by hematoxylin and eosin (H&E)
and CK20 staining (Fig. 6b). To test the potential effects of
VentX-regulated TAMs on tumor growth 1 week post implan-
tation of fragments of colon cancers, the NSG-PDX mice were
tail-vein injected with TAMs transfected with GFP-VentX or
control GFP. As shown in Fig. 6c, we found that, in comparison
with the GFP-transfected TAMs, GFP-VentX-transfected TAMs
exerted strong inhibition on tumor growth in the NSG-PDX
mice. To further determine whether the inhibition of tumor-
igenesis in the NSG-PDX mice is related to VentX-regulated
TAM polarity 1 week post implantation of fragments of colon
cancers, the NSG-PDX mice were tail-vein injected with in vitro
M1-differentiated TAMs transfected with either VentX-MO or
control-MO. Consistent with the results of over expression stu-
dies, the M1-TAMs transfected with control-MO exerts strong
inhibition of tumor growth, but the inhibition was abolished by
knocking-down VentX expression with VentX-MO (Fig. 6d).

Discussion
Tumor immunology is now a promising field for exploration of
pathogenesis and treatment of cancers. Macrophages have
executor role in immunity and have been recognized as key
components of tumor mass. The search for factors that can be
manipulated to steer macrophage plasticity has proved to be a
fundamental challenge. Signaling pathways such as the JAK/
STAT1, JNK/STAT6, AKT1/AKT2, and PI3Kγ, transcriptional
regulators such as PPARγ and PPARδ, NFκB, C/EBP, and IRFs,
as well as microRNAs such as microRNA-155 and miR-142-3p
have been shown to modulate macrophage
differentiation9, 24, 36, 37. Nevertheless, whether these factors can
be targeted to turn TAMs into a tumoricidal cells remains
unclear. As a unique human hematopoietic transcriptional factor
that does not have a murine homolog, VentX was found to have
essential role in controlling proliferation and differentiation of
hematopoietic cells and function as a p53-independent tumor
suppressor12, 15, 16, 38–40. Data of our current study suggested
VentX controls TAM plasticity, which in turn, reverts immune
suppression at the TME through regulating TIL differentiation
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and function, which was supported by both in vitro and in vivo
studies (Figs. 4, 5 and Supplementary Fig. 11). Interestingly,
consistent with prior findings that macrophages may affect T-cell
differentiation indirectly41, we found that TAMs do not need to
accumulate in significant numbers inside tumor tissues to exert
its function (Supplementary Fig. 12). Our findings revealed a
novel mechanism underlying immune suppression at TME and
suggested the potential application of VentX-regulated TAMs as a
novel modality of immunotherapy, especially for solid tumors,
which are refractory to current available immunotherapy. Cur-
rently, the cause of decreased VentX expression in TAMs and the
potential clinical application of VentX-modulated TAMs in
cancer treatment remain to be further defined.

Methods
Collection of colon tissue samples. A total of 42 patients with colon cancer, who
were scheduled for surgical resection at Brigham and Women’s Hospital, were
consented to have a portion of tissues and blood collected for research purposes.
All patients signed an informed consent document that was approved by the
Institutional Review Board of Brigham and Women’s Hospital. The characteristics

of colon cancer specimens used for this study were listed in Table 1. Around 5–10 g
tissues were collected from tumor mass, or normal mucosa 10 cm away from tumor
mass.

Preparation of intraepithelial lymphocytes. Lymphocytes were isolated following
previously described techniques with modification14, 42. In brief, dissected fresh
mucosa and tumor mass were rinsed in 10-cm Petri dish with Ca2+-free and Mg2
+-free Hank’s balanced salt solution (HBSS) (Life Technologies) containing 2%
fetal bovine serum (FBS) and 2 mM Dithiothreitol (DTT) (Sigma-Aldrich). The
mucosa and tumor were then cut into around 0.1 cm pieces by a razor blade and
incubated in 5 mL HBSS containing 5 mM EDTA (Sigma-Aldrich) at 37 °C for 1 h,
then passed through a gray-mesh (100 μm). The flowthrough contains intrae-
pithelial lymphocytes and epithelial cells and was analysis by a flow cytometer.

Isolation of macrophages from tumor mass and normal mucosa. Lamina pro-
pria mononuclear cells (LPMCs) were isolated following established protocol, which
does not lead to activation of macrophages14, 42, 43. Briefly, normal mucosa and tumor
tissues were rinsed with HBSS and then incubated in HBSS (with Ca2+ and Mg2+),
containing 2% FBS, 1.5mg/mL Collagenase D (Roche), 0.1 mg/mL Dnase I at 37 °C
for 1 h. Digested tissues were then passed through a gray-mesh (70 μm) filter. The
flowthrough were collected, washed, and resuspended in a RPMI 1640 medium. The
cells were layered on Ficoll-Paque Plus media (GE Healthcare), and then centrifuged
at 2000 r.p.m. for 30min without brake. LPMCs at the interface were collected.
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Normal mucosal macrophages and TAMs were further purified from LPMCs using
EasySep™ Human Monocyte/Macrophage Enrichment kit without CD16 depletion
(StemCell Technologies), according to the manufacturer’s instructions. The isolation
process does not lead to activation of macrophages and the purify of isolated intestinal
macrophages was routinely more than 95%14, 42, 43. More than 98% of cells isolated by
the techniques were viable by propidium iodide staining.

Transfection assays. Transfection of GFP-VentX and GFP into blood macro-
phages or TAMs were carried out through lipofectamine 2000 (Life Technologies)
according to the manufacturer’s protocol. Forty-eight hours after transfection, cells
were filtered through a 70 μm filter for cell sorting. GFP-positive cells were sorted
by BD FACSAria II under the Baker Bio-Protect Hood in a sterile condition. After
sorting, cells were cultured in RPMI 1640 complete medium.

VentX knockdown. Colon TAMs or human primary monocytes were transfected
with Morpholino oligonucleotides (MO) (Gene Tools, LLC, Philomath, OR) using
the Human Monocyte Nucleofector Kit (Lonza, Walkersville, MD) as previously
described14. Briefly, 5 × 106 cells were resuspended into 100 µl nucleofector solu-
tion with 2.5 nmol of either VentX-MO oligonucleotides (VentX-MO: 5′-TACT-
CAACCCTGACATAGAGGGTAA-3′ or a standard control-MO oligonucleotides
and electroporated with the Nucleofector II Device (Lonza). Cells were then
immediately removed from the device and incubated overnight with 1 ml pre-

warmed Human Monocyte Nucleofector Medium containing 2 mM glutamine and
10% FBS. Cells were then resuspended into complete RPMI medium and treated
with appropriate cytokines to induce differentiation into macrophages.

FACS analysis. Phenotypic analysis of TAMs and other lymphocytes was per-
formed using flow cytometry after immunolabeling of cells with fluorescence dye-
conjugated antibodies. The following antibodies were used: Phycoerythrin (PE)-
conjugated anti-CD3 (OKT3), -CD25 (BC96), -CD14 (61D3), -CD68 (Y182A),
-CD163 (GH161), and -CD206, and fluorescein isothiocyanate (FITC)-conjugated
anti-CD4 (RPA-T4) and -CD33 (HIM3-4), and Allophycocyanin (APC)-con-
jugated anti-CD8 (OKT8) and -CD4 (OKT4) (eBioscience, Inc). Intracellular
staining of Foxp3 (236 A/E7), IFNγ (4 S.B3), and Granzyme B (GB11) was per-
formed with PE-conjugated antibodies following the protocol provided by manu-
facturer. Isotope control labeling was performed in parallel. Antibodies were
diluted as recommended by the supplier. Labeled cells were collected on FACScan
flow cytometer with Cell-Quest software (BD Biosciences) and analyzed by FlowJo
software. Results are expressed as the percentage of positive cells.

Cytokine measurement. Levels of IL-1β, IL-10, IL-13, TNF-α, and IL-12p70 were
quantified using enzyme-linked immunosorbent assay kits obtained from eBios-
ciences. Analyses were conducted according to the manufacturer’s instructions.
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Quantitative RT-PCR. Total RNA was isolated by the TRIzol reagent (Life
Technologies) and RNA amounts were measured by NanoDrop 2000 (Thermo
Scientific). An equal amount of RNA was used for first-strand complementary
DNA synthesis with SuperScript III First-Strand Synthesis System (Life Technol-
ogies) according to the manufacturer’s protocol. To amplify VentX cDNA with
conventional PCR, we used the AccuPrime Taq DNA polymerase system (Life
Technologies) following the manufacturer’s instructions. Quantitative measure-
ment of VentX and other genes cDNA were carried out with SYBR Green on a
LightCycler (480 Real-Time PCR System; Roche). The primers used list in Sup-
plementary Table 1. Relative expression profiles of mRNAs were then calculated
using the comparative Ct method (DDCT method).

Western blot analysis. Western blot analysis was performed as described pre-
viously14. Briefly, total cells were lysed in 1 × RIPA buffer (Abcam, Inc.) mixed with
protease inhibitor cocktails (Cell Signaling Technology). Proteins were resolved by
4–15% Tris-Glycine Gel (Bio-Rad) electrophoresis. Primary antibodies used
included GFP (eBioscience 14–6674, 1:1000), VentX (Abcam, Inc. ab105352,
1:500), and β-actin (Cell Signaling Technology 4967, 1:2000).

Arginase activity and NO assays. Arginase activity was quantified in cell lysates
by measuring the production of urea using the QuantiChrom Arginase Assay Kit,
following the manufacturer’s instuctions (DARG-200, BioAssays Systems). Nitrite
concentrations in culture supernatants were determined using Griess reagent kit
(Molecular Probes, Eugene, OR), as described previously14.

Treg cell induction and CD8+ TIL cell activation. Treg cell inductions were
performed using previously described methods with modification44, 45. Briefly, the

blood CD4 cells were enriched by using Easysep human CD4-negative selection kit
following the manufacturer’s instructions (StemCell Technologies). GFP-VentX or
GFP-transfected TAMs (0.5 × 106) were incubated with 5 × 106 of CD4 in com-
pleted RPMI 1640 at 37 °C, 5% CO2 for 5 days. Cells were stained with CD4-FITC
and CD25-PE, or permeabilized and stained with CD4-FITC and Foxp3-PE, then
analyzed by a flow cytometer. For CD8+ TIL activation assay, CD8+ TILs were
enriched from intraepithelial lymphocytes by CD8+ T-cell Enrichment Kit
(StemCell Technologies). Cells (5 × 106) were then incubated with 0.5 × 106 of
GFP-VentX or GFP-transfected TAMs for 5 days, followed by staining and analysis
with flow cyotmetry.

Co-cultures of tumors and TAMs. Tumor mass were washed with 1 × phosphate-
buffered saline (PBS) buffer plus antibiotics and then cut into 0.5 cm pieces.
Around 80 mg of tissues were mix cultured with 0.5 × 106 of GFP-VentX or GFP-
transfected TAMs of same patient in 2 mL of RPMI 1640 completed medium,
supplemented with 2.5% antibiotic–antimycotic solution (Cellgro, Manassas, VA).
The cultures were incubated at 37 °C, 5% CO2 for 5 days. The tissues were then
subjected to cell isolation and analyzed by a flow cytometry or immunohis-
tochemistry studies.

NSG-PDX model of human colon cancers. Animal models of primary human
colon cancers were developed as described previously46. Briefly, 8-week-old NOD.
Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (commonly known as NSG mice) were purchased
from The Jackson Laboratory and maintained under specific pathogen-free con-
ditions. All animal experiments were approved by the Institutional Animal Care
and Use Committee at Harvard Medical School. Colon tumors were cut into
around 0.5 cm and surgically seeded in subcutaneous space of abdominal side of
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NSG mice. TAMs were transfected with VentX-MO or control-MO, and then
cultured in M1-Macrophage Generation Media (PromoCell). After 1 week of
xenograft, 0.8 × 106 of M1-differentiated TAMs transfected with VentX-MO or
control-MO were injected into mice through tail vein. Tumor growth was mon-
itored twice a week and measured by a caliper for 8 weeks.

In vivo tracing of injected TAMs were carried out using carboxyfluorescein
succinimidyl ester (CFSE)-stained TAMs, according to the manufacture’s
instruction (Molecular Probes). Briefly, half million of TAMs were incubated in 5
mL of 5 μM CFSE staining solution in a 37 °C water bath for 20 min. Cells were
then incubated with 20 ml of RPMI 1640 completed medium for 5 min to remove
unbounded dye. After centrifugation, cells were dissolved in PBS and then tail-vein
injected into NSG mice. Tumor tissues and TAMs were isolated 7 days after
injection and TAMs were isolated as CFSE-positive cells.

Immunohistochemistry. Immunohistochemistry were performed following
established protocol47. Briefly, tumor or normal mucosa were fixated in formalin
(Fisher Scientific Company, Kalamazoo, MI). The tissues were then embedded in
paraffin and sectioned. CK20 (Dako, Carpinteria, CA, clone Ks20.8, 1:50) and H&E
staining were performed at research pathology cores at Dana-Farber/Harvard
cancer center. Microscopic analysis was performed with a Nikon Eclipse Ti
fluorescence microscopy. Images were captured at an original magnification of × 40
using a color camera applying the NIS Elements imaging software (Nikon).
Brightness and contrast for representative images were adjusted equally among
groups.

Statistical analysis. Student’s t-test was used for statistical analysis. Data are
presented as mean ± SD. The level of significance is indicated by the p-value. In all
figures, levels of statistical significance are indicated as *p < 0.05 and **p < 0.01.

Data availability. The authors declare that all the other data supporting the
findings of this study are available within the article and its Supplementary
Information files and from the corresponding author upon reasonable request.
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