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Efficient and self-adaptive in-situ learning
in multilayer memristor neural networks
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Memristors with tunable resistance states are emerging building blocks of artificial neural

networks. However, in situ learning on a large-scale multiple-layer memristor network has yet

to be demonstrated because of challenges in device property engineering and circuit inte-

gration. Here we monolithically integrate hafnium oxide-based memristors with a foundry-

made transistor array into a multiple-layer neural network. We experimentally demonstrate

in situ learning capability and achieve competitive classification accuracy on a standard

machine learning dataset, which further confirms that the training algorithm allows the

network to adapt to hardware imperfections. Our simulation using the experimental para-

meters suggests that a larger network would further increase the classification accuracy. The

memristor neural network is a promising hardware platform for artificial intelligence with high

speed-energy efficiency.
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W ith the introduction of hardware accelerators1–4 for
inference in deep neural networks (DNNs)5–9, the
focus on improving overall energy and time perfor-

mance for artificial intelligence applications is now on training.
One promising approach is in-memory analog computation
based on memristor crossbars10–18, for which simulations have
indicated potentially significant speed and power advantages over
digital complementary metal-oxide-semiconductor (CMOS)19–23.
However, experimental demonstrations to date have been limited
to discrete devices24,25 or small arrays and simplified
problems26–31. Here we report an experimental demonstration of
highly efficient in situ learning in a multilayer neural network
implemented in a 128 × 64 memristor array. The network is
trained on 80 000 samples from the Modified National Institute of
Standards and Technology (MNIST)32 handwritten digit database
with an online algorithm, after which it correctly classifies 91.71%
of 10 000 separate test images. This level of performance is
obtained with 11% devices in the crossbar unresponsive to pro-
gramming pulses and the training algorithm blind to the defec-
tivity, demonstrating the self-adapting capability of the in situ
learning to hardware imperfections. Our simulation based on the
memristor parameters suggested that the accuracy could be
higher than 97% with a larger (e.g., 1024 × 512) memristor array.
Our results indicate that analog memristor neural networks can
achieve accuracy approaching that of state-of-the-art digital
CMOS systems with potentially significant improvements in
speed-energy efficiency.

Memristors offer excellent size scalability (down to 2 nm)33,
fast switching (faster than 100 ps)34, and low energy per con-
ductance update (lower than 3 fJ)34. Their tunable resistance
states can be used both to store information and to perform
computation, allowing computing and memory to be integrated
in a highly parallel architecture. However, given the level of
technology maturity, attempts to implement memristive neural
networks have struggled with device non-uniformity, resistance
level instability, sneak path currents, and wire resistance, which
have limited array sizes and system performance. In particular,
learning in memristor neural networks has been hampered by
significant statistical variations and fluctuations in programmed
conductance states and the lack of linear and symmetric
responses to electric pulses35.

Here we develop a reliable two-pulse conductance program-
ming scheme utilizing on-chip series transistors to address the
challenges in memristor conductance programming. This in situ
training scheme enables the network to continuously adapt and
update its knowledge as more training data become available,
which significantly improves accuracy and defect tolerance.

Results
Linear and symmetric conductance tuning. We used recently
developed Ta/HfO2/Pt memristors to achieve stable tunable
multilevel behavior with a linear current–voltage (IV) relation-
ship36,37. The memristors were monolithically integrated with
foundry-made transistor arrays on a 6-inch wafer (see Methods).
Each memristor was connected to a series transistor in a “1T1R”
configuration (Fig. 1a–e shows the integrated memristor array
from wafer scale to nanometer scale). To increase the con-
ductance of a given cross point, we applied synchronized positive
voltage pulses from a driving circuit board to the memristor top
electrode and the gate of the series transistor. The gate voltage,
which specifies a compliance current, determines the resulting
memristor conductance. We decreased the conductance by first
applying a sufficient positive pulse to the memristor bottom
electrode to initialize the state, and then used the conductance
increase scheme to set the memristor to the desired level

(illustrated in Supplementary Fig. 1). With this scheme, we
achieved linear and symmetric conductance increase and decrease
with minimal cycle-to-cycle (Fig. 1f, g) and device-to-device
(Fig. 1f, h) variations. We were able to set the conductance values
across the entire 128 × 64 array, except for the stuck devices, with
reasonably high accuracy using only two electrical pulses to each
memristor (Fig. 1i and Supplementary Fig. 2). The speed and
reliability of the conductance update scheme make it possible to
train the network in situ with almost any standard algorithm.
Here the network was trained using stochastic gradient descent
(SGD)32 to classify handwritten digits in MNIST dataset. For each
new sample of training data, the network first performs inference
to get the log-probability of the label for each output by the
softmax function, and then the weights in each layer are updated
accordingly (see Methods).

In situ training in memristor crossbar. To implement the SGD
algorithm in the memristor crossbar, each synaptic weight was
encoded as the difference of the conductance between two
memristors. Inference was performed by biasing the top elec-
trodes of memristors in the first layer with a set of voltages whose
amplitudes encode an image, then reading the currents from the
bottom electrodes of devices in the final layer (Fig. 2a, b) using
custom-built circuit boards that can address up to 64 channels in
parallel (Supplementary Fig. 3 and Supplementary Fig. 4). During
inference, all transistors operate in the deep triode region, and the
memristor array becomes a pseudo-crossbar capable of per-
forming matrix multiplication following Ohm’s law and
Kirchhoff’s current law37,38 (see Supplementary Fig. 5a). The
hidden neurons after each layer apply a nonlinear activation (in
this work, a rectified linear function in software) to the weighted
sums computed in the crossbar. The desired weight update (ΔW)
for each layer was calculated in software using Eq. 1, then applied
to the crossbar by the measurement system (see Fig. 2c for the
algorithm flow chart, Supplementary Fig. 6 for a unified modeling
language class diagram, and Supplementary Fig. 5b, c for a par-
allel weight update scheme).

ΔWl ¼ η �
XB
n¼1

δlðnÞvlðnÞ> ð1Þ

where η is the learning rate, v is the input voltage column vector
for the lth layer, δl the output error column vector for the layer,
n indexes over the sample, and B is the batch size. For a network
with L layers, the error row vectors are computed using

δlj ¼
yj � tj; l ¼ L;P
i
wl
ijδ

lþ1
i ; l < L and Ij > 0;

0; l < L and Ij � 0:

8>><
>>: ð2Þ

where yj is the Bayesian probability computed by the network and
tj is 1 if this sample belongs to class j and 0 otherwise. This
calculation ensures that the network maximizes the log-likelihood
of the correct classification for each example.

The error backpropagation39,40 in this work is calculated in
software from the values of the readout weights (see Methods). In
the future, backpropagation can be implemented within the
memristor crossbar by applying a voltage vector representing the
current-layer error to the bottom electrodes of the crossbar and
reading out the current vector from the top electrodes for the
previous-layer error. An on-chip integrated peripheral for full
hardware implemented functionality is under development,
which has been discussed and simulated in the literature as
well41–45.
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Classification of MNIST handwritten digits. We partitioned a
single 128 × 64 array and constructed a two-layer perceptron with
64 input neurons, 54 hidden neurons, and 10 output neurons to
be trained on the MNIST dataset of handwritten digits “0”
through “9”, which has become a standard benchmark by which
to gauge new machine learning algorithms. Each input image was
rescaled to 8 pixels by 8 pixels (see Supplementary Fig. 7, and
sample images in Fig. 3a) to match our network size. The
intensities of each pixel of the grayscale images were unrolled into
64-dimensional input feature vectors, which were duplicated to
produce 128 analogue voltages to enable negative effective
weights (Fig. 2b). The two-layer network used 7992 memristors
(see Fig. 3b for the partition on a 128 × 64 array), each of which
was initialized with a single pulse with a 1.0 V gate voltage from a
low-conductance state. The network was then trained on 80 000
images drawn from the training database (some images were
drawn more than once), with a minibatch size B= 50 for a total
of 1600 training cycles. The smoothed minibatch experimental
accuracy (compared with a defect-free simulation) during online
training is shown in Fig. 3c. Figure 3d shows the linear rela-
tionship between the conductance and the applied gate voltage
during each update cycle, which was critical for this demonstra-
tion. More analyses are shown in Supplementary Figs. 8, 9. After
utilizing the entire training database, the network correctly
classified 91.71% of the 10 000 images in the separate test set

(Figs. 3e–j, Supplementary Table 1). Many of the misclassified
images are in fact difficult for humans to identify at the available
resolution (Fig. 3h, and more in Supplementary Fig. 10).

To understand the potential of the memristor array, we
developed a simulation model (see Supplementary Fig. 6 for
detailed architecture) based on measured parameters such as the
unresponsive rate, conductance update error, and limited memris-
tor conductance dynamic range. We found that the simulated
accuracy agrees well with the experimentally achieved one (Fig. 4a),
validating the simulation model. A further simulation on a defect-
free network shows that the MNIST classification accuracy is
similar to that of the same network architecture trained in
TensorFlow46 that uses 32-bit floating point numbers. This result
suggests that even though the analogue memristor network has
limited precision due to conductance variation, they do not have a
significant impact on MNIST classification accuracy (more analysis
on conductance update variation is shown in Supplementary
Fig. 11). Our finding is consistent with previous theoretical and
simulation studies on more sophisticated problems20,24,47–51. The
analog precision could potentially be improved, if needed for other
applications, by device engineering for better IV linearity37,38, or
using pulse width instead of amplitude to represent analog input
(with increased time overhead)27,28,37, or employing multiple
memristors to represent one synaptic weight (at the expense of
chip area)52, etc.
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Fig. 1 Memristive platform for in situ learning. a An optical image of a wafer with transistor arrays. b Close-up of chip image showing arrays of various
sizes. c Microscope image showing the 1T1R (one transistor one memristor) structure of the cell. Scale bar, 10 µm. d Cross-sectional scanning electron
microscopic image of an individual 1T1R cell, which is cut in a focused ion beam microscope from the dashed line in c. Scale bar, 2 µm. e Cross-sectional
transmission electron microscopic image of the integrated Ta/HfO2/Pt memristor. Scale bar, 2 nm. f All responsive devices over 20 potentiation/
depression epochs of 200 pulses each. g Evolution of conductance during 20 cycles of full potentiation and depression for a single cell with 200 pulses per
cycle, showing low cycle-to-cycle variability. More results are shown in Supplementary Fig. 1. h Evolution of conductance over one 200-pulse cycle of full
potentiation and depression for all responsive devices in the array, with median conductance indicated by the yellow line. i Conductance of a 128 × 64 array
after single-pulse conductance writing of the discrete Fourier transform matrix. Several stuck devices are visible (in yellow)
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A multilayer neural network trained with the online algorithm
is more tolerant to hardware imperfections. The experimental
accuracy of 91.71% in this work was achieved with 11% devices
unresponsive to conductance updates. Our simulation showed
that even with 50% of the memristors stuck in a low-conductance
state, a >60% classification accuracy is still possible through
online training (Fig. 4b), although the accuracy is much more
sensitive to shorted devices (Supplementary Fig. 12). On the other
hand, if pre-trained weights are loaded to the memristor crossbar
(i.e., ex situ training), the classification accuracy decreases quickly
with the defect rate (Fig. 4b)). There are approaches to improve
the robustness of ex situ training19,38, but most of them
require that the parameters be tuned based on specific knowledge
of the hardware (e.g., peripheral circuitry) and memristor array
(e.g., device defects, wire resistance, etc.), while the in situ training
adapts the weights and compensates them automatically. The self-
adaption is more powerful in a deeper network in which the
hidden neurons are able to minimize the impact of defects, as
suggested by the higher classification accuracy from a two-layer
network than that from a single-layer one on the same images
(Fig. 4c). The online training is also able to update the weights to

compensate for possible hardware and memristor conductance
drift over time (see Supplementary Fig. 13).

We expect that the classification accuracy can be improved
substantially with a larger network that has more hidden units
and/or more inputs to support images with higher resolution. We
performed a simulation with our model on a 1024 × 512
memristor array, which is likely to be available in the near
future, to recognize images of 22 × 22 pixels cropped from the
MNIST dataset. The network consists of 484 input neurons, 502
hidden neurons, 10 output neurons, and a total of 495 976
memristors in the two layers to represent the synaptic weights
(see Supplementary Fig. 14). After training on 1,200,000 images
(20 epochs), a 97.3 ± 0.4% classification accuracy is achieved on
the test set even with 11% stuck devices, approaching that
demonstrated with traditional hardware. It will be straightforward
to build deeper fully connected neural networks on an integrated
chip with multiple large arrays in the near future, for even better
accuracy and application to more complicated tasks. It is also
noteworthy that most state-of-art DNNs involve sophisticated
microstructures, e.g., convolutional neural networks (CNNs) or
long short-term memory units (LSTMs). It may be worth
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Fig. 2 In situ training algorithm. a Schematic diagram of a two-layer neural network. Each neuron computes a weighted sum of its inputs and applies a
nonlinear activation function. b The implementation of the network with a set of memristor crossbars. Each synaptic weight (arrows in a) corresponds to
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while those in yellow boxes were computationally expensive steps that can be accomplished with circuits integrated onto the chip in the future. The
algorithm is described in detail in Methods
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investigating how to implement CNNs37 or LSTMs efficiently on
memristor crossbars in the future. But on the other hand, such
microstructure-based algorithms have been developed for use on
conventional hardware, on which it is more efficient to process
sparse matrices. Since the advantages of using sparse matrices in a
memristor crossbar are minimal, the optimal architectures for
sophisticated tasks may look different.

Discussion
A further potential benefit of utilizing analog computation in a
memristor-based neural network is a substantial improvement in
speed-energy efficiency. The advantages mainly come from the
fact that the computation is performed in the same location used
to store the network data, which minimizes the time and energy
cost of accessing the network parameters required by the con-
ventional von-Neumann architecture. The analog memristor
network is also capable of handling analog data acquired directly
from sensors, which further reduces the energy overhead
from analog-to-digital conversion. The memristors we used
maintain a highly linear IV relationship, allowing for the use of

voltage-amplitude as the analog input for each layer. This also
minimizes circuit complexity and hence energy consumption for
future hardware hidden neurons and output current readout.
While the external control electronics we use in this work is not
optimized for fast speed and low power consumption yet, pre-
vious literature on circuit design45,51 and architecture21,53 suggest
an on-chip integrated system would yield significant advantages
in speed-energy efficiency.

In summary, we have demonstrated the in situ and self-
adaptive learning capability of a multilayer neural network built
by monolithically integrating memristor arrays onto a foundry-
made CMOS substrate. The transistors enable reliable, linear, and
symmetric synaptic weight updates, allowing the network to be
trained with standard machine learning algorithms. After training
with a SGD algorithm on 80 000 images drawn from the MNIST
training set, we achieved 91.71% accuracy on the complete
10,000-image test set. This accuracy is 2.4% lower than an idea-
lized simulation despite an 11% defect rate for the memristors
used. The demonstrated performance with in situ online training
and inference suggests that memristor crossbars are a promising
high speed and energy efficiency technology for artificial
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Fig. 3 In situ online training and inference experiments on Modified National Institute of Standards and Technology (MNIST) handwritten digit recognition.
a Typical handwritten digits from the MNIST database. b Photo of the integrated 128 × 64 array during measurement. The array was partitioned into two
parts for the first and second layers, respectively. In all, 54 hidden neurons were used, so the first layer weight matrix is 64 × 54 (implemented using
6912 memristors) and the second layer matrix is 54 × 10 (implemented using 1080 memristors). The blue and green false-colored areas are the positive
and negative parts of the differential pairs. c Minibatch accuracy increases over the course of training. Experimental data followed the defect-free
simulation closely, with a consistent 2–4% gap. d The conductance-gate voltage relation extracted from data collected during training. The conductance
was read using the scheme described in the Methods. The conductance includes the effects of sneak-paths and wire resistance, which makes the measured
values smaller and the variance larger than those in Fig. 1b, c. The dashed line indicates the mean conductance, while the error bars show a 95% confidence
interval for the measured conductance. The real-time online training accuracy with the readout weight values is shown in an animation in Supplementary
Movie 1. e–g Typical correctly classified digit “9” and h–jmisclassified digit “8” after the in situ training. e, h Images of the actual digits from the MNIST test
set used as the input to the network. f, i The raw current measured from the output layer neurons. The neuron representing the digit “9” has the highest
output current, indicating a correct classification. g, j The corresponding Bayesian probability of each digit, as calculated by a softmax function. More
inference samples are shown in Supplementary Fig. 7 and Supplementary Movies 2 and 3
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intelligence applications. The software neurons used in this
demonstration indicate that a hybrid digital processor and neu-
romorphic analogue approach for DNNs can be effective, but all
the software functions used in the present demonstration can be
integrated as hardware onto a full-function chip in the near
future.

Methods
Device fabrication and array integration. The transistor array and inter-
connection between cells are taped out from a commercial foundry with 2 μm
technology node to achieve low wire resistance. We monolithically integrate
memristors on top of as-received chip in house. Pd/Ag contact metals are
first deposited on both vias after argon plasma treatment to remove the native
oxide. The chip is then annealed at 300 °C for 30 min in 20 s.c.c.m nitrogen
flow to achieve good electrical contact. The memristor bottom electrode is
deposited by evaporating 20 nm Pt on top of a 2 nm-thick Ta adhesive layer
and patterned by photolithography and lift-off in acetone. A switching layer of
5 nm-thick HfO2 is deposited by atomic layer deposition using water and tetrakis
(dimethylamido)hafnium as precursors at 250 °C, and then patterned by photo-
lithography and reactive ion etch. Finally, the top electrode of 50 nm-thick Ta is
deposited by sputtering and lift-off, followed by sputtering of a 10 nm-thick Pd
protection layer.

Dataset. The dataset is composed of the input feature vector (x(n) for sample n)
and the target output vector (t(n)). For the classification problem, tc (n)= 1 if
sample n belongs to class c, and is 0 otherwise. For the MNIST dataset, feature
vectors are the unrolled grayscale pixel values of the handwritten digital two-
dimensional images. The original images are 28 pixels by 28 pixels. They were
cropped to 20 × 20 and then further down sampled to 8 × 8 (using bicubic inter-
polation) to match the input size of the memristor neural network (Supplementary
Fig. 7). The 8 × 8 grayscale images were then unrolled to 64-dimensional input
feature vectors. The input feature vectors were converted to voltage values v1(n)by
a scaling factor, which was the same for all images. The output vectors have
10 dimensions, each corresponding to one digit.

Inference. The in situ online training was composed of two stages: feedforward
inference and feedback weight update. The multilayer inference was performed
layer by layer sequentially. The input voltage vector to the first layer was a feature
vector from the dataset, while the input vector for the subsequent layer was the
output vector of the previous layer. The analog weighted sum step was performed
in the memristor crossbar array as indicated by Eq. 3, or equivalently by Eq. 4:

il ¼ Wlvl ð3Þ

Ij ¼
Xn
i¼1

wij � Vi ¼
Xn
i¼1
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classification error rate on the complete testing set (10 000 images) after 500 images (simulation or TensorFlow) or 5000 images (experiment). b The
impact of non-responsive devices on the inference accuracy with in situ and ex situ training approach. The non-responsive device was stuck in a very low-
conductance state (10 µS), which is the typical defect device value observed in the experiment. The result shows that the in situ training process adapts to
the defects, providing a much higher defect tolerance compared with pre-loading ex situ training weights into the network. With 50% stuck OFF devices,
the network can still achieve over 60% accuracy. The error bar shows the s.d. over 10 simulations. c The multilayer network also helps with the defect
tolerance. If one device is stuck, the associated hidden neuron will adjust the connections accordingly. The error bar shows the s.d. over 10 simulations.
d The simulation of a larger network constructed on a larger memristor crossbar (1024 × 512) with experimental parameters (e.g., 11% defect rate) could
achieve accuracy above 97%, which suggests a large memristor network could narrow the accuracy performance gap from the conventional CMOS
hardware. The network architecture is shown in Supplementary Fig. 14
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where vl is the lth layer input voltage vector that is applied to the top electrodes
of the memristor crossbar, il is the readout current vector from the bottom
electrodes of the crossbar, and Wl is the weight matrix of layer l. The total
current is the sum of the currents through each device in the same column
(Kirchhoff’s current law), while each current is the product of the conductance
and the voltage across the memristor (Ohm’s law). Each weight value is repre-
sented by the difference in conductance between two memristors:
Wij ¼ Gþ

ij � G�
ij , so that weights can be negative. This is accomplished by

duplicating the voltage vector vl, with +vl applied to half of the array and −vl
applied to the other half, as shown in Fig. 2c.

We chose a rectified linear unit activation function for the hidden layer, which
is defined in

Vlþ1
i ¼ σ Ili

� � ¼ cIli ; Ili > 0;

0; I li � 0:

(
ð5Þ

where c is a scaling factor to match the voltage range. For the MNIST network in
this work, c was set to 200 V/A, and elements of the resulting voltage vector that
exceed 0.2 V were clipped to avoid altering the memristor states. This particular
step was implemented by software in this investigation, and can be easily
implemented in the future with a rectifying diode and amplifier on an integrated
chip. The most active (highest amplitude) output current was interpreted as the
classification result.

Softmax and cross-entropy loss function. The inference result can also be cal-
culated as a Bayesian probability, using the conversion defined by Eq. 6.

yc nð Þ ¼ ekIcðnÞPC
m¼1 e

kIm nð Þ ð6Þ

where yc nð Þ is the probability that sample n belongs to class c, and C is the
total number of classes. k was set to 5 × 105/A for the MNIST network in this
work.

The goal of the training process was to adjust the weight values to maximize the
log-likelihood of the true class. We used a cross-entropy loss function, which is
defined in Eq. 7.

ξ T;Yð Þ ¼
XN
n¼1

ξ t nð Þ; y nð Þ½ � ¼ �
XN
n¼1

XC
c¼1

tc nð Þ log yc nð Þ½ � ð7Þ

where N is the total number of samples.

SGD with backpropagation. In order to estimate the gradient of the loss function
for training the weights, we withdrew a subset of B samples (termed a minibatch)
from the training set without replacement at each round of training. The SGD
algorithm was used to update the weights along the direction of steepest descent for
E ξ½ �. The desired weight update was given by Eq. 1 in the main text. For a network
with L layers, the error vector is computed by

δlj ¼
∂ξ
∂Ilj
; l ¼ L;

∂σ
∂Ilj

P
i
Wl

ijδ
lþ1
i ; l � L:

8><
>: ð8Þ

where σ is the nonlinear activation function for the hidden layer and ξ the loss
function of the output layer. For the loss function utilized in this study and rectified
linear activation, Eq. 8 reduces to Eq. 2 in the main text and was evaluated in
software. With some improvements to the measurement system, we will be able to
implement this step in the crossbar, as described in the main text.

The weight update is then applied to the crossbar. We first adjust the gate
voltages of the transistors following Eq. 9. The changes in the gate voltage for the
memristors in differential pairs are of the same magnitude but in opposite
directions. We enforced a maximum and a minimum gate voltage of 1.7 and 0.6 V,
respectively, for the current chip to make sure the transistor-gate-voltage and
memristor conductance relation remains in the linear region.

ΔVgate;l ¼ þΔWl � ΔWl½ � ð9Þ

For memristors for which ΔVgate;l;ij < 0, we first apply a voltage pulse (1.6 V) on
the bottom electrodes of the array to initialize the memristor to a very low-
conductance state. We then apply a voltage pulse (2.5 V) to the top electrodes with
an updated voltage matrix applied to the gates of the series transistors, which raises
the memristor conductance state up to match the gate voltage. As shown in the
main text, the resulting memristor conductance depends linearly on the transistor’s
gate voltage during this update process (Fig. 1f).

Reading the conductance matrix. To read the conductance of cross point (i, j)
directly, we turn off all transistors except for column j, which is left fully on, then

apply a voltage to row i and ground all other rows. The current out of column j is
read, and we use the relation

Vi ¼ Ij Rij þ Rw i; jð Þ
h i

ð10Þ

where Rwði; jÞ is the total wire resistance along the unique conductive path. For a
known wire resistance per segment Rs in an N ×M array with voltages applied from
the left (j= 0) edge and the lower (i=N) edge grounded, we calculate

Rw i; jð Þ ¼ Rs N þ 2þ j� ið Þ ð11Þ

Together, these equations give

Gij ¼
1

Vi
Ij
� Rs N þ 2þ j� ið Þ ð12Þ

as the exact conductance of the memristor itself. However, because of wire
resistance and the sneak path problem, this conductance cannot be used directly to
predict the behavior of the array during vector-matrix multiplication operations.
Also, each memristor must be read sequentially, so the time complexity of this
approach is proportional to NM.

For any linear physical system with N inputs and M outputs, there is an
equivalent linear transformation implemented by the system that can be
represented as an N ×M matrix. We can use this fact to read the array more
efficiently. In particular, for any possible network of Ohmic resistors with N voltage
inputs and M current outputs, there is a matrix Geq such that for any matrix V
inRN ´ P , I=GeqV. Because the IV relationship in the Ta/HfO2/Pt memristor is
highly linear, such a matrix exists for our array, which is the equivalent
conductance matrix. This matrix is electrically indistinguishable from our physical
array (to the extent that the components used are linear). We can determine Geq

empirically by running matrix-matrix multiplication with some large matrix of
inputs V and using the equation Geq= IV−1. In practice, we usually choose V to be
the N ×N identity matrix. The runtime of this calculation is proportional to N.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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