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Limits on determining the skill of North Atlantic
Ocean decadal predictions
Matthew B. Menary 1 & Leon Hermanson 1

The northern North Atlantic is important globally both through its impact on the Atlantic

Meridional Overturning Circulation (AMOC) and through widespread atmospheric tele-

connections. The region has been shown to be potentially predictable a decade ahead with

the skill of decadal predictions assessed against reanalyses of the ocean state. Here, we show

that the prediction skill in this region is strongly dependent on the choice of reanalysis used

for validation, and describe the causes. Multiannual skill in key metrics such as Labrador Sea

density and the AMOC depends on more than simply the choice of the prediction model.

Instead, this skill is related to the similarity between the nature of interannual density

variability in the underlying climate model and the chosen reanalysis. The climate models

used in these decadal predictions are also used in climate projections, which raises questions

about the sensitivity of these projections to the models’ innate North Atlantic density

variability.
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Following record warm years in 2014 and 2015, the year 2016
was again the warmest year in the instrumental record and
likely the warmest in at least the last one hundred thousand

years1–3. Despite this, there has been well-documented recent
cooling in the North Atlantic subpolar gyre (NA SPG)4. Indeed,
the climate model simulations of the coming century project a
weaker warming in the NA SPG compared to the global mean5,
highlighting the potential regional differences in the patterns of
future climate change6.

In addition, the NA SPG is of particular interest as it represents
an important part of the widely studied Atlantic Multidecadal
Oscillation/Variability (AMO/V)7–11, which has been linked with
a variety of climate phenomena, such as tropical storms, droughts
in Africa, and summertime climate over Europe12–14. As such, it
is both a region that may be experiencing important shifts and
one in which these shifts may have significant climatic impact.

The NA SPG has also been the focus of study in initialised
decadal climate predictions. It is a region that may actually be
predictable up to a decade ahead15, and good initialisation of the
NA SPG has been shown to be important in providing potential
predictability in other regions, such as in decadal forecasts of
tropical storms16. These initialised predictions come in two main
types that differ essentially on whether the model biases are
removed before (anomaly method) or after (full-field method) the
forecast is created17. Within the NA SPG, the Labrador Sea is of
particular importance as it links the circulation in the surface and
the deep ocean, contributing to the lower limb of the upper cell of
the Atlantic Meridional Overturning Circulation (AMOC)18,19.

If these decadal predictions are to be useful, they must be
shown to have skill when forecasting the real world ocean, which
requires producing re-forecasts (hindcasts) over many historical
decades20. In the absence of spatially complete observations
stretching back many decades, ocean reanalyses are used to
provide this baseline. However, the sparsity of the observations
results in somewhat differing ocean states appearing equally
plausible21. As such, understanding the ocean processes occurring
in these hindcasts and their sensitivity to the nature of the rea-
nalyses is crucial in understanding the reliability of these decadal
predictions.

In this study, we use two assimilation simulations (reanalyses),
as well as hindcast simulations from fifteen decadal prediction
systems, shown in Table 1. The reanalyses we use are the Eur-
opean Centre for Medium Range Weather Forecasting ORAS4

reanalysis22 and the UK Met Office Decadal Prediction System 3
assimilation run (denoted DP3-assim)23, described further in
Methods. For clarity, the hindcasts from this latter system are
denoted as DePreSys3 in the text. In addition, we use data from
long-term preindustrial control simulations conducted with the
same climate models. We combine these data to investigate the
systematic links between climate model biases, the ensuing pre-
diction systems and uncertainties in the ocean reanalyses. We
show that, in the Labrador Sea, despite various methods of
initialisation, the prediction systems continue to behave in a
similar manner to the comparator unforced control simulations.
As a result, the skill of these prediction systems in key metrics
such as the AMOC is strongly dependent on whether the biases in
the underlying climate models happen to produce similar beha-
viour to the chosen verifying analysis. It remains an open ques-
tion at this stage to what extent these persistent biases affect the
results of multi-decadal/centennial climate projections.

Results
Labrador Sea T/S. To set the scene in Fig. 1, we show the annual
mean of the top 500 m depth averaged temperature and salinity in
the Labrador Sea in the two reanalyses and fifteen decadal pre-
diction systems. For clarity, the hindcasts are shown as ensemble
means with all valid years averaged together (i.e., the average of
all hindcasts available for that year), which may include multiple
start dates. The raw data are shown in Supplementary Fig. 1.

With the exception of bcc-csm1-1, all hindcasts and reanalyses
indicate warming of the region in the late 1990s and early
twentieth century (Fig. 1a). In addition, it can be seen that the
DP3-assim reanalysis is consistently warmer than the ORAS4
reanalysis, which may reflect the different assimilation strategies.
For example, the spreading of information into the poorly
observed (on decadal timescales) boundary current regions may
manifest differently between the two systems. Nonetheless,
despite the differences in mean temperatures, the two reanalyses
give similar annual and decadal variability, which will be the
focus of this study. The annual correlation between the two
reanalyses over the period is r= 0.91, and both reanalyses have
similar annual standard deviations (DP3-assim s.d.= 0.35 K,
ORAS4 s.d.= 0.34 K).

Considering instead salinity averaged over the same volume
(Fig. 1b), there is reduced agreement between the two reanalyses.

Table 1 The decadal prediction hindcast systems and preindustrial control simulations used in this analysis using the CMIP5
nomenclature

Institute (CMIP5
name)

Hindcast model (CMIP5
name)

No. start
dates

No. ensemble
members

Control model (CMIP5
name)

Initialisation methoda

BCC bcc-csm1-1 47 3 bcc-csm1-1 FF
CCCma CanCM4 52 3 CanESM2 FF
CMCC CMCC-CM 9 1 CMCC-CM FF
CNRM-CERFACS CNRM-CM5 10 1 CNRM-CM5 FF
ICHEC EC-EARTH 10 3 EC-EARTH FF
IPSL IPSL-CM5A-LR 10 3 IPSL-CM5A-LR Anom
LASG-CESS FGOALS-g2 10 3 FGOALS-g2 FF
LASG-IAP FGOALS-s2 10 3 FGOALS-s2 FF
MIROC MIROC4h 10 1 MIROC4h Anom
MIROC MIROC5 51 3 MIROC5 Anom
MOHC DePreSys3 22 10 HadGEM3-GC2 FF
MPI-M MPI-ESM-LR 51 3 MPI-ESM-LR Anom
MPI-M MPI-ESM-MR 11 3 MPI-ESM-MR Anom
MRI MRI-CGCM3 11 1 MRI-CGCM3 Anom
NOAA-GFDL GFDL-CM2p1 52 3 GFDL-CM2p1 FF

aWhether the initialisation method is full-field (FF) or anomaly (anom) is also shown. For specific details of the initialisation methodology, the reader is referred to Table 1. of ref. 36. For further details of
the CMIP5 models and institutions, the reader is referred to Table 9.A.1 of ref. 37 and references therein
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This may be related to the relatively sparse observational record
of salinity before the twenty first century in this region24, which is
particularly pronounced between 1975 and 1995 in our study
region. When confronted with sparse observations, DP3-assim
appears to induce much larger annual/decadal variability than
ORAS4, and shows a late 1990s increase similar to the
temperature record. A key feature of DP3-assim is the use of
cross-covariances between temperature and salinity (whereby
temperature observations can influence salinity increments and
vice versa), which provides a potential mechanism for the input of
this higher amplitude salinity variability—compared to ORAS4,
in which salinity relaxes to climatology with a timescale of 1 year
(see Methods). It is difficult to completely assess whether the real
ocean did or did not experience such variability and assessing that
is not the focus of this study. Nonetheless, within our study
region, subsampling the reanalyses where there exists quality-
controlled observational data, suggests that DP3-assim is more
consistent with these observations than ORAS4, particularly prior
to the ARGO period (see Supplementary Fig. 2). However, it
remains a largely open question whether either of the reanalyses
can be said to be more plausible in terms of their dynamical
evolution.

Some of the hindcast simulations exhibit large decadal salinity
variability even after lead-time dependent bias correction, as in
DP3-assim, whereas others exhibit little variability similar to
ORAS4. For completeness, the correlation skill in T500 and S500
in this region is formally assessed in Supplementary Fig. 3. There
is positive T500 skill at all lead times up to 5 years when assessed
against either of the reanalyses in all hindcasts, except bcc-csm1-
1. The skill in S500 depends more heavily on the choice of truth
(reanalysis) against which one compares. In general, increased
skill against one reanalysis (e.g., DP3-assim) precludes increased
skill against the other reanalysis (e.g., ORAS4). Importantly, the
difference in skill when choosing different (though similarly

plausible) reanalyses is also manifested in the dynamically
important density (ρ500) over the same region.

Labrador Sea density drivers. In Fig. 2, we show the correlation
skill in density (over the same region as previously) assessed
against both ORAS4 (Fig. 2a) and DP3-assim (Fig. 2b). In general,
there are more prediction systems that show good skill against
ORAS4 than against DP3-assim. This preference for ORAS4
includes hindcasts made with DePreSys3, which has previously
been documented25. Both of the reanalyses are based on the
NEMO26 ocean model. Five of the prediction systems also use
versions of, or precursors to, NEMO (CMCC-CM, CNRM-CM5,
EC-EARTH, IPSL-CM5A-LR and DePreSys3), but show no sys-
tematic preference for either DP3-assim or ORAS4 (with a similar
null result for models not based on NEMO). In addition, although
not controlling for differing model systems, there is no systematic
relationship between whether the hindcast systems are anomaly
or full-field initialised and the subsequent skill in density (or T500
or S500) against either ORAS4 or DP3-assim.

Without knowing which of DP3-assim or ORAS4 is closer to
the real world, we cannot say which prediction systems are likely
to be more useful in making predictions about the real world
future. Note that, the reanalyses agree well during the recent well-
observed decade, in part due to the ARGO network27, but that the
skill of multi-annual prediction systems is necessarily estimated
over many decades20. As such, it is important to begin to
understand the mechanisms by which these different estimates of
the real world arise, both in the reanalyses and hindcasts, in order
to understand these uncertainties and their impacts.

To understand the lead time dependence of density skill against
either of the reanalyses, we also show the lead-time dependent
density drivers in all the hindcasts. This follows the same method
as already used for DePreSys325, and is summarised in Methods.
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Fig. 1 Evolution of key quantities in the Labrador Sea. Time series of the volume averaged temperature (T500, a), salinity (S500, b), and density (ρ500, c)
in the Labrador Sea (45–60°W, 55–65°N) from the top 500m in reanalyses and hindcast systems. For visual clarity, the hindcast systems are shown as
grand ensemble means across all ensemble member and valid lead times for a given year with symbols and line styles as shown in the legend (identical in
all figures). All hindcasts have been lead-time dependent bias corrected and mean-adjusted to compare to the ORAS4 reanalysis over the period from
1960–2013. The reanalyses are shown as solid lines without symbols
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In general, an increase in temperature-driven density variability
(ρT500, Fig. 2c) mirrors a decrease in salinity-driven density
variability (ρS500, Fig. 2d) due to the approximate linearity of the
calculation, but we show both panels for clarity.

The initialisation strategies differ between prediction systems
and for many the concept of interannual variability in their
associated assimilation is not well defined (for example,
in situations where temperature and salinity are instantaneously
relaxed into the subsurface ocean only at initialisation28).

However, for DP3-assim and the ORAS4 assimilation, there does
exist a continuous consistent ocean state. As such, we have also
plotted the regression slopes between ρ500 and ρT500, or ρS500
throughout the reanalyses. These are shown to the left of the axes.
It is immediately apparent that these reanalyses are fundamen-
tally different in their assessment of what drives interannual
density variability, be it either salinity (DP3-assim) or tempera-
ture (ORAS4). Note that, qualitatively similar results are obtained
by using a smaller region within the central Labrador Sea, over
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Fig. 2 The evolution of correlation skill and density drivers in the hindcasts. The correlation skill in the Labrador Sea top 500m density (ρ500) between the
hindcast systems and the reanalyses ORAS4 (a) and DP3-assim (b), as a function of lead time. A lead-time dependent bias correction (assessed against
ORAS4 and DP3-assim separately) is applied to the hindcasts before calculating the skill. The regression slope between ρ500 and ρT500 (c), or ρ500 and
ρS500 (d) in the hindcast systems as a function of lead time. For comparison, the same regression slope in ORAS4 (grey star) and DP3-assim (black cross)
is displayed to the left of the axes with 90% confidence intervals (boxes), estimated via a bootstrap analysis. In addition, the same regression slope
calculated from the control simulations (see Table 1) is shown to the right of the axes (further investigation of the stationarity of the control regression
coefficients is shown in Supplementary Fig. 4). Finally, scatter plots of control simulation regression slope (x-axis, constant) against hindcast regression
slope (y-axis) are inlaid as a function of lead time to highlight how the hindcasts revert to the nature described by the control simulations within a few
years. The reanalyses are also shown with symbols coloured as before and can be seen to span a large portion of the hindcast behaviour. The one-to-one
line is shown in green
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just the top 200 m (Supplementary Fig. 5), but we use the present
definition for consistency with earlier work. In the hindcasts,
some can be said to remain close to one or other reanalysis
estimate of the driver of density variability, whereas others prefer
to switch within a relatively short timescale. For example, the
DePreSys3 prediction system moves away from its own reanalysis
(DP3-assim), whereas GFDL-CM2.1 and FGOALS-s2 move
towards DP3-assim and away from ORAS4.

This leads to the question: Why do these drifts occur (or not
occur), and is there any systematic explanation that can cover the
seemingly different behaviour across the 15 hindcast prediction
systems? Such an understanding would be valuable in determin-
ing what aspects of both prediction systems and reanalyses are
most important for creating reliable predictions of the real world
North Atlantic Ocean.

Links between hindcasts and control simulations. To investigate
this question, we have additionally analysed the preindustrial
control simulations from the same models as used in the hindcast
prediction systems, as detailed in Table 1. In general, prediction
systems use an underlying coupled atmosphere-ocean climate
model that has also been used to conduct long-term control
simulations with constant preindustrial forcings, with the data
also uploaded to the Fifth Coupled Model Intercomparison
Project (CMIP5) archive. The density drivers from the control
simulations are thus shown to the right of the axes.

Despite the different density drivers in the hindcasts, and that
some show lead time dependence that is not apparent in others, it
is generally the case that after around 5 years the density drivers
in the hindcasts and control simulations agree. That is, across the

15 models available on the CMIP5 archive, the driver of the
density variability in the underlying control simulation provides a
very strong constraint on the driver in the initialised hindcasts.
This is additionally shown by the scatter plots that show the
relationship between the control and the hindcast density driver
for the various hindcast lead times. Here, it can be seen that the
models generally align on the 1:1 line after 5 years. Not all centres
provided data after a lead time of 5 years, but for those that did
the multimodel correlation did not continue to improve after this
time (not shown). In the parameters so far investigated, the two
reanalyses we have used span a large portion of the distribution
determined by the hindcasts, which provides further evidence of
the difficulty in determining which (if any) of the prediction
systems is likely to make robust predictions of the future.

We have shown that the driver of the Labrador Sea top 500 m
interannual density variability in the prediction systems reverts to
the underlying control model within 5 years. Despite this, many
of the hindcasts have still not reverted to the mean state
temperature and salinity structure of their control simulations
within 5 years, which leads us to ask: are the changes in the actual
mean state (i.e., drifts/adjustments), or changes in the magnitude
of innate temperature and salinity variability responsible for the
rapid resetting of density drivers to their control simulation
values?

Changes in mean state versus changes in variability. In Fig. 3,
we show the lead-time dependent characteristic density changes
associated with changes in the interannual variability of tem-
perature and salinity or changes in the mean state of temperature
and salinity. Details of this procedure are provided in Methods.

It can be seen that, in general, the density changes due to the
changing annual temperature and salinity variability are larger
than those due to the changes in the mean state (the
latter associated with drifts or adjustments that occur as a result
of initialisation shock). This may partly be because a large
fraction of the adjustment occurs within the first year and so is
effectively hidden in our analysis. Nonetheless, it can be seen that
at subsequent lead times any continued mean state adjustment
does not contribute significantly to the density changes, with the
exception of salinity drifts in CanCM4 and CMCC-CM.

For some models, the driver of density changes was seen to
switch from salinity to temperature (e.g., CNRM-CM5 and
DePreSys3, cf. Fig. 2). In these models, the largest characteristic
density changes go from being dominated by salinity variability to
dominated by temperature variability (Fig. 3). As such, this switch
in density drivers can be attributed to a relative increase in the
magnitude of temperature—as compared to salinity—variability.

Similarly, for models that switch from temperature- to salinity-
driven density variability (e.g., MPI-ESM-MR, FGOALS-s2, EC-
EARTH, cf. Fig. 2) this can again be attributed to relative changes
in the magnitude of temperature and salinity variability.

We have shown that the drivers of interannual density
variability in the various hindcasts revert to that seen in the
control simulations within 5 years, and further that this is most
often due to a change in the magnitude of variability rather than
the mean state (associated with drifts). We now investigate how
these systematic changes affect the skill of the prediction systems.

Effect on Labrador Sea density skill. From Fig. 2c, d, it can be
seen that prediction systems that are based upon underlying
models that have a particular driver of density variability are
more likely to show skilful predictions when assessed against a
reanalysis that exhibits the same driver of density variability and
vice versa. This is quantified in Fig. 4a, b.
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There is an approximately linear relationship in either of the
panels between the density skill in the hindcasts and the density
driver in the control simulations, with ORAS4 finding
temperature-driven models to be skilful, whereas DP3-assim
finds salinity-driven models to be skilful. That is, it appears to be
the underlying nature of density variability (as seen in the control
simulations)—and whether this agrees with the verifying
reanalysis—that determines a large part of the subsequent skill
of a hindcast system.

Nonetheless, although it is generally true that specifying similar
density drivers to the target reanalysis leads to higher skill than if
that is not the case, there remains plenty of model diversity. This
highlights that there are other factors than just the drivers of
interannual density variability that lead to skill in Labrador Sea
density. Indeed, whether temperature or salinity drives the
density variability is not a process but a symptom of actual
processes that are represented differently across the models, either
due to differing parameterisations or differences in forcings.

We have shown that, in the Labrador Sea, prediction systems
generally revert to the density drivers exhibited by the same
control simulations within 5 years. This has impacts for skill in
the density in the same region, which is a dynamically
important quantity. As such, it is appropriate to ask whether
these changes have wider impacts, for example affecting the skill
in circulation indices outside of the Labrador Sea, such as the
AMOC.

Discussion
To determine the potential for wider impacts, we assess the skill
of the AMOC in each hindcast simulation against both the
AMOC in DP3-assim and that in ORAS4. We group the models
into two groups based on their skill in Labrador Sea density
assessed against ORAS4. Models with skill greater than r > 0.3 are
in Group 1, with the remaining models in Group 2. Using this
definition, it also clear that models cluster into the same groups
when assessed instead against DP3-assim. Finally, having grouped
the models we then show the group-mean skill in the AMOC
streamfunction (Fig. 4c–f). The outlying bcc-csm1-1 model was
not included (cf. Fig. 1 and Supplementary Fig. 3) and not all
centres provided streamfunction data resulting in each group
containing 5 models.

It is immediately obvious from this analysis that prediction
systems that show good skill in Labrador Sea density variability
against a given reanalysis (for the reasons previously outlined)
also generally have a much more skilful AMOC when also
compared to that reanalysis (Fig. 4d, f). Similarly, choosing the
wrong reanalysis to compare against generally results in poor
density skill and poor AMOC skill (Fig. 4c, e). Further, despite
our density metric focussing on the near surface Labrador Sea, the
skill in the AMOC exists throughout the North Atlantic and
notably below the 500 m layer, implying that good simulation of
the Labrador Sea is important for skill in the large-scale ocean
circulation.
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Fig. 4 From Labrador Sea density drivers to large scale circulation. Correlation skill of years 2 to 5 volume averaged Labrador Sea top 500m density
(ρ500) in hindcasts assessed against ORAS4 (a) and DP3-assim (b) plotted against the regression slope between ρ500 and ρT500 (a) or ρ500 and ρS500
(b) in the control simulations for the same models. The hindcasts are separated into two groups based on a cut-off of r= 0.3 in year 2 to 5 ρ500 skill, when
assessed against ORAS4. The symbol markers are as in Figs. 1 and 2 and the outlying hindcast system bcc-csm1-1 has been excluded from this analysis.
The skill for just year 5 is also shown with the same but smaller symbols. The hindcast systems for which streamfunction data was provided are circled in
panels a and b. The group average years 2 to 5 Atlantic overturning streamfunction skill assessed against ORAS4 (c, d), and DP3-assim
(e, f), where the groups are as in panels a and b. Group 1: MIROC5, CNRM-CM5, FGOALS-g2, FGOALS-s2 and DePreSys3. Group 2: MPI-ESM-LR, GFDL-
CM2p1, IPSL-CM5A-LR, MPI-ESM-MR and MRI-CGCM3. The time mean streamfunctions in the verifying reanalysis are contoured every three Sverdrups
(1 × 106 m3 s−1) in red (positive, bold at 15 Sverdrups) and blue (negative). A total of 10 hindcast systems provided streamfunction data and every possible
5-member combination of these is computed to assess the significance of these group-average skill estimates. The hatching signifies skill at the 80% level,
i.e., the group mean skill falls in either the top or bottom 10% of possible values
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Although the various prediction systems yield differing esti-
mates of skill in key variables (e.g., the AMOC), we have provided
a framework in which these skill scores can be systematically
understood. Skill in the AMOC on timescales beyond the first few
years is not solely dependent on the prediction system but also
largely depends on which reanalysis is used for validation. More
specifically, it depends on whether the control simulation of the
forecast model in the prediction system agrees with the reanalysis
in key metrics in the Labrador Sea. Further, there is no rela-
tionship between the broad initialisation strategy (be it either
Anomaly or Full Field initialisation) and either density skill in the
Labrador Sea or the AMOC. This is likely because neither strategy
can correct for the drifts in variability that are important here.

We have described a strong link between control simulations
and prediction systems built upon the same climate models.
Climate projections of the next century also use these same
models. To what extent are multi-model climate projections of
the North Atlantic and beyond systematically dependent on the
innate northern North Atlantic density variability within these
models?

Methods
The various systems including the number of ensemble members and other key
features are detailed in Table 1. All analysis uses the ensemble mean and annual
mean data, unless otherwise stated. The reader is directed to the appropriate papers
for description of the DP3-assim reanalysis23 and ORAS4 reanalysis22, though
some key details are repeated here.

DP3-assim. The DP3-assim23 nudges full-field values of potential temperature and
salinity from the Met Office Statistical Ocean Reanalysis (MOSORA)29 into the
HadGEM3-GC2 model with a relaxation time scale of 10 days. Temperature and
winds in the atmosphere (6 h relaxation) as well as sea-ice (1 day relaxation) are
also nudged in a similar manner. MOSORA uses optimal interpolation and is
created through an iterative procedure. For the first iteration a set of global cov-
ariances are computed from control integrations of nine different versions of the
third Hadley Centre Coupled Model (HadCM3) with different physics para-
metrizations30. These covariances are used to make the first analysis. Two further
iterations are made, each using the analysis from the previous iteration, instead of
the model control integrations, to make its covariances. In this way, the covariances
are influenced by observations when they exist. As there are more temperature than
salinity observations in the early period, covariances between temperature and
salinity are used to help determine the salinity.

ORAS4. ORAS4 uses the NEMO model (version 3.0) and is based on 3D-
variational assimilation (NEMOVAR)22. It uses observations of potential tem-
perature, salinity and sea-surface height (SSH). The ocean model is forced with
ERA-40/ERA-Interim31. There is a strong relaxation to observation-based sea
surface temperature products, and freshwater flux is also adjusted using constraints
from altimeter data and through a relaxation to a monthly climatology from
WOA0532 with a time scale of one year. A change of variables is performed within
the assimilation to (assumed) uncorrelated control variables of temperature,
unbalanced salinity and unbalanced SSH. Linearised versions of the balance rela-
tionships described in refs. 33,34 are used in NEMOVAR to convert from these
variables to the total salinity and total SSH, and vice-versa. See ref. 35 for more
details. A model bias correction scheme is used in ORAS4. The bias estimate is
based on time-accumulated temperature and salinity increments (with a three
month relaxation time scale). The bias correction is applied to temperature and
salinity directly in the extra tropics and via the pressure gradient (pressure cor-
rection) in the tropics.

Density breakdown. We follow the method of ref. 25, specifically the ‘absolute
densities’ method as in general we do not have access to year zero/assimilation
data. We break density variability down into components arising from separately
temperature and salinity variability by keeping one of either salinity or temperature
constant (at its time mean value) in the equation of state. This results in the
quantities ρT500 (density due to temperature variability) and ρS500 (density due to
salinity variability), anomalies in which add almost linearly to give anomalies in
ρ500. We thus regress ρT500 and ρS500 separately against ρ500 to estimate the
relative importance of ρT500 and ρS500 (and thus temperature and salinity)
variability to the actual density variability. This is done as a function of lead time
and shown in Fig. 2c, d.

Characteristic density changes due to mean and variability. The contribution
of mean state changes are estimated by averaging together the lead-time dependent

bias over all start dates for a given lead time and prediction system, and then
finding the difference (in temperature and salinity) between one year and the next.
Essentially, this estimates the contribution to density from model drift, which can
be seen in the requirement of a lead-time dependent bias correction (specifically a
bias correction against ORAS4, but similar results are obtained for the correction
required against DP3-assim, not shown). This results in, for example, a tempera-
ture change (±ΔT) valid midway between year 1 and year 2. This is then combined
with a reference temperature and salinity (Tref= 3.5 K, Sref= 34.5 PSU) to estimate
a characteristic density change. The same method is used to calculate the char-
acteristic density change associated with the mean state salinity change (±ΔS).

Similarly, to estimate the contribution of changes in annual temperature and
salinity variability for each prediction system, we find the standard deviation of the
lead-time dependent bias over all start dates for each lead time. This results in, for
example, a characteristic temperature change (±ΔT) valid at year 1. We proceed as
above to calculate characteristic density changes, but note that as we are not taking
the difference between years, the validity time of these density changes (associated
with variability) is offset by half a year, compared to the density changes associated
with the mean state (above).

Code availability. The code to analyse the climate model data is available from the
authors upon reasonable request.

Data availability. The control and hindcast simulations are available on the
CMIP5 archive and the reanalyses from http://icdc.cen.uni-hamburg.de/1/projekte/
easy-init.html (accessed July 2017).
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