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Optimal compressed representation of high
throughput sequence data via light assembly
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The most effective genomic data compression methods either assemble reads into contigs, or

replace them with their alignment positions on a reference genome. Such methods require

significant computational resources, but faster alternatives that avoid using explicit or de

novo-constructed references fail to match their performance. Here, we introduce a new

reference-free compressed representation for genomic data based on light de novo assembly

of reads, where each read is represented as a node in a (compact) trie. We show how to

efficiently build such tries to compactly represent reads and demonstrate that among all

methods using this representation (including all de novo assembly based methods), our

method achieves the shortest possible output. We also provide an lower bound on the

compression rate achievable on uniformly sampled genomic read data, which is approximated

by our method well. Our method significantly improves the compression performance of

alternatives without compromising speed.
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Recent advances in high-throughput sequencing (HTS) have
made it possible to sequence genomes of complex organ-
isms in a matter of hours. As worldwide increase in

genomic sequence data generation put strain on storage and
communication systems, new compression methods are designed
to reduce this burden by exploiting redundancy within and across
reads extracted from genome sequences. Currently, available HTS
data compression methods reduce the redundancy within a
genomic sequence data set by either (i) assembling reads into long
contigs, typically by a de Bruijn graph-based approach (e.g.,
Quip1, Leon2, k-Path3, and KIC4), or by (ii) aligning the reads to
a reference genome (e.g., LW-FQZip5); the reads are then enco-
ded as simple pointers to the reference or the assembled contigs.

Because both sequence mapping and assembly are computa-
tionally intensive tasks, all the above HTS compression methods
are typically slow and thus are not commonly used even though
they achieve high compression performance. The best compro-
mise between the compression rate and running time is typically
achieved by HTS data compressors that perform read mapping or
assembly only implicitly; these methods first cluster reads that
share long substrings, and independently compress reads in each
cluster after a reordering or implicit assembly. Since the read
order within unmapped read files (in FASTA/Q formats) is not
important, reordering of the reads in a manner that brings the
similar reads together can significantly boost the compression
rates while avoiding information loss (e.g., SCALCE6, Orcom7,
Mince8, and BEETL9). If the underlying genome is highly repe-
titive, or if the coverage of the data is high, even general-purpose
compressors, such as gzip10 or bzip11, significantly benefit from
the improvement in data locality as a result of reordering.

In this paper, we introduce a new reference-free compressed
representation for HTS data that is based on a crude yet more
explicit de novo assembly of reads for improving compression
rates. (Note that compression performance is measured in terms
of either "compression rate", the number of bits in the output per
each input bit, or "compression ratio", its inverse.) Our repre-
sentation represents a set of input reads as nodes of compact tries.
Each edge, from a node v to its parent u, represents the suffix of
the read corresponding to v that is not covered by the read cor-
responding to u. Unique to our representation, the tries are not
organized in a top-down, but rather in a bottom-up fashion, i.e.,
each node v has a link only to its parent u and not to its children.

Next, we describe an iterative method called Assembltrie, to
build a forest of such tries, which, for each read r, (i) greedily
picks an already processed read r′ for which the overlap between a
prefix of r and the suffix of r′ is maximum possible, and a new
node v is created with a link to the node u corresponding to r′ as
its parent (if no such r′ exists, it starts a new tree with r only), and,
(ii) greedily identifies each (already processed) read r″, which has
a longer prefix that match a suffix of r than that of the read
corresponding to its existing parent—and updates its parent as v.

As a first in HTS data compression, we show that Assembltrie
achieves optimality from a combinatorial point of view (on finite
size HTS data) as follows. Given a finite HTS read collection to be
compressed by an explicit or implicit representation of the input
as a subgraph of the standard read overlap graph, where reads are
represented through pointers to nodes, Assembltrie is guaranteed
to produce the smallest possible representation in terms of the
number of symbols used in the subgraph as well as the number of
pointers; Assembltrie uses no additional information to maintain
the topology of the subgraph. This guarantee covers all algorithms
that are constrained with the compressed representation descri-
bed above, including those methods that represent the reads as
pointers to their (string graph based) de novo assembly.

Note that this notion of combinatorial optimality is achieved
for read sets that do not have read errors; it also does not extend

to compressors that represent the input as a subgraph of a de
Brujn graph (even though in such representations, the number of
pointers could be superlinear with the number of reads). Fur-
thermore, our notion of optimality does not imply bitwise
optimality on all inputs due to standard information theoretic
limitations.

We also provide the first information theoretic lower bound on
the compression rate achievable on a collection of reads that are
uniformly selected from a reference with known entropy, and
demonstrate that Assembltrie closely approaches this ultimate
performance limit.

We have evaluated our method on a recent benchmarking data
set12 comprised of unmapped read (FASTQ) collections with
both deep and shallow coverage from various organisms (H.
sapiens, bacteria, plants) and from several sample types (genomic
and metagenomic), as well as some simulated and aligned (i.e.,
reads are extracted SAM/BAM files, where the positions of the
reads were discarded) HTS data. Our method improves the
compression rate achieved by the best available software tools,
such as Orcom7 or Mince8, by 10–50%, depending on the type of
the data set. With respect to the running time, Assembltrie is
competitive with the reordering-based methods and offers
remarkable gain over the alignment/assembly based methods.
Furthermore, the runtime performance is significantly improved
through parallelization without sacrificing compression
performance.

Results
Assembltrie was tested on a Linux server equipped with 39 10-
core Intel® Xeon® E5-2650 v3 2.30 GHz CPUs, 1058 GB of RAM
in total, and a Lustre-based file system with 750TB disk space. For
convenience, the units in this section take decimal multiples, i.e.,
1 M = 106, 1 G = 109 etc., to represent the number of reads, file
sizes, and memory usage.

Benchmarking Assembltrie against other methods. The data
sets we used to benchmark Assembltrie consists of a number of
FASTQ files compiled by MPEG HTS working group, composed
of ~200 GB of human, human microbiome (metagenomic), bac-
terial and plant genome sequence, and gives a comprehensive
assessment for the relative performance of Assembltrie against all
existing FASTQ compression methods. (See Table 1.) Note that
since the read collection from the T. cacao genome are of poor
quality with a very high error rate, we also added a simulated set

Table 1 The MPEG HTS benchmarking data set

Sample Organism Genome
Len. (M)

# Reads
(M)

Read
Len.

SRR554369 P. aeruginosa 6.60 1.66 100
SRR327342 S. cerevisiae 12.14 15.04 63
MH0001.081026 H. sapiens

gut
N/A 11.64 44

SRR870667 T. cacao 335.44 69.10 108
ERR174310 H. sapiens 2989.43 207.58 101
ERP001775 H. sapiens 2989.43 607.56 101
Simulated T. cacao 335.44 65.43 108
NA12878 H. sapiens 2989.43 226.11 101

The HTS read collections used to evaluate the performance of Assembltrie from the MPEG HTS
benchmarking data set. Note that ERP001775 is a large data set, which combines reads from 18
human individuals. It was downsampled to fit the memory requirements of Assembltrie. In
addition, NA12878 is not part of the MPEG HTS FASTQ/FASTA benchmarking data set—reads
in this data set have been extracted from a corresponding BAM file to demonstrate the
comparative performance of Assembltrie and Orcom on data, where strand correction is not
needed. Finally, we used a simulated T. cacao data set instead of the original due to the high
error rate observed in the original data set
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of reads sampled from the T. cacao reference genome (with a
uniform i.i.d. error rate of 1%) for comparison. In addition to this
data set collection, we have extracted reads from a BAM-
formatted human genome data set NA12878 and converted them
to FASTA format. (This file is not a part of the MPEG HTS
working group FASTQ/FASTA compression benchmarking data
set. Instead, a higher coverage version is a part of the SAM/BAM
benchmarking data set. We downsampled it to match the cov-
erage of ERR1743010.) Assembltrie is developed for compressing

unmapped reads in FASTQ/FASTA format, and a conversion
from mapped reads to unmapped read collections is wasteful.
However, we used this data set to measure the effectiveness of the
strand correction heuristic used by Assembltrie (see “Methods”
section) since reads in a SAM/BAM file are already strand
corrected.

Compression performance and computational resource utili-
zation. The experimental results, including the compression
performance, and the computational resources used by our
method are presented in Tables 2 and 3. (Note that compression
performance is measured in terms of either "compression rate",
the number of bits in the output per each input bit, or "com-
pression ratio", its inverse.) In addition to Assembltrie, we present
the compression performance (on the MPEG HTS compression
benchmark data set) of Orcom7, BEETL9, Mince8, and k-Path3, as
provided in the MPEG benchmarking study12. As per Assembl-
trie, all of these compressors are developed to compress only the
sequence information in a FASTQ file. Among these methods, we
observed that Orcom is much faster than the others thus we
compared the compression time of Assembltrie against Orcom
only.

Table 2 presents the compression rates achieved by the above
methods on the MPEG benchmark data set. As we can see,
Assembltrie outperforms alternatives on all samples, typically
providing an improvement of 10–35% in compression ratio in
comparison to the best alternative (usually Orcom or Mince)—
with the exception of the SRR870667 data set. This data set from
the plant T. cacao is comprised of low-quality reads: in fact, more
than 40% of the reads do not share an overlap greater than ⌊L/5⌋
= 21 with any other read (here L = 108), even when the number of
mismatches allowed is 4. In contrast, more than 90% of the reads

Table 2 Comparative compression ratios achieved by Assembltrie on the MPEG HTS benchmarking data set

Sample L / cov Compression rates

Assembltrie Assembltrie (corrected) Orcom BEETL Mince k-Path

SRR554369 100/25 0.369 0.345 0.518 1.133 0.484 0.673
SRR327342 63/80 0.272 0.291 0.304 0.986 0.312 0.384
MH0001.081026 44/NA 0.781 0.758 0.804 1.785 0.786 2.545
SRR870667 108/20 1.821 1.733 0.884 1.287 0.735 0.707
ERR174310 101/7 0.701 0.570 0.686 1.493 0.746 0.797
ERP001775 101/20 0.350 0.322 0.364 N/A N/A N/A
Sim. T. cacao 108/19 0.538 0.479 0.667 N/A N/A N/A
NA12878 101/7 0.444 N/A 0.650 N/A N/A N/A

Compression rates in bits per base for each software tool (with 8 threads) and each MPEG benchmark sample. The second column provides the read length and coverage; and the last columns present
the compression performances for different software tools. Assembltrie outperforms all of the existing sequence-only compressors with different level of improvement depending on the read length/
coverage (possibly with the greedy strand correction heuristic), except on the sample SRR870667 from T.cacao (which has an unusually high error rate)

Table 3 Compression times and memory usage of Assembltrie and Orcom

Sample Assembltrie (time) Assembltrie (RAM) Orcom Orcom

without / with strand correction without / with strand correction (time) (RAM)

SRR554369 23.2 30.6 1275.9 1372.8 10.1 631.0
SRR327342 256.2 439.9 8553.6 7971.8 131.0 1767.8
MH0001.081026 118.5 145.7 7662.4 7223.5 49.6 1674.2
SRR870667 15251.1 12219.2 50580.9 53184.3 919.0 3150.6
ERR174310 31657.8 43758.2 152719.8 168861.1 6411.1 3439.2
ERP001775a 22227.0 31675.1 434425.5 473066.5 8969.1 10803.6

Compression time (in seconds) and memory usage (in MBs) of Assembltrie and Orcom to generate the compression rates for the MPEG benchmark data set. The results of Assembltrie are given both
with (the 3rd and 5th columns) and without (the 2nd and 4th columns) heuristic strand correction
aAssembltrie was tested with non-default parameters
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Fig. 1 Compression performance of Assembltrie as a function of read
coverage. The compression performance (with 8 threads) of Assembltrie in
comparison to Orcom on downsampled read collections from SRR327342
—as a function of coverage

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02480-6 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:566 |DOI: 10.1038/s41467-017-02480-6 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


from the simulated T. cacao data (with similar coverage and
depth, but with 1% error rate) get “assembled” (placed in the
cycle-rooted tries).

Note that Assembltrie performs especially well on the low-
coverage samples. In fact, as illustrated in Fig. 1, the compression
gap between Assembltrie and Orcom increases as the coverage
decreases. Table 2 also demonstrates the effectiveness of our
greedy strand correction heuristic (see “Methods” section for
details). As can be seen, Assembltrie can achieve as much as 20%
gain on the compression ratio by applying a simple greedy strand
correction heuristic (which works especially well on low-coverage
data); however, the heuristic cannot determine the correct strand
orientation for many of the reads. To demonstrate the gap
between what our greedy heuristic achieves and how Assembltrie
performs on data with reads that are all correctly oriented, we
give results on a read collection we extracted from a human
genome BAM file, NA12878—where reads are already strand
corrected. We extracted reads from this BAM file while ensuring
that the resulting data set would have coverage and read length
similar to that of ERR174310. The two human data sets are
compressed equally well by Orcom. Interestingly, there is a big
gap between the compression rates achieved by Assembltrie on
these files. Orcom’s performance is comparable to Assembltrie on
the non-strand-corrected file, when the heuristic is not used. The
use of the heuristic improves Assembltrie results by ~20%. On top
of this, Assembltrie achieves another 22% improvement on data
that is already strand corrected. In other words, Assembltrie is
likely to provide significantly improved compression rates with
better strand correction methods. (It is possible to perform
mapping for strand correction but that would add burden on the
running time.)

Table 3 presents the running time and memory usage of
Assembltrie in comparison to Orcom. Note that Assembltrie is
slower than Orcom with default read overlap length K = ⌊L/5⌋ but
with increasing K it achieves a similar running time (with the
exception of the single problematic read collection—SRR870667,

where lower compressibility results in a higher search time for the
placement of each read). Further, note that the runtime and RAM
usage of Assembltrie is affected by the use of its strand correction
heuristic. In terms of memory usage, Orcom has an advantage
since Assembltrie must maintain all of the processed reads as well
as the prefix and suffix hash tables, necessitating Ω(NL) memory.

Finally, Table 4 presents the running time and memory usage
of Assembltrie vs Orcom for decompression purposes. Assembl-
trie is consistently faster than Orcom, with or without strand
correction, sometimes significantly so (e.g., for SRR870667 data
set, Assembltrie decompression time is 3.5 times faster). The
memory usage of Orcom, however, is better—as explained above.

Assembltrie performance vs our entropy approximation. We
have also compared Assembltrie’s performance with our entropy
approximation for a given collection of HTS reads (see “Methods”
section for details). For this, we generated six simulated data sets,
where the reads were obtained by randomly sampling E.coli K-12
DH10B genome (length 4.69 Mbases), varying the read length,
coverage, and error rate (the probability that each base is muta-
ted). The number of reads (in millions), read length, coverage,
and error rate in each of these data sets are (respectively): DH10B
1: 1.56 M, 120 bp, 40x, 0.30%; DH10B 2: 1.88 M, 100 bp, 40x,
0.35%; DH10B 3: 2.34 M, 80 bp, 40x, 0.27%; DH10B 4: 1.17 M,
100 bp, 25x, 0.35%; DH10B 5: 3.75 M, 100 bp, 80x, 0.35%; and
DH10B 6: 1.88 M, 100 bp, 40x, 0.10%.

Table 5 presents the performance of Assembltrie on these
simulated data sets. The entropy rate (in bits per base) HðRÞ of
each read collection R is calculated according to Eq. (1) (see
“Methods” section). Clearly, Assembltrie is the only software tool
we tested that produces compression results that come close to
HðRÞ; there is a big gap between our entropy approximation and
even the best performing Orcom’s compression results. In fact,
Assembltrie outperforms Orcom by a factor of 2.1 to 2.6 in these
data sets.

Table 4 Decompression times and memory usage of Assembltrie and Orcom

Sample Assembltrie (time) Assembltrie (RAM) Orcom Orcom

without / with strand correction without / with strand correction (time) (RAM)

SRR554369 2.9 3.4 249.7 259.0 4.7 15.2
SRR327342 18.0 36.1 1558.7 1678.9 30.8 30.2
MH0001.081026 13.7 15.3 1032.4 1133.7 24.9 23.7
SRR870667 190.3 207.5 10500.8 11495.9 673.6 708.6
ERR174310 524.1 775.8 31571.0 33555.2 707.3 561.7
ERP001775 758.7 860.3 86468.1 91465.8 1487.9 1532.5

Decompression time (in seconds) and memory usage (in MBs) of Assembltrie and Orcom in single-threaded mode. The results of Assembltrie are given both with (the 3rd and 5th columns) and without
(the 2nd and 4th columns) heuristic strand correction

Table 5 Assembltrie’s compression performance is comparable to our entropy approximation for E. coli read collection

Sample L / cov LZ(G) H R?jGð Þ H RjR?ð Þ HðRÞ Assembltrie Orcom

DH10B 1 120/40 0.048 0.020 0.047 0.115 0.146 0.372
DH10B 2 100/40 0.048 0.025 0.053 0.126 0.163 0.399
DH10B 3 80/40 0.048 0.028 0.042 0.119 0.164 0.379
DH10B 4 100/25 0.077 0.031 0.053 0.162 0.194 0.507
DH10B 5 100/80 0.024 0.017 0.053 0.094 0.141 0.292
DH10B 6 100/40 0.048 0.025 0.018 0.092 0.123 0.290

The entropy approximation of the reads from the above E. coli read collections. LZ(G) denotes the bits/bits per base after compressing each genome with gzip; H R?jGð Þ is the entropy approximation
based on a multinomial sampling of each reference genome; H RjR?ð Þ is the binary entropy of the error process; and HðRÞ is the overall entropy approximation for each read collection. Finally, we
compare the compression results given by Assembltrie (run with a single thread) and Orcom
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In addition to the data sets above, we have also experimented
with simulated read collections sampled from the same E.coli
strain, this time with fixed coverage (1.8 M reads all together) and
read length (101 bp) but with varying error rate. Figure 2
demonstrates how Assembltrie’s performance varies on this data
set as a function of the error rate (here only substitutions are
considered as errors since they are the major form of sequencing
errors in Illumina data). As can be expected, the gap (shown in
Fig. 2) between the maximum achievable compression ratio and
what is obtained by Assembltrie grows as the error rate increases.
This gap is primarily due to Assembltrie’s requirement of an exact
K-mer match during the process of identifying potential parents/
children for each read. As the error rate approaches 0, the gap
between Assembltrie’s performance and our entropy approxima-
tion diminishes.

Parameter selection. As mentioned earlier, the running time of
Assembltrie is primarily determined by the minimum overlap
length K—the larger value of K results in a shorter running time.
Unfortunately, larger K values may result in missed overlaps,
potentially sacrificing overall compression performance. Figure 3
depicts the tradeoff between Assembltrie’s running time and
compression performance, with varying values of K. On read data
sets from a large (e.g., human) genome, choosing K ≥ ⌊L/4⌋
provides a good tradeoff between the running time and com-
pression performance.

Discussion
As demonstrated above, Assembltrie is a high-performance
sequence compression tool for large genomic read collections,
capable of improving the compression ratio achieved by all
available methods significantly. It may be possible to further
improve its performance through improved strand correction
heuristics; however, this should not come at the expense of a
poorer running time. Assembltrie’s main contribution is in pro-
viding improved compression without sacrificing running time.
However, its memory usage is relatively high. It may be possible
to reduce the memory usage by providing a tradeoff between
running time or compression ratio and the memory usage by
limiting the branching factor in the compact tries it builds (in fact
limiting the branching factor to 1 will result in contigs that will
not only avoid the use of pointers and improve the memory

usage, but also improve the running time—however, this is likely
to result in poorer compression performance).

Methods
Problem definition. The main goal of Assembltrie is to achieve lossless com-
pression of a collection (multiset) of fixed length genomic reads, i.e., strings from
the four letter DNA alphabet (and possibly the letter N—to represent unknown
nucleotides), denoted by R (see the literature13–18 for discussions on the general
problem of lossless multiset compression). Since the reads form a multiset, and
because the read locations are arbitrary, we do not maintain the order of the reads.

Assembltrie is based on a light assembly of reads in the sense that instead of
assembling the reads into independent contigs, they are organized in a more
compact data structure that we call a read forest. Specifically, a read forest T ¼
ðV ; E;w; stÞ is a directed graph, where each node v ∈ V corresponds to a specific
read r 2 R associated with a string st(v) of fixed length L ¼ stðvÞj j. Each connected
component of T can be thought as a trie-like connected subgraph T = (VT, ET, w,
st) (VT⊆V, ET⊆ E), such that for each node v in VT, there is exactly one outgoing-
directed edge, say (v, u), where u ∈VT is said to be the parent of v and is denoted π
(v) = u (it is possible that π(v) =NIL indicating that v is a root). Each edge (v, u) ∈
ET is said to have weight w(v, u), which is the length of the shortest suffix of st(v)
that cannot be covered (i.e., matched exactly) by a suffix of st(u). In other words, w
(v, u) = L − l, implies that st(v)[1:l] = st(u)[L − l + 1:L], where l is the length of such
suffix–prefix overlap between st(v) and st(u), and s[i:j] denotes the substring from
index i to j in string s. Since T is comprised of nodes with a single outgoing edge, it
forms a graph with at most one cycle. Note that each edge of T represents a string;
hence, we can think of T as a trie, which has either a single node or a cycle (instead
of a single node) acting as the root. As a result, the set T of trie-like graphs T (we
will call them cycle-rooted tries, with an example given in Fig. 4) forms a forest,
which can be thought of as a subgraph of the standard read-overlap graph (one of
the two basic frameworks commonly used in genome assembly—see ref. 19 for a
definition) formed by the input reads.

Unique to our representation, a cycle-rooted trie T is not arranged in a top-
down, but rather in a bottom-up fashion, since each node v has a link only to its
parent π(v). Thus, the construction of a read forest T simply constitutes the
computation of the parent node π(v) for each node v. Since the compressed
representation of the input R is simply an efficient encoding of T , the objective of
Assembltrie is to construct a read forest T � that contains minimum number of
symbols, i.e., in which the sum of edge weights is minimum possible.

Given a read forest T , let its total weight be the sum of the weights of its edges,
i.e.,

Tj j ¼
X
T2T

X
v2VT

wðv; πðvÞÞ;

where we can assume that w(r, NIL) = L for each root node r. In the remainder of
the paper, we will consider read forests T K , where the minimum overlap length
between any string st(v) and st(π(v)) is a user specified K (see Fig. 3 for details). As
we will show, Assembltrie produces the read forest with minimum total weight, i.e.,
T � ¼ argmin T Kj j, for any value of K. Compared with the shortest superstring S—
as an alternative representation of the input set R of reads—T � is guaranteed to
contain at most as many symbols (and possibly less), while maintaining a single
pointer per read.

Constructing read forest. As mentioned above, in order to construct the read
forest T K , one simply needs to identify for each node v, the parent node π(v). This
process is performed iteratively: for each distinct read r 2 R Assembltrie iteratively
considers, it creates a new vertex v that corresponds to r. (Note that the number of
occurrences of each specific read can be maintained in a separate data structure.) It
then greedily picks an existing node π(v), satisfying two conditions: (i) the overlap
between suffix of π(v) and prefix of v is maximal among all existing nodes and (ii)
the overlap size is at least K. In case the overlap is shorter (than K), v forms an
independent (cyclic) trie with π(v) =NIL. Next, Assembltrie identifies all children
of v, i.e., those nodes u such that the (longest) overlap between a prefix of st(u) and
a suffix of st(v) is longer than that between a prefix of st(u) and a suffix of st(π(u)),
provided that the overlap length is, again, at least K. For each such node u, its
parent π(u) is reset to v.

In order to find the suffix–prefix overlaps, Assembltrie constructs two hash
tables, one for maintaining the length K prefix and the other for the length K suffix
of each of the reads. Given a node v, Assembltrie searches its potential parents by
sliding a window of length K across st(v) from right to left, identifying each node u
for which the length K suffix of st(u) exactly matches this window. In case this
initial match extends to a full match between the prefix of st(v) that includes this
window, and the corresponding suffix of st(u) of identical length (see
Implementation Details for a detailed description of how we extend an initial
match), u is declared as the parent of v, completing the search. If no such node u
can act as a parent of v, then the window slides one position to the left and the
search resumes. Assembltrie searches for possible children of each vertex v in a
similar manner; note that we now need to slide the window from left to right, and
use the hash table for prefixes. If for a matching node u, st(u) has an overlap with st
(v), which is longer than that with its current parent, i.e., w(u, v)< w(u, π(u)) ≤ L −
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Fig. 2 Compression performance of Assembltrie as a function of error rate.
The compression ratio achieved by Assembltrie is close to our information
theoretic approximation on simulated reads from E.coli K-12 DH10B genome
(the data set involves 1.8M “reads,” i.e., substrings of length L= 101,
sampled uniformly with simulated errors)
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K, then π(u) is reset to v. After the parent and the children of v are established, the
suffix and prefix of st(v) of length K are inserted into the corresponding hash
tables. The overall workflow of Assembltrie is depicted in Fig. 5.

Running time. The process of identifying the potential parent and children of each
read (or node) takes O(m(L − K)) time, where m is the maximum load of an entry
in either hash table. This implies that in the worst case we need O(mN(L − K)) =O
(mNL) time to construct the read forest. Under the condition that the underlying
reference genome G is uniform i.i.d. and the reads R are extracted from G uni-
formly at random, m will be a small constant20, 21 and the expected time to
construct the read forest becomes O(NL). In practice, however, long genomic
repeats as well as sequencing errors lead to hash collisions and hence a moderate
slowdown.

Combinatorial optimality. We now prove that the greedy algorithm used by
Assembltrie actually produces the optimal (that is, the one containing minimum
total number of symbols) read forest T � , based on the assumption that the reads
have no sequencing errors. In particular, the total weight of T � ends up at most as
much as the length of a shortest superstring constructed from {st(v): v ∈ V}, since
each superstring must correspond to a set of paths that connect all v ∈V, which
also forms a valid read forest T .

In order to show the invariant maintained through the greedy construction of
T K ¼ V ;EK ;w; stð Þ, we extend the definition of the shortest non-overlapping

length w to each pair of nodes and define for each node v ∈V its representation as:

rep vð Þ ¼ min
w v; uð Þ if w v; uð Þ � L� K; u≠v 2 V

L otherwise
:

�

Lemma 1 For any read forest T K ¼ ðV; EK ;w; stÞ, its total weight
T Kj j �

P
v2V repðvÞ.

Proof Let π:V→ V ∪ {NIL} map each node to its parent, that is, π(v) = u if (v,
u) ∈ EK and π(v) =NIL if there exists no parent. By definition,

T Kj j ¼
P

v2V ;πðvÞ≠NIL
wðv; πðvÞÞ þ L � v : πðvÞ ¼ NILf gj j

≥
P

v2V ;πðvÞ≠NIL
repðvÞ þ

P
v2V ;π vð Þ¼NIL

repðvÞ

¼
P
v2V

repðvÞ:

With the above lemma, we can see the greedy algorithm indeed returns a read
forest with the minimum total weight (i.e., number of symbols) since it guarantees
for any node v, the parent it will identify, π(v), will satisfy w(v,π(v)) = rep(v); thus,
we have the following theorem.

Theorem 1 The greedy algorithm computes T �
K .

An information theoretic lower bound for HTS data compression. In the pre-
vious section, we established that Assembltrie constructs the smallest

Fig. 4 Cycle-rooted trie. An example cycle-rooted trie constructed from a collection of reads of length 5, with a cycle (in the center) constituting the root
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representation of error-free reads among all descriptions that take the form of a
read forest. However, this does not preclude the possibility that representation of
reads by a fundamentally different data structure could obtain better compression
performance. In this section, we address this question through the lens of infor-
mation theory. More specifically, in his seminal 1948 paper22, Shannon proved that
any realization of a random source can, on average, be described by a number of
bits not exceeding the entropy of the source. Conversely, any compression scheme
that uses fewer bits is doomed to encounter errors in reproducing the source from
its compressed form. The key point is that this latter bound on compression
performance applies uniformly to any compression algorithm, and therefore pro-
vides a fundamental benchmark that no viable compression scheme can outper-
form. In this section, we attempt to estimate this performance limit for HTS data
under realistic assumptions. Later in the paper, we demonstrate that Assembltrie
comes close to achieving this bound on bacterial genomes across a spectrum of
read-error rates.

For a random variable X taking values in a set X with probability mass function
pX, the entropy associated to X is given by:

H Xð Þ :¼
X
x2X

pXðxÞlog
1

pXðxÞ
;

where log(⋅) denotes the base-2 logarithm, and H(X) has units of bits. Direct
computation of the entropy associated to a set of reads R sampled from a genome
G is not practical since a probability distribution over possible genomes G is not
available. Nevertheless, it is well known that universal compression algorithms,
such as LZ77, are guaranteed to produce descriptions that approach the entropy of
a random source with an unknown probability distribution under mild
assumptions23–26. As such, we are justified in estimating H(G) by LZ(G), defined as
the description length of G produced by the universal compression algorithm LZ77
(as implemented in gzip). Using this, we may approximate HðRÞ, the minimum
number of bits needed by any algorithm to describe the reads R. Specifically, we
argue below that

H Rð Þ � NL log 3ð Þh2 pð Þ þ Gj j � H Poisson N= Gj jð Þð Þ þ LZ Gð Þ ; ð1Þ

where h2(p) = −plog(p) − (1 − p)log(1 − p) is the binary entropy of p ∈ (0, 1),
H Poisson N= Gj jð Þð Þ denotes the entropy of a Poisson random variable with mean
N= Gj j, N is the number of reads, and Gj j denotes the length of the sequence G. This
approximation is generally valid under the following assumptions:

● Poisson sampling: Reads in R are assumed to be sampled independently and
uniformly at random from all positions in G. In such sampling, the number of
reads at each position is well-approximated by independent Poisson(N/|G|)
random variables for N and |G| large.

● Independent substitution errors: We assume that each base of each read inR is

corrupted independently with probability p ∈ (0, 1). When a particular base is
selected for corruption, it is substituted with another base, chosen with equal
probability from the remaining three bases.

Estimating HðRÞ. Our goal in this section is to justify the approximation in (1) for
HðRÞ, the entropy of the set of reads sampled from a genome G, possibly con-
taining read errors. To do this, we first make the assumption that the random
process of sampling reads from G is independent of the read-error process that
corrupts individual bases through substitutions, insertions, or deletions. In other
words, if R? denotes the set of error-free reads (i.e., the reads in R? coincide with
those in R, but do not contain any read errors), then the genome G and the
sampled reads (with errors) R are conditionally independent given the corre-
sponding error-free reads R? .

Using this assumption and elementary properties of entropy27, we may write

HðRÞ ¼ H RjR?ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
entropy of error process

þ H R?jGð Þ|fflfflfflfflffl{zfflfflfflfflffl}
entropy of read sampling process

þ HðGÞ|fflffl{zfflffl}
entropy of sequences

�HðGjRÞ � H R?jG;Rð Þ;

where H(⋅ | ⋅) denotes conditional entropy. As denoted, the first three terms in the
expression for HðRÞ have intuitive interpretations, and may be estimated in
practice:

● The first term H RjR?ð Þ is the entropy of the reads R, given that the error-free
reads R? are available to us. That is, H RjR?ð Þ is roughly equal to the number
of bits needed to describe the read errors, if the error-free reads themselves
were already known. For example, if the read-error process corresponds to
corrupting each base independently with probability p 2 ð0; 1Þ by replacing it
randomly with one of the remaining three bases, we have
H RjR?ð Þ ¼ NL logð3Þh2ðpÞ, where N denotes the total number of reads,
and L denotes their length (in bases).

● The second term H R?jGð Þ denotes the entropy of the error-free reads, given
that the sequence is known. In other words, this is the entropy of the random
process of sampling reads from different locations in the genome. If we adopt
the Poisson sampling model, in which reads are sampled uniformly at random
from the genome, we have to first order the approximation

H R?jGð Þ � Gj j � H Poisson N= Gj jð Þð Þ;

where H Poisson N=jGjð Þð Þ denotes again the entropy of a Poisson
random variable with mean N= Gj j, where N is the number of
reads, and Gj j denotes the length of the sequence G. Indeed, given
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that the sequence G is known, the entropy of the reads is
determined entirely by the locations of the reads on the genome
G. For N and Gj j both modestly large, the number of reads
sampled from each locus are well approximated as independent
Poisson random variables, each with mean N= Gj j, provided the
number of non-unique L-mers in the genome is much smaller
than |G|.
● The third term H(G), as already discussed above, corresponds to the

descriptive complexity of the sequence G itself and may thus be estimated
by LZ(G), the description length of G produced by the universal compressor
LZ77 (implemented by gzip).

In practice, the contribution of the remaining terms HðGjRÞ and H R?jG;Rð Þ
appearing in the decomposition of HðRÞ will be negligible compared to the first
three terms described above. To be more precise, the term HðGjRÞ represents our
remaining uncertainty about the sequence G (in bits), given that we observe the
sampled reads R. In practice, the set of reads R is generally rich enough (in terms
of coverage) to permit reliable assembly of a small number of contigs, which
collectively cover the sequence G. Thus, HðGjRÞ is at most the logarithm of the
number of arrangements of the assembled contigs, so that

HðGjRÞ � log Nc!ð Þ � NclogNc;

where Nc denotes the number of contigs assembled from R. Since Nc will generally
be several orders of magnitude smaller than NL or Gj j, the contribution of HðGjRÞ
to computing HðRÞ will be negligible in practical settings. In the case of error-free
reads, this heuristic argument can be made rigorous, in which case HðGjRÞ is only
on the order of tens of bits for real genomes28.

Finally, the term H R?jG;Rð Þ is seen to be small as follows: the entropy of the
error-free reads R? given the sequence G coincides precisely with the entropy of
the random locations from which the reads are sampled. However, if the error rate
is not too severe, access to both G and R will effectively determine these locations.
Indeed, mapping the reads in R to the sequence G should, in all but few extreme
cases, reveal the locations on the genome from which the reads in R? are sampled.
Thus, we may conclude that H R?jG;Rð Þ is much smaller in comparison to
H R?jGð Þ, implying that its contribution to the calculation of HðRÞ can be safely
ignored.

Putting everything together yields the approximation (1).

Implementation of the Assembltrie. An actual implementation of Assembltrie
approach needs to address a number of issues such as read errors, strand correction
for diploid or multiploid genomes, and parallelization as discussed below.

Noisy reads: Assembltrie allows a maximum of (user specified) ε mismatches
between a parent and a child in the read forest. For that, for each suffix/prefix hash
table hit (of the current window of size K) encountered during the search for the
parent/children of a read, Assembltrie extends the corresponding initial match to a
full match with maximum Hamming distance ε. The encoding of mismatching
symbols is described below.

Strand correction: As the underlying DNA sequence is double stranded, and the
reads are obtained from either of these two strands, the following greedy heuristic
is implemented as a user option to correct (i.e., synchronize) the read orientation:
for each node v, pick the strand (i.e., either the read as is or its reverse complement)
for which the prefix–suffix overlap between v and an already processed read u is as
long as possible. Then π(v) is set to u with the strand of v. Note that when π(v) is
reset afterward, the strand of v will not change.

Trie encoding: Assembltrie encodes the read forest T in a simple, bottom-up
fashion, which preserves the total weight of T . To be specific, the encoding is done
by breaking down the constructed read forest back into a set S of disjoint contigs,
each of which represents a simple path from a leaf node to an internal node or root,
with its own metadata indicating the start indices of the reads it includes. Each step
of the encoding process starts with an unprocessed leaf node (the special case of
single cycles is detected and handled afterward), traversing the path to the root,
until reaching an already processed node, or otherwise the root itself. The contig
S 2 S corresponding to such a path is represented by the Assembltrie encoder as a
6-tuple:

● S′ = π(S): a pointer to the parent sequence S′ of S, or NIL if the last read in S
corresponds to a root node. Note that it is possible to have S′ = S, which implies
that a single cycle exists in S.

● {start(r)}: the start location of each read r contained in S, encoded differentially
with a fixed-codebook Huffman code. The sum of the differential codes is
seqðSÞj j (i.e., the number of symbols to be read in a decompression process
from the main stream—as defined below).

● {rev(r)}: binary flags indicating whether each read r is in its original order, or
its reverse-complement order. (This only takes effect if the read-orientation
correction heuristic is applied by the user.)

● r′ ∈ S′: a pointer to a parent read of S encoded with log2 nðS′Þj j bits, where n(S′)
is the number of reads in contig S′, provided that π(S) ≠NIL.

● seq(S): the main stream of symbols indicating the consensus sequence of S (an

example is given in Fig. 4b). Although each base can be naively encoded in 2
bits, (note that the letter “N” is provisionally regarded as an arbitrary symbol in
{A, C, G, T}) in Assembltrie, the main stream may be further compressed with
a universal compressor.

● {error(r)}: a record of all mismatching symbols, as well as their positions,
between each read r and the consensus sequence seq(S).

In addition to the above encoding, a separate data stream is maintained for the
reads for which neither a parent nor a child could be identified (due to insufficient
overlaps in the filtered read overlap graph GK). Finally, a third stream is maintained
for representing the positions of symbol N. Note that even though these positions
are detectable through the use of quality scores, Assembltrie is designed to
processes only the reads and not the quality scores and thus in order to achieve
lossless compression, it needs to explicitly maintain these positions.

Parallelization: Unlike most available HTS compression software, Assembltrie’s
parallelization is based on a shared memory scheme, which avoids any tradeoff
between speed and compression rate. In particular, Assembltrie utilizes the
concurrent containers offered by Intel® Threading Building Blocks to construct
hash tables that support concurrent insertion and lookup, without explicit locks.

Paired-end reads: As per many available reference-free sequence compressors
(including Orcom), Assembltrie is primarily designed for single-end reads. For data
sets are comprised of paired-end reads, it is possible to convert each paired-end
read to a single-end read by simply concatenating the two ends into a single string.
This conversion (which could be applied as a preprocessing step to all reads) works
well especially if the insert size (the distance between between the two ends) has
limited variation across the reads. Additional ideas for handling paired-end reads
are discussed in, for instance29.

Data availability. The source code, including some python scripts used for
benchmarking, is available at https://github.com/kyzhu/assembltrie.
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