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ANGPTL8 negatively regulates NF-κB activation by
facilitating selective autophagic degradation of
IKKγ
Yu Zhang1, Xian Guo1, Wanyao Yan1, Yan Chen1, Mengxiang Ke1, Cheng Cheng1, Xiuqin Zhu2, Weili Xue2,

Qiaoqiao Zhou1, Ling Zheng2, Shun Wang3, Bin Wu3, Xinran Liu1, Liang Ma1, Lianqi Huang1 & Kun Huang1,4

Excessive nuclear factor-κB (NF-κB) activation mediated by tumor necrosis factor α (TNFα)
plays a critical role in inflammation. Here we demonstrate that angiopoietin-like 8

(ANGPTL8) functions as a negative feedback regulator in TNFα-triggered NF-κB activation

intracellularly. Inflammatory stimuli induce ANGPTL8 expression, and knockdown or

knockout of ANGPTL8 potentiates TNFα-induced NF-κB activation in vitro. Mechanistically,

upon TNFα stimulation, ANGPTL8 facilitates the interaction of IKKγ with p62 via forming a

complex, thus promoting the selective autophagic degradation of IKKγ. Furthermore, the N-

terminal domain mediated self-oligomerization of ANGPTL8 is essential for IKKγ degradation
and NF-κB activation. In vivo, circulating ANGPTL8 level is high in patients diagnosed with

infectious diseases, and the ANGPTL8/p62-IKKγ axis is responsive to inflammatory stimuli in

the liver of LPS-injected mice. Altogether, our study suggests the ANGPTL8/p62-IKKγ axis as
a negative feedback loop that regulates NF-κB activation, and extends the role of selective

autophagy in fine-tuned inflammatory responses.
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NF-κB plays a pivotal role in a variety of physiological and
pathological processes, including inflammation, immu-
nity and metabolism1. In non-stimulated cells, NF-κB is

kept inactive in cytosol by binding to inhibitor of κBα (IκBα).
Many agents, including pro-inflammatory cytokines, cause
phosphorylation and degradation of IκBα, which results in
releasing of NF-κB for translocation to the nucleus and initiating
the expression of downstream genes2. Among these agents-
mediated signaling, TNFα induction is a classical model to study
the regulatory mechanisms of NF-κB activation. TNFα binds to
its receptor TNF-RI to recruit the TNFR-associated death domain
(TRADD), which recruits TNFR-associated factor 2 (TRAF2),
TRAF5, and receptor interacting protein 1 (RIP1) to the receptor
complex, then RIP1 further recruits and activates the trans-
forming growth factor β activated kinase-1 (TAK1) complex and
the IκB kinase (IKK) complex. The IKK complex consists of the
catalytic subunits IKKα and IKKβ, and a regulatory subunit IKKγ.
IKKγ, also known as NF-κB essential modulator (NEMO), is
critical for the activation of the IKK complex; moreover, IKKγ
also works as a scaffold which specifically channels the kinase
activity of IKKβ to IκBα3–5. Finally, IκBα is phosphorylated and
degraded, thereby releasing NF-κB to the nucleus.

Inappropriate NF-κB activation may cause immunodeficiency,
chronic inflammation, autoimmunity and malignancy6–8.
Therefore, IKK activation and IκBα phosphorylation, two key
steps in NF-κB activation, should be tightly regulated, which
highlights the physiological significance of IKKγ. Hypomorphic
IKKγ mutations (IKKG gene located on the X chromosome) are
lethal for male and lead to immune and developmental defects in
female9,10; while inactivation of the negative regulators of IKKγ,
such as deubiquitinase A20 and CYLD lysine 63 deubiquitinase
(CYLD), leads to serious disorders11,12; similarly, males with a
“gain of function” IKKγ mutant (ΔCT-NEMO, a C-terminal
domain truncated mutant), which fails to recruit A20, develop
autoinflammatory diseases13.

Proteolysis of signaling molecules is an important way to shut
down signaling transduction. The ubiquitin-proteasome system
(UPS) and autophagy are two major protein degradation path-
ways14. Previously, it was thought that UPS is highly selective
while autophagy is a non-selective bulk process14. Recent studies
suggest that autophagy can also target specific protein aggregates
or other substrates for degradation, referred to as selective
autophagy15,16. In general, proteins enter the selective autophagy
are first K63-polyubiquitinated, then bound by one or more of
autophagy receptors such as p62, neighbor of BRCA1 gene 1
(NBR1), nuclear dot protein 52 kDa (NDP52), TOLL interacting
protein (Tollip), and optineurin (OPTN), followed by engulfment
in autophagosomes14,16. Increasing evidences suggest that
autophagy is important for the inflammation and immune
responses17,18, however the role of selective autophagy in these
critical physiological processes is poorly understood.

ANGPTL8 (also called Lipasin, RIFL, TD26 or C19orf80) is
known as a key regulator of plasma lipid metabolism, which
functions mainly by inhibiting lipoprotein lipase19,20. Here, we
demonstrate intracellular ANGPTL8 as a novel negative feedback
regulator of TNFα-mediated NF-κB activation, which may work
as a critical step to avoid excessive inflammatory responses by
facilitating p62-mediated autophagic IKKγ degradation.

Results
Pro-inflammatory cytokines up-regulate ANGPTL8. ANGPTL8
regulates lipid metabolism, and the level of circulating ANGPTL8
is increased in type 2 diabetes (T2D)21,22. Since lipid toxicity and
T2D are tightly correlated with inflammation, we investigated the
level of ANGPTL8 upon stimulation of pro-inflammatory

cytokines such as TNFα and IL-1β. In HepG2 cells, the tran-
scription and expression of ANGPTL8 were both significantly
increased after being treated with TNFα (Fig. 1a, b), with a TNFα
dose-dependent elevation in ANGPTL8 level (Fig. 1c). Similar
results were observed in two additional cell lines, HEK293T (a
human embryotic kidney cell line) and A549 (a human lung
cancer cell line) (Supplementary Fig. 1a), although their
ANGPTL8 level was markedly lower than that of HepG2 cells
(Supplementary Fig. 1b). Consistently, IL-1β treatment induced
the transcription and expression of ANGPTL8 in HepG2 cells
(Supplementary Fig. 1c, d). Collectively, these results indicate that
the ANGPTL8 expression could be triggered by different
inflammatory stimuli and in various cells.

Knockdown or knockout of ANGPTL8 potentiates NF-κB
activation. We next determined whether ANGPTL8 regulates
NF-κB activation. Three ANGPTL8-RNAi plasmids were gener-
ated, which efficiently inhibited the transcription and expression
of ANGPTL8 in HepG2 cells (Fig. 2a). In luciferase reporter
assays, knockdown of ANGPTL8 enhanced TNFα- or IL-1β-
induced NF-κB activation (Fig. 2b and Supplementary Fig. 2a),
and the level of NF-κB activation was correlated with the
knockdown efficiency. As a negative control experiment,
ANGPTL8-RNAi did not affect the IFNγ-induced IRF1 activa-
tion, which is another pathway involved in immunity and sepa-
rated from TNFα-mediated signaling (Fig. 2c). These data
indicate that ANGPTL8 specifically potentiates the TNFα-trig-
gered and IL-1β-triggered NF-κB activation.

Further quantitative real-time PCR (qPCR) analysis demon-
strated that knockdown of ANGPTL8 significantly potentiated
the TNFα-triggered transcription of NF-κB downstream genes,
such as IL8, CXCL2, and NFKBIA (Fig. 2d). ANGPTL8-RNAi-#3
was used in following experiments for its highest efficiency.
Similar to HepG2 cells, knockdown of ANGPTL8 also potentiated
the TNFα- or IL-1β-triggered NF-κB activation in HEK293T and
A549 cells (Supplementary Fig. 2b, c). Consistently, knockdown
of ANGPTL8 enhanced TNFα-induced phosphorylation of IKKs
and IκBα, two hallmarks of NF-κB activation (Fig. 2e).

To confirm the role of ANGPTL8 in TNFα-mediated NF-κB
activation, we generated ANGPTL8-deficient HepG2 cell lines by
using the CRISPR-Cas9 system. The ANGPTL8-deficient
(ANGPTL8−/−) clones were confirmed at DNA and protein
levels (Fig. 3a, b). In reporter assays, the ANGPTL8−/− cells
showed significantly enhanced NF-κB activation comparing to
the wild-type cells after TNFα or IL-1β induction (Fig. 3c and
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Fig. 1 TNFα upregulates the expression of ANGPTL8 in HepG2 cells. a, b
The transcription level (a, n= 3) and protein level (b) of ANGPTL8 after
TNFα (50 ng/mL) treatment. The following experiments used the same
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Supplementary Fig. 2d). Knockout of ANGPTL8 facilitated
TNFα-induced IL8, CXCL2 and TNFA transcription (Fig. 3d).
In contrast, the level of IFNγ-induced STAT1 transcription was
comparable between the wild-type and ANGPTL8−/− cells
(Fig. 3e). We next reconstituted the ANGPTL8 knockout cells
with Flag-tagged ANGPTL8 by retrovirus-mediated gene transfer
(Fig. 3f), and found that reconstitution of ANGPTL8 into
ANGPTL8−/− cells suppressed the TNFα-triggered IL8, CXCL2
and TNFA transcriptions (Fig. 3g). Collectively, we demonstrate
that endogenous ANGPTL8 negatively regulates TNFα-triggered
NF-κB signaling.

ANGPTL8 regulates NF-κB activation at the IKK complex
level. We next investigated the molecular mechanisms by which
ANGPTL8 regulates the TNFα or IL-1β signaling mediated NF-
κB activation. TNFα/IL-1β-mediated NF-κB activation includes
three major steps: adaptors such as TRAF2/6-mediated or RIP1-
mediated recruitment of IKK complex to TNFR, activation of
IKKβ, and activation of NF-κB. We cotransfected HEK293T cells
with a vector expressing TRAF2, TRAF6, RIP1, IKKβ, or p65,
together with an overexpression or knockdown vector of
ANGPTL8 plus an NF-κB luciferase reporter vector. The over-
expression/knockdown of ANGPTL8 induced changes of NF-κB
activation upon overexpression of TRAF2/6 or RIP1, but not
IKKβ and p65 (Fig. 4a, b). These data implicate that ANGPTL8
may involve in the recruitment or activation of IKK complex.

Consistently, by co-IP experiments, we found that ANGPTL8
interacted with RIP1, IKKβ and IKKγ in the cells co-
overexpressed ANGPTL8 and the regulator molecules involved
in NF-κB activation cascade (Fig. 4c). Moreover, in untransfected
cells, ANGPTL8 rapidly interacted with IKKβ/γ and RIP1 upon
TNFα treatment (Fig. 4d), which may in part due to the TNFα-
triggered ANGPTL8 expression. Collectively, these results

indicate that ANGPTL8 may target IKK complex through
participating in the recruitment or activation of IKKs.

Since ANGPTL8 is mostly known as a secreted protein, after
we found its role in the regulation of intracellular signaling, we
studied the localization of ANGPTL8. In ANGPTL8 over-
expression HepG2 cells, a large amount of ANGPTL8 was
detected in cell lysate, while a proportion of ANGPTL8 was
secreted (Supplementary Fig. 3a), this result was consistent with a
recent study carried out in HEK293T cells23. Immunofluores-
cence experiments confirmed that endogenous ANGPTL8 had
intracellular localization (Supplementary Fig. 3b).

ANGPTL8 facilitates the degradation of IKKγ. We next
investigated how ANGPTL8 regulates the IKK complex. Inter-
estingly, we found that overexpression of ANGPTL8 resulted in
markedly decreased expression level of Flag-IKKγ, but not Flag-
IKKα, -IKKβ, -TRAF6, or -RIP1 (Fig. 5a), whereas knockdown of
ANGPTL8 showed the opposite effects (Fig. 5b). Furthermore,
knockdown of ANGPTL8 attenuated TNFα-induced degradation
of IKKγ but not that of IKKα/β (Fig. 5c), without affecting the
transcription of IKKγ (Supplementary Fig. 4). These data sug-
gested that ANGPTL8 promotes the degradation of IKKγ.
Besides, knockdown or knockout of ANGPTL8 significantly
potentiated the TNFα-induced transcription of IL8 and CXCL2,
which was abolished by further knockdown of IKKγ (Fig. 5d, e),
suggesting that ANGPTL8 facilitates TNFα-induced NF-κB acti-
vation by degrading IKKγ.

ANGPTL8 mediates autophagic IKKγ degradation. Protein
degradation is one of the key ways to turn off signaling trans-
duction. Proteins in eukaryotes can be degraded by UPS or
autophagy. ANGPTL8-mediated IKKγ degradation was com-
pletely blocked by 3-methyladenine (3MA) and chloroquine
(CQ), inhibitors for autophagosome and lysosome, respectively;

R
el

. m
R

N
A

R
el

. L
uc

. A
ct

R
el

. L
uc

. A
ct

0

5

10

15

20

25

Vec

Vec

RNAi-#2
RNAi-#3

IRF1

RNAi-#1

Vec #1 #2 #3

ANGPTL8-RNAi

Vec #1 #2 #3

ANGPTL8-RNAi

ANGPTL8-RNAi

Vec #1 #2 #3

ANGPTL8-RNAi

R
el

. m
R

N
A

ANGPTL8

**
*

*

ANGPTL8
25

40

Mock Mock Mock

MockMock

TNFα TNFα

TNFα IFNγ

TNFα:
43

43

95

95

43

(min)

TNFα

10

20

30

40

50

20

40

60

80

0

2000

4000

6000

0

0.5

1.0

1.5

IL8 CXCL2

NSNS

**
**
*

**
**

*
*

NFKBIA

0 5 15

10

0

5

15

30 45 60 0 5 15 30 45 60

NF-κB

p-IκBα

IκBα

p-IKKα/β

IKKβ

β-actin

β-actin

**
**

NS

NS

NS

NS

a b c

d e

Fig. 2 Knockdown of ANGPTL8 potentiates TNFα-induced NF-κB activation. a Efficacy of three different ANGPTL8-RNAi plasmids on the transcription
(upper panels) and expression (lower panels) of ANGPTL8 in the control or shANGPTL8 stable HepG2 cell lines (n= 3). b Effects of ANGPTL8-RNAi on
TNFα-induced NF-κB activation in the cell lines indicated as in a (n= 3). c Effects of ANGPTL8-RNAi on IFNγ (100 ng/mL) induced IRF1 activation (n= 3).
d Effects of ANGPTL8-RNAi on TNFα-induced IL8, CXCL2 and NFKBIA transcription for 2 h in cell lines indicated as in a (n= 3). e Effects of ANGPTL8-RNAi
on TNFα-induced IKK and IκBα phosphorylation in ANGPTL8-RNAi-#3 or control cells in a. Data are shown as the mean± SEM, unpaired two-tailed
Student’s test was used for statistics (a–d), *p< 0.05, **p< 0.01, NS> 0.05. Data are representative of three independent experiments

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02355-w ARTICLE

NATURE COMMUNICATIONS |8:  2164 |DOI: 10.1038/s41467-017-02355-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


whereas the proteasome inhibitor MG132 could not inhibit the
ANGPTL8-mediated IKKγ degradation (Fig. 6a). Autophagy-
related 5 (ATG5) and ATG7 are essential adaptors for the
autophagic degradation, and knockdown of ATG5/7 inhibited the
rapamycin-induced turnover of LC3 (Supplementary Fig. 5)24,25.
Consistently, ANGPTL8-mediated IKKγ degradation was dra-
matically attenuated in ATG5-/ATG7-RNAi cells (Fig. 6b). These
results suggest ANGPTL8 mediates IKKγ degradation in a
macroautophagy-dependent manner.

Confocal microscopy experiments further suggested that in
unstimulated cells, only a small fraction of IKKγ was co-localized
with GFP-LC3 dots, a marker for autophagosome; whereas in
cells overexpressing ANGPTL8, the overlap and correlation
efficiency between IKKγ and GFP-LC3 dots were markedly
increased (Fig. 6c, d). It has been observed that TNFα stimulation
induces relocalization of IKKγ into punctate structures that are
enriched in activated IKK kinases and IKKγ, which may be
essential for NF-κB activation26,27. Consistently, we found that
TNFα stimulation induces the recruitment of IKKγ into punctate
structures, however, this TNFα-induced IKKγ punctual relocali-
zation was dramatically decreased in ANGPTL8−/− cells, and the
co-localization of IKKγ with GFP-LC3 was also significantly
reduced (Fig. 6e, f).

ANGPTL8 and p62 co-mediate the autophagic degradation of
IKKγ. Motivated by the observations that ANGPTL8 selectively
mediated the autophagic degradation of IKKγ but not IKKα/β, we
next studied whether ANGPTL8 mediates IKKγ degradation via
selective autophagy. K63-linked ubiquitin chains have been
reported to promote selective autophagy-dependent degradation
for specific target proteins14, we found overexpression of wild-
type or K63-linked ubiquitin (the ubiquitin in which all of the

lysine mutated to arginine except the lysine 63) enhanced the
ANGPTL8-mediated IKKγ degradation (Fig. 7a and Supple-
mentary Fig. 6); whereas CYLD, which removes the K63-linked
ubiquitin chains of IKKγ28, attenuated ANGPTL8-mediated
IKKγ degradation in a dose-dependent manner (Fig. 7b).

Typically, cargoes are selectively transferred by one or more of
the known autophagy receptors (p62, Tollip, NDP52, NBR1 and
OPTN etc.) for degradation15,29. We found that it was p62 and
Tollip, but not NDP52, NBR1 or OPTN, that mediated the
degradation of IKKγ, which was further markedly enhanced when
co-expressed with ANGPTL8 (Fig. 7c and Supplementary Fig. 7a).
In wild-type cells, although p62 and Tollip both significantly and
dose-dependently induced IKKγ degradation, ANGPTL8 defi-
ciency only reversed p62-mediated, but not Tollip-mediated
degradation of IKKγ (Fig. 7d and Supplementary Fig. 7b).
Moreover, ANGPTL8 could interact with p62, but not Tollip; and
the interaction between ANGPTL8 and p62 was greatly enhanced
after TNFα treatment (Fig. 7e). Also, knockdown of p62
dramatically attenuated ANGPTL8-mediated IKKγ degradation
(Fig. 7f). The LC3 interacting region (LIR) of p62 is responsible
for recruitment of LC3 to the autophagosome30. Here, we
observed that p62ΔLIR (a LIR domain deleted p62 mutant)
showed dramatically decreased ability in mediating IKKγ
degradation (Supplementary Fig. 7c). Notably, similar to p62
and IKKγ, we found that ANGPTL8 also underwent autophagic
degradation (Supplementary Fig. 7d). Altogether, these data
indicate that ANGPTL8 and p62 work collaboratively to mediate
the autophagic degradation of IKKγ.

Reducing ANGPTL8 attenuates the IKKγ–p62 interaction. In
selective autophagy, substrate recognition by autophagy receptor
is essential for cargo selection. By performing co-IP experiments
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in physiological conditions, we found that IKKγ, ANGPTL8 and
p62 interacted with each other (Fig. 8a, b). We noted that only a
small fraction of p62 was associated with IKKγ in resting cells,
and this association was greatly increased after TNFα treatment,
which is consistent with the observation that ANGPTL8 was
simultaneously recruited to IKKγ (Fig. 8a, b). Consistently,
TNFα-induced interaction between IKKγ and p62 was impaired
by knockdown or knockout of ANGPTL8 (Fig. 8c, d). These data
indicate that upon TNFα stimulation, IKKγ, p62, and ANGPTL8
form a complex in which ANGPTL8 plays an important role in
mediating the interaction.

Oligomerization of ANGPTL8 is essential for IKKγ degrada-
tion. In selective autophagy, protein aggregation is a key event in
mediating cargo selection and separation31. Interestingly, by co-
IP analysis, we found ANGPTL8 can self-oligomerize (Fig. 9a).
ANGPTL8 is predicted to have an N-terminal signal peptide
(residues 1-25) and two coiled-coil (CC) domains (residues
77–134 and 156–193) which are presumably associated with
protein–protein interaction (Fig. 9b); however, the function of
different domains/regions in ANGPTL8 is not clear32,33. By using
domain mapping, we identified the region between residues
26–70 as an essential domain for the self-oligomerization of
ANGPTL8 (Fig. 9a). Notably, the truncation mutants (71-C and

Δ26–70) that lost the self-association capacity could not mediate
the IKKγ degradation, while the CC domain that unrelated to the
self-oligomerization of ANGPTL8 was dispensable in this process
(Fig. 9c and Supplementary Fig. 8). Consistently, ANGPTL8-
Δ26–70 showed a significantly diminished interaction with IKKγ
and lost the ability of inhibiting TNFα-induced NF-κB activation
(Fig. 9d, e). Thus, oligomerization of ANGPTL8 mediated by its
N-terminal 26–70 region is essential for the ANGPTL8-mediated
inhibition of NF-κB activation by mediating the interaction and
degradation of IKKγ. Moreover, we found that the coiled-coil
domains were responsible for the ANGPTL8-p62 interaction
(Supplementary Fig. 9). Interestingly, compared with the full-
length ANGPTL8, ANGPTL8-Δ26–70 showed a stronger inter-
action with p62, suggesting the self-oligomerization is not
required for ANGPTL8-p62 interaction (Fig. 9d).

Gel filtration analysis was performed to explore the oligomer-
ization status of ANGPTL8. The full-length ANGPTL8 was most
abundant in a higher molecular mass (fractions 5–12) than
ANGPTL8-Δ26–70 (fractions 10–15) (Fig. 9f). Transfection of
ANGPTL8-Δ26–70 led to significantly decreased molecular
weight of p62 and IKKγ-containing fractions in the same
experiments, indicating the importance of ANGPTL8 oligomer-
ization in the formation of IKKγ and p62-containing protein
complex. We also expressed and purified the recombinant
ANGPTL8 to assess its oligomerization tendency in vitro
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mammalian overexpression system. d Endogenous ANGPTL8 interacts with IKKγ, IKKβ and RIP1 in HepG2 cells. Data are shown as the mean± SEM,
unpaired two-tailed student’s test was used for statistics (a, b), *p< 0.05, NS> 0.05. Data are representative of three independent experiments
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(Supplementary Fig. 10a). The circular dichroism spectra revealed
that in solution, ANGPTL8 adapted a mixed α-helix/β-structures/
random coil structure (Supplementary Fig. 10b, c), which agrees
with the structural prediction (Supplementary Fig. 10d).
ANGPTL8 showed tendency to aggregate into oligomers and
large aggregates (fibrils) as measured by the dynamic light
scattering (DLS) assays or by probing with the anti-oligomer and
anti-fibril antibodies (Supplementary Fig. 10e, f). Under trans-
mission electronic microscopy, oligomers and fibrils were also
identified (Supplementary Fig. 10g).

Potential involvement of ANGPTL8 in acute inflammation.
Our in vitro studies suggest that ANGPTL8 degrades IKKγ,
whose tight regulation is essential for the balance of inflamma-
tion, we next investigated the physiological relevance of
ANGPTL8 in vivo. As demonstrated by qPCR analysis (Supple-
mentary Fig. 11A), Angptl8 is relatively high in the liver and
brown adipose tissue (BAT), and low in the spleen, lung and
kidney of mouse. Next, we examined the tissue level of Angptl8 in

mice challenged with lipopolysaccharide (LPS), a constituent of
the Gram-negative bacteria outer membranes and an important
microbial trigger that stimulates innate immunity. Interestingly,
in tissues with high level of Angptl8, fast upregulation and
downregulation of Tnfa transcription during the acute phase
(0–1 h) and the resolution phase (1–6 h) was respectively
observed upon LPS challenge; in contrast, they were relatively
slow in tissues with low Angptl8 expression (Fig. 10a and Sup-
plementary Fig. 11b). This observation implicates that for tissues
that are sensitive to the inflammatory stress, larger amount of
“brake” molecules, such as ANGPTL8, may be demanded. Fur-
thermore, upon LPS stress, the expression of Angptl8 was
increased, while Ikkγ expression was decreased (Fig. 10b, c);
however, the interaction among Ikkγ, p62 and Angptl8 was
enhanced (Fig. 10d). These results are consistent with our in vitro
experiments.

Third, we measured the circulating ANGPTL8 level in the
blood of two groups of patients with systemic inflammatory
response syndrome. One group includes patients with positive
detection of procalcitonin (PCT) which is a biomarker for early
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diagnosis of sepsis27, the other group includes patients with
positive detection of endotoxin which is an important micro-
biological assessment for Gram-negative bacteria-mediated
inflammation34. Compared to the healthy subjects, the circulating
ANGPTL8 level was dramatically increased in both groups of
patients (Fig. 10e and Supplementary Table 1). Collectively, these
results indicated that ANGPTL8 can be induced by inflammatory
stimuli in mouse and human, and may thus play roles in shutting
down acute inflammatory response.

Discussion
ANGPTL8 has been known as a potent regulator of lipid meta-
bolism35. Circulating ANGPTL8 is increased in patients with
T2D or non-alcoholic fatty liver diseases, which makes ANGPTL8
an attractive therapeutic target for metabolic syndromes22,36,37.
On the other hand, inflammation, especially the pro-
inflammatory cytokines-mediated chronic inflammation, has
been demonstrated to contribute to the development of metabolic
diseases such as T2D. However, the role of ANGPTL8 in

inflammation is unknown. As a central event of inflammation
and immunity, TNFα-induced NF-κB activation must be tightly
controlled to avoid inflammatory diseases, autoimmunity and
cancers6–8. Here we present the first evidence that multiple
inflammatory stimuli, including TNFα, induce the transcription
and expression of ANGPTL8 in vitro and in vivo; the latter then
forms a protein complex with p62 and IKKγ, in which ANGPTL8
works as a co-receptor of p62 and facilitates the autophagic IKKγ
degradation, thereby inhibiting the TNFα-induced NF-κB acti-
vation (working model shown in Fig. 10f). The ANGPTL8/p62-
IKKγ axis thus serves as a negative feedback loop to restrict the
TNFα-trigged NF-κB activation and inflammation.

Since ANGPTL8 is mostly known as a secreted protein, it is
interesting that our results suggest it also plays intracellular roles
and has intracellular location. Actually, other studies have
demonstrated that some secreted proteins have intracellular
functions. For example, ISG15, an interferon-induced modifier, is
found both intracellularly and extracellularly; the secreted ISG15
has cytokine like activities38; whereas the intracellular ISG15 can
conjugate various proteins via ISGylation, and prevents the IFN-
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α/β-dependent autoinflammation39. PCSK9 is another secreted
protein, and binds hepatotic LDLRs both extracellularly and
intracellularly which leads to LDLRs degradation40,41. Similarly,
the intracellular function of ANGPTL8 has been reported. It can
enhance the cleavage of ANGPTL3, a molecule involved in the
triglyceride metabolism20; and it is also involved in the lipolysis of
adipocytes42.

ANGPTL8 has been reported to be induced by thyroid hor-
mone, and modulates autophagy mainly via enhancing autolyso-
some maturation43. In this study, we found that
ANGPTL8 specifically mediates the autophagic IKKγ degradation,
which can be promoted by overexpression of K63-linked ubiqui-
tin, and chemical or genetic blockage of autophagy could inhibit
this IKKγ degradation (Figs. 5–7). Furthermore, p62, a classical
autophagy receptor, works cooperatively with ANGPTL8 to
mediate the proteolysis of IKKγ (Figs. 7 and 8 and Supplementary
Fig. 7). Although it has been reported that IKKγ is mainly
degraded by lysosomal pathway44, this is the first report that IKKγ
can be degraded by ANGPTL8/p62-mediated selective autophagy.

The specificity of selective autophagy for the degraded cargoes
is mainly attributed to autophagy receptors. While there are
numerous molecules or cell organelles need to be degraded, only a

handful of known autophagy receptors are responsible for this
process15,31,45. There is a general model behind the selectivity: the
substrate needs to be recognized by other proteins (e.g., molecular
chaperones) before interacting with autophagy receptors, which
can be termed as “co-receptor”31. In this study, several lines of
evidence indicate ANGPTL8 as a co-receptor of p62 to mediate
the IKKγ selection. First, p62 and many other chaperones are
stress-responsive, possibly to ensure different substrates are
properly degraded under certain conditions46,47; similarly,
ANGPTL8 is a stress-responsive molecule with enhanced
expression under TNFα, IL-1β, LPS, or infection (Figs. 1 and 10
and Supplementary Fig. 1). Second, the interactions between p62
and ANGPTL8 are mutually required for IKKγ degradation
(Fig. 7). Third, TNFα treatment promotes the formation of the
IKKγ-p62-ANGPTL8 complex, which is impaired in the
ANGPTL8 knockdown or knockout cells (Fig. 8). Consistently,
enhanced binding affinity between Ikkγ, Angptl8, and p62 in the
liver of LPS-treated mice was also observed (Fig. 10d). Our results
thus suggested a novel role of ANGPTL8 as a co-receptor of p62
in selective autophagy.

After cargo selection, an important role for autophagy recep-
tors such as p62 is to sequester cargoes into larger aggregates
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before they being degraded31,48,49. During this process, p62 forms
oligomers, and such suprastructure enables its interaction with
LC3B and ubiquitinated cargoes49,50. It is an interesting and open
question that whether other p62-related proteins work in similar
ways50. Here, we demonstrate that ANGPTL8 self-oligomerizes
through its N-terminal region and such oligomerization is
essential for the interaction/degradation of IKKγ, thereby affect-
ing the ANGPTL8-mediated inhibition of TNFα-induced NF-κB
activation (Fig. 9), indicating the oligomerization is important to
the interaction between the co-receptors and cargoes. However,
ANGPTL8 seems to directly interact with p62, since ANGPTL8-
Δ26–70 showed stronger interaction with p62 compared with the
full-length ANGPTL8 (Fig. 9).

As major protein degradation pathways, UPS and autophagy
have been proven to play significant roles in inflammation17,18.
While there have been dozens of regulators identified to influence
NF-κB activation by UPS, reports on how autophagy degrades
specific signaling molecules in inflammation are rare50–53, which
may in part due to the concept that UPS is highly selective but
autophagy is a bulk process. However, recent studies suggested
both process can be specific, UPS is involved in the rapid
degradation of single proteins, while autophagy can selectively
remove protein aggregates and damaged/excess organelles that
are too big in size for proteasomes14. Interestingly, signaling
components, especially receptors and scaffold proteins, tend to
form oligomers to mediate the signaling54, implicating that these
aggregation-prone proteins may be the appropriate substrates for
autophagy. IKKγ is a well-known scaffold protein and TNFα
stimulation can induce the IKKγ translocation to supramolecular
structures which is important to the NF-κB activation4,5,27,55.
Here, we demonstrated that IKKγ could undergo the ANGPTL8/

p62-facilitated selective autophagy, we also observed that the
percentage of punctual IKKγ can be enhanced by ANGPTL8,
these findings suggested a possibility that aggregated IKKγ is not
only important for signaling transduction, but also a precondition
for its degradation. Moreover, our study implicates that addi-
tional scaffold proteins in this or other pathways may also be
degraded with similar mechanism.

Multiple studies have confirmed the induction of circulating
ANGPTL8 in different metabolic syndromes36,37. Here we found
that the level of circulating ANGPTL8 was dramatically increased
in severe infection (Fig. 10e). To our knowledge, it is the first
report on the relationship between ANGPTL8 and acute
inflammation in clinical patients. We also observed a correlation
of Angptl8 level with LPS-induced acute inflammatory response
in different tissues of mouse (Fig. 10a and Supplementary
Fig. 11). Future experiments using Angptl8 knockout or trans-
genic mice will be helpful to reveal the mechanisms underlying its
physiological and pathological roles in inflammatory diseases.

Collectively, our results uncover an important fine-regulation
mechanism for NF-κB activation. Notably, the observations that
ANGPTL8 also can be induced by additional factors such as IL-
1β, LPS, insulin resistance and feeding from this study and from
literature56, implicate a more broaden role of ANGPTL8 in the
autophagic degradation of other inflammation or metabolism
associated proteins, a question awaits further exploration.

Methods
Reagents, antibodies and cell lines. Immunoblots with ANGPTL8/Angptl8 were
done by mouse anti-ANGPTL8 monoclonal antibody (1:300), a kind gift from Dr.
Y. Wang (Wuhan University)19,20. Immunofluorescence with ANGPTL8 was done
by an anti-ANGPTL8 monoclonal antibody (Sigma, SAB3501080, 1:100). Co-IP
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experiments with ANGPTL8/Angptl8 were done by mouse anti-ANGPTL8 poly-
clonal antibody which was raised against recombinant human full-length
ANGPTL8 with standard protocols. A list of commercial reagents, and other
antibodies and dilutions used in the present study was provided in Supplementary
Table 2. HepG2 (CL-0103000), HEK293T (CL-0005), and A549 (CL-0016) cells,
which were analyzed with authenticated STR locus and tested for mycoplasma
contamination, were purchased from Procell Biotech. (Wuhan, China).

Constructs. NF-κB, IRF1 and TK luciferase reporter plasmids, mammalian
expression plasmids for Flag-tagged RIP1, MyD88, TRAF6, IKKα, IKKβ, IKKγ and
p65; HA-tagged Ubi (WT, K63), prepared as previously described57,58, were kind
gifts of Dr. H.-B. Shu (Wuhan University). EGFP tagged OPTN were purchased
from Addgene (#27052). CYLD-Flag is a kind gift of Dr. B. Zhong (Wuhan Uni-
versity). Lentiviral GFP-LC3 is a kind gift from Dr. Z.Y. Song (Wuhan University);
Flag- or HA-tagged IKKγ; ANGPTL8 and their truncated mutants; HA-tagged p62,
NDP52, and Tollip; Flag-tagged NBR1, p62, p62ΔLIR and Cherry-tagged IKKγ
were constructed with standard procedures.

Transfection and luciferase reporter gene assays. Cells (5 × 104) were seeded
on 48-well plates and transfected on the following day, empty control plasmid was
added to ensure that each transfection receives the same amount of total DNA. To
normalize transfection efficiency, 0.02 μg of pRL-TK Renilla luciferase reporter

plasmid was added to each transfection. Luciferase assays were performed using a
dual-specific luciferase assay kit (Promega), the firefly luciferase activities (NF-κB
or IRF1 firefly luciferase reporter) were normalized based on Renilla luciferase
activities.

RNAi experiments. Double-strand oligonucleotides corresponding to the target
sequences were cloned into the pSuper plasmids (Oligoengine). The target
sequences for human ANGPTL8, p62, IKKγ, ATG5, and ATG7 cDNA are listed in
Supplementary Table 3.

Retrovirus-mediated stable RNAi cell lines. The packaging cell line HEK293T
was transfected with retroviral vectors by calcium phosphate precipitation. Twelve
hours later, cells were washed by PBS, and antibiotics-free medium was added for
another 24 h. The filtered supernatant was used to infect HepG2 or ANGPTL8−/−

cells in the presence of 6 μg/mL polybrene. The infection was repeated twice to
enhance transduction efficiency.

Quantitative real-time PCR. Total RNA was isolated from cells using RNAiso
Plus reagent (Takara) and subjected to qPCR analysis. The mRNA levels of specific
genes were normalized to GAPDH. The gene-specific primer sequences for
ANGPTL8, IKKG, Angptl8, and Tnfa are listed in Supplementary Table 3. The
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were lysed and subjected to size-exclusion chromatography. Data are shown as the mean± SEM in e, unpaired two-tailed Student’s test was used for
statistics (e). ***p< 0.0001, NS> 0.05. Data are representative of three independent experiments. FL full length, TM truncation mutants
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primers for CXCL2, IL8, NFKBIA, TNFA, and GAPDH were as we previously
described58,59.

CRISPR-Cas9-mediated knockout of ANGPTL8. The CRISPR-Cas9 based pro-
tocols for genome engineering were used as described60. PGL-U6-GRNA and
PST1374-Cas9 plasmids were gifts of Dr. X. Zhang (Wuhan University). The
ANGPTL8 gRNA target sequence and the identification primers for ANGPTL8
knockout are listed in Supplementary Table 3.

Confocal microscopy. The WT and ANGPTL8−/− stable cell lines expressing GFP-
LC3 were constructed by lentivirus mediated gene transfer. At 20 h after transfected
with IKKγ-Cherry, cells were treated with or without TNFα for 2 h. After fixing
with 4% (W/V) formaldehyde, the nuclei were stained by DAPI (1 μg/mL) and the
cells were imaged with a Zeiss LSM 880 confocal microscope. The plugin JACoP of
Image J was used to calculate the colocalization rate for the red pixels and green
dots (green dots represent LC3-II, a marker for autophagosome61) as described62.
Colocalization of signals from IKKγ-Cherry and GFP-LC3 dots was evaluated using
Manders’ overlap coefficient and the Pearson’s correlation coefficient.

Coimmunopreicipitation assays. Transfected HEK293T cells (~5 × 106) or
HepG2 cells (~2 × 107) were lyzed in l mL pre-lysis buffer (20 mM Tris-HCl, pH
7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 10 μg/mL aprotinin, 10 μg/mL
leupeptin, 0.5 mM β-glycerophosphate disodium salt hydrate and 1 mM phe-
nylmethylsulfonyl fluoride). For each immunoprecipitation, 0.8 mL of cell lysate
was incubated with 0.5 μg of the indicated antibody and 35 μL of 50% slurry of
GammaBind Plus-Sepharose (Amersham Biosciences) at 4 °C for 4 h. The
Sepharose beads were then washed three times with 1 mL of lysis buffer containing
500 mM NaCl. The precipitates were resuspended by 60 μL SDS loading buffer, and
subsequent immunoblot analysis was performed with indicated antibodies.

Size-exclusion chromatography. Cells (2 × 106) were transfected with indicated
plasmids for 24 h before being lysed in 500 μL of pre-lysis buffer. The cell lysate was
then incubated on ice for 30 min followed by sonication and was spun down at

12000×g for 10 min. The supernatant was filtered with a 0.45 μm filter (Millipore)
before being loaded onto a Superose 6 size-exclusion chromatography column (GE
Healthcare, 1 × 30 cm), which was pre-equilibrated with Triton and EDTA free
pre-lysis buffer. The samples were eluted at 4 °C by lysis buffer at a flow rate of 500
μL/min and collected in fractions of 500 μL. The fractions were precipitated with
20% trichloroacetic acid and analyzed by immunoblots with antibodies against
Flag, IKKγ, and p62.

Human studies. To compare circulating ANGPTL8 levels between patients with
inflammation and healthy controls, patients with positive detection of procalcito-
nin (PCT> 0.5 μg/L, n = 18), positive detection of endotoxin (LPS > 0.1 EU/mL,
n = 10) and healthy controls (n = 30, from physical examination center) were
included in the study. The detail sample information was listed in Supplementary
Table 1, Circulating levels of human ANGPTL8 were determined by enzyme
immunoassay kit (EIAab Science, Wuhan, China). Informed consent was obtained
from all subjects and the Ethical approval ((2017)09) was obtained by the Medical
Ethics Committee of the Wuhan Hospital of Traditional and Western Medicine
(Wuhan First Hospital).

Mice. Male C57BL/6 mice were obtained from the Center for Animal Experiment/
Animal Biosafety Level-III Laboratory of Wuhan University. Mice were housed in
ventilated microisolator cages with free access to water and normal chow. Animals
were handled according to the Guidelines of the China Animal Welfare Legislation,
as approved by the Committee on Ethics in the Care and Use of Laboratory
Animals of College of Life Sciences, Wuhan University. For LPS injection
experiment, two-month-old mice were randomly divided into three groups and
intraperitoneally (i.p.) injected with a single dose of LPS (3 mg/kg) for 1 or 6 h,
untreated age- and sex-matched littermate as controls (n = 3 for 0 and 1 h, n = 4 for
6 h). The mice were killed, liver, brown fat, spleen, lung, and kidney were collected.

Far-UV circular dichroism and structural modeling. A JASCO-810 circular
dichroism spectropolarimeter (Tokyo, Japan) was used to monitor secondary
structures. Incubated samples were diluted to a final concentration of 10 μM and
detected in a 1 mm path length at 25 °C. Circular dichroism (CD) spectra were
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obtained from 260 to 200 nm at a 200 nm/min scanning speed and a 2 nm
bandwidth. All samples were measured in triplicates and the averages were taken.
The data were converted to mean residue ellipticity and the secondary structural
contents were further calculated with the software CDPro63. Structural modeling of
ANGPTL8 was conducted using the online server I-TASSER.

Dynamic light scattering analysis. The sizes of ANGPTL8 aggregates were
measured by dynamic light scattering in a zeta pals potential analyzer (Brookhaven
Instruments, USA). Samples were vortexed and detected at room temperature, the
scattering angle was set at 90°. Each measurement was repeated three times and the
average mean particle size was recorded. The data was analyzed by the multimodal
size distribution (MSD) software64.

Dot blot assays. Sample aliquotes (2 μL) obtained at indicated time points were
blotted onto a nitrocellulose membrane (Bio-Rad, USA). Dried membrane was
blocked with 5% non-fat milk for 1 h at room temperature and then incubated with
anti-oligomer antibody (A-11) or anti-fibril antibody (OC) at 4 °C overnight. The
membrane was incubated with anti-rabbit IgG for 2 h at room temperature later.
An ECL chemiluminescence kit (Advansta, USA) was used for the development.

Transmission electronic microscopy. Incubated solution was applied onto a 300-
mesh formvar-carbon coated copper grid and sit for 5 min. Freshly prepared uranyl
formate (1%) was dropwise added for staining. Dried samples were observed under
a transmission microscope (Hitachi, Japan) operating at an accelerating voltage of
200 kV65.

Statistical analysis. Sample sizes, as described in figure legends, were selected
based on effect size and availability as per usual standard. Randomization was done
by selecting animals of similar age and weight. No blinding was involved in animal
studies. Statistically significant differences between the mean values were deter-
mined by two-tailed Student’s t-test (*p< 0.05, **p< 0.01, ***p< 0.001, NS> 0.05).
Data are presented as the mean ± SEM.

Data availability. The data that support the findings of this study is provided in
the supplementary information (Supplementary Figs. 12–22) or available upon
request.
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