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To infinity and some glimpses of beyond
Panayotis G. Kevrekidis1, Constantinos I. Siettos 2 & Yannis G. Kevrekidis3,4,5

When mathematical and computational dynamic models reach infinity in finite time,

extending analysis and numerics beyond it becomes a notorious challenge. We suggest how,

upon suitable transformations, it may become possible to go beyond infinity with the solution

becoming again well behaved and the computations continuing normally. In our Ordinary

Differential Equation examples the crossing of infinity occurs instantaneously. For Partial

Differential Equations, the crossing of infinity may persist for finite time, necessitating the

introduction of buffer zones, within which an appropriate transformation is adaptively iden-

tified. Along the path of our analysis, we present a regularization process via complexification

and explore its impact on the dynamics; we also discuss a set of compactification transfor-

mations and their intuitive implications. This methodology could be useful toward a

systematic approach to bypassing infinity and thus going beyond it in a broader range of

evolution equation models.
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Mathematical models of physical, biological, as well as
socio-economic phenomena and computations based
on these models are often observed to approach infinity.

This causes the computation to become exceedingly difficult, or
to simply fail; returning from the neighborhood of infinity to
more meaningful computational regimes is a notoriously hard
task, often difficult to justify.

In the actual phenomena modeled, an approach toward infinity
is often an indication of model breakdown. A convenient and
ubiquitous illustrative example lies in studying self-similar solu-
tions that collapse in finite time, a topic of widespread interest in
both the mathematical and the physical literature. The contexts
range from scaling1,2, to focusing in prototypical dispersive
equations such as the Korteweg−de Vries (KdV) equation3 and
most notably the nonlinear Schrödinger (NLS) equation4–6 on the
one hand, and from droplets in thin films7,8 and flow in porous
media9,10 to the roughening of crystal surfaces11 and integrate-
and-fire neuronal models12–14 on the other. One may try to avoid
collapse (e.g., by imposing space15–17 or time modula-
tions12,13,18,19) or by identifying the higher order effects that
preclude collapse in physical experiments20. One may alter-
natively explore what happens to the mathematical, computa-
tional (or even physical21) setting at, or past, the moment of
collapse; see, e.g., the relevant chapter of ref. 6. In the context of
semilinear parabolic equations, there have been extensive theo-
retical22 and computational23,24 efforts to understand the self-
similar rescaling process and approach to the singularity
formation.

Our motivation is simple and, while also physical in part (as in
ref. 21, where the impact of collapse on optical filaments is
sought), it is chiefly both mathematical and computational. As
collapse is approached in time, computations naturally break-
down and so also do, in part, mathematical approaches; there are
notable exceptions, e.g., efforts to explore beyond collapse,
detailed in the book of ref. 6 for NLS, or in refs. 9,10 for the porous
medium problem. This breakdown has motivated extensive
efforts to refine computational meshes25,26 and avoid collapse at
the numerical level (possibly transforming into a co-exploding
frame, thus factoring out the self-similarity5,27 as will be discussed
further below). Such numerical approaches do not, however,
possess the ability to cross infinity, even in a simpler array of
examples in which we know by construction, or via analytical
arguments, that life past infinity persists (i.e., that the solution
does not cease to exist and can be continued past a singular
point). This is precisely our aim here: we will propose how to
numerically go beyond infinity considering both ordinary (ODE)
and partial differential equations (PDE), as if it was a regular,
rather than a singular point. We construct and apply, on demand,
a singular transformation that absorbs the singular nature of the
dynamics, allowing the solution to re-emerge on the other side of
infinity, where the dynamics becomes regular again. A com-
plementary perspective that we explore in this regard is one of
compactification transformations which place infinity on equal
footing with the rest of the points. Our rescaling approach bears
some similarities to—but also differences from—the well-known
renormalization group approach in theoretical physics28.

In the present work, we use ODE and PDE models to showcase
our ideas. In our ODE examples, including 1D and 2D versions of
the integrate-and-fire neuronal models, an instantaneous
encounter with infinity (crossing or otherwise, as will be dis-
cussed below) will be considered (and appropriately bypassed) in
what follows. In the PDE examples the introduction of physical
space leads to multiple possibilities; one is that collapse might
only occur at a single physical point/moment in time, with no
subsequent continuous crossing of infinity. This is the so-called
transient blowup in the insightful summary of ref. 29 aiming at

the classification (see the discussion of item (5) therein) of post-
focusing regimes; we will return to it in our discussion. For PDEs,
we will instead focus on the computationally intriguing case
where, upon touching infinity at an initial point in space/time, the
solution will start gradually crossing; in one spatial dimension
this will generically result in two simultaneous crossings that
emerge from the original encounter with infinity, and subse-
quently propagate apart in space/time. This poses computational
challenges, as collapse persists in time (there needs to be a sin-
gular transformation in some portion(s) of the domain for entire
time intervals), and it is also mobile; we thus proceed to adap-
tively follow the region(s) where the singular transformation is
detected and accordingly performed as needed. It does not escape
us that an additional possibility can be envisaged: finite spatial
intervals of the solution (possibly multiple ones simultaneously)
may become infinite, leading the regular part of the solution to be
supported in compact regions, resembling the so-called com-
pacton structures originally introduced in ref. 30. This is referred
to as incomplete blowup in ref. 29. We also perform a complex-
ification of the evolving variable(s) and illustrate how this may
lead to a regularization of the real collapsing dynamics. This is,
arguably, a topic of interest in its own merit; yet it connects
naturally with the overall picture of approaching (and potentially
crossing) infinity, and, as such, we will briefly discuss it here. It
should be added that regularization as a subject has a time-
honored history in its own right. A particularly informative
summary of such efforts can be found in ref. 31.

Results
Ordinary differential equations. The standard textbook ODE for
collapse in finite time (and its solution by direct integration)
reads:

_x ¼ x2 ) xðtÞ ¼ 1
t? � t

: ð1Þ

The collapse time t*= 1/x(0), is fully determined by the initial
condition, and the textbook presentation usually stops here. A
numerical solver would overflow close to (but before reaching) t*;
yet we can bypass this infinity by appropriately transforming the
dependent variable x near the singularity. Indeed, the good
quantity y≡ 1/x≡ x−1, satisfies the good differential equation dy/
dt= −1; this equation will help cross the infinity (for x) by
crossing zero and smoothly emerging on the other side (for y).
Once infinity is crossed, we can revert to integrating the initial
(bad, but now tame again) equation for x.

The numerical protocol that we propose (see also Methods
section) naturally circumvents problems associated with infinity
in a broad class of ODEs that collapse self-similarly, as power
laws of time (or, importantly, as we will see below in Methods
section, also asymptotically self-similarly) and consists of the
following steps:

1. Solve the bad ODE (e.g., Eq. (1)) for a while, continuously
monitoring, during the integration, its growth toward
collapse.

2. If/when the approach to collapse is detected, estimate its
(asymptotically) self-similar rate (the exponent of the
associated power law, e.g., −1 for _x ¼ x2) and use it to
switch to a good equation for y, relying on the singular
transformation y= 1/x with this exponent (and on con-
tinuity, to obtain appropriate initial data for this good
equation). The relevant scaling law may not be straightfor-
ward to detect via the equations of motion, especially for self-
similarity of the second kind9. Nevertheless, a numerical
identification utilizing, e.g., the power-law relation between
the numerical dx/dt and x could be well suited to such a case.
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3. Run this good equation for y until 0 (or ∞ for the former,
bad equation) is safely crossed, computationally observing for
x an (asymptotically) self-similar return from infinity.

4. Finally, transform back to the bad equation (now tamed, as
infinity has been crossed) and march it further forward in
time.

This protocol (see also Methods section) has been carried out
in Fig. 1a, illustrating that the dynamics can cross infinity and
computation can be continued for all time, provided that the self-
similar approach to infinity is adaptively detected and the
associated, and appropriately numerically estimated, singular
transformation is used to cross it. In Fig. 1a, we solve _x ¼ x2 until
the solution reaches x(t)= 100, followed by solving _y ¼ �1
beyond crossing 0 to y(t)= 0.01, and then returning to Eq. (1).

Note that the notion of compactification (Methods section)
also allows the progression past infinity in time too, when now y
crosses zero as time approaches positive infinity and then returns
from negative infinity. To manifest the feature that infinity
crossing should be thought of as being on equal footing with any
other point on the rest of this orbit, we introduce such a notion of
compactification32. Reshuffling the (hyperbolic form of the)
solution of Eq. (1), we have

ðt? � tÞx ¼ 1 ) t? � t þ x
2

� �2

� t? � t � x
2

� �2

¼ 1: ð2Þ

Compactification through the variables X and Y

X ¼ cosðθÞ ¼ ðt? � t � xÞ=ðt? � t þ xÞ; ð3Þ

Y ¼ sinðθÞ ¼ 2=ðt? � t þ xÞ: ð4Þ

converts this hyperbola to a circle; one can verify that indeed
−1≤ X≤ 1 and −1≤ Y≤ 1 and also that X2 + Y2= 1. This puts
both relevant infinities

ðt ! t?; x ! ±1Þ ) ðX ! �1;Y ! 0± Þ; ð5Þ

ðt ! ±1; x ! ± 0Þ ) ðX ! 1;Y ! 0�Þ: ð6Þ

on equal footing with all other points of the orbit along the circle.
The trajectory between the point (1, 0) (the infinity in t, the
steady-state in x) and the point (−1, 0) (the infinity in x) can be
thought of as reminiscent of a heteroclinic connection.

Such connections often arise in dynamical systems with
symmetries (e.g., refs. 33,34). The compactification also suggests
that, provided we utilize the right variables, i.e., the right

quantities to observe the solution, (e.g., in the form of this circle)
we should obtain a consistent, smooth picture (with consistent,
smooth numerics). Indeed, yðtÞ ¼ 1=xðtÞð¼ t? � tÞ is a transfor-
mation in itself singular, yet one which converts the bad
exploding variable x(t) into a good variable y(t), satisfying dy/
dt= −1 that merely smoothly crosses 0.

The collapse of _x ¼ x3 whose exact solution is xðtÞ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffi
t? � t

p
is worth examining separately. The relevant singular

transformation (Methods section) (here y(t)= 1/x2) will take us
to infinity in finite time, but, at first sight, will not cross y(t)
becomes imaginary beyond t* (Fig. 1b). An appropriate
compactificaton (Methods section) resolves the issue:

X ¼ cosðθÞ ¼ ðt? � t � x2Þ=ðt? � t þ x2Þ ð7Þ

Y ¼ sinðθÞ ¼ 2=ðt? � t þ x2Þ; ð8Þ

leading to perfectly regular dynamics on a circle, so that the
singularity is again bypassed.

We can now try to extend/generalize these ideas to other
collapse rates (i.e., arbitrary powers/exponents of self-similarity).
For ODEs that asymptotically collapse self-similarly,
xðtÞ � 1=ðt? � tÞa, we can produce a useful compactification in
the form

X ¼ cosðθÞ ¼ ððt? � tÞa � xÞ=ððt? � tÞa þ xÞ ð9Þ

Y ¼ sinðθÞ ¼ 2=ððt? � tÞa þ xÞ: ð10Þ

In this form, the dynamics benignly travels along the circle.
Relevant examples can straightforwardly be extended to, e.g.,
fractional powers although it is known from standard ODE
analysis that issues of uniqueness may arise there that we do not
delve into in the present work.

More generally then, the self-similarly collapsing ODE dx/dt=
±xp has the solution ± x1�p=ð1� pÞ ¼ t � t? and its scaling in
time follows xðtÞ � ðt? � tÞ1=ð1�pÞ, with the collapse time once
again determined by the initial data. Given a legacy code that
integrates the ODE _x ¼ FðxÞ, we monitor its growth approaching
collapse (i.e., how F(x) scales as xp, or more generally with ||x||).
For vector cases, the analogous feature could be the monitoring of
the norm dependence as ||x||p, although we will not explore such a
case here. Upon detection of asymptotically self-similar collapse,
at sufficiently large |x| (e.g., 102 in the ODE of Fig. 1, or 104 in the
PDE example that will follow) we stop solving the bad ODE. We
use instead the singular transformation y= x−p+1 (for dx/dt= f
(x), more generally, y ¼ R1x 1=f ðsÞds leads to dy/dt= −1) to solve
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Fig. 1 Infinity crossing in ODEs. The cases of a _x ¼ x2, x(0)= 1 leading to collapse at t⋆= 1 and, b of _x ¼ x3, x(0)= 1, leading to collapse at t*= 0.5; in this
case x(t) becomes imaginary beyond t* (see also Methods section)
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the good ODE y(t) that crosses 0 rather than infinity. Then, a little
beyond the collapse time (beyond infinity for x(t), beyond 0 for
y(t)) we simply revert to the original, bad (yet no longer
dangerous) ODE, with continuity furnishing the relevant
matching conditions.

An illustration of asymptotically self-similar blowups, where
different transformations are used to cross two different infinities
(the finite time/infinite value and the infinite-time/finite value
ones) is included in the Methods section.

Examining such infinity crossings as regular, rather than
singular points begs an explanation for the mechanism of exiting
the real axis along +∞ and then re-emerging on the other side at
−∞ (for dx/dt= x2) or arguably more remarkably from +i∞ back
toward the origin in the example involving x3). In the latter case
there is an obvious ambiguity: the solution might just as well be
chosen to re-emerge from −i∞: one can formally, past the
collapse, accept xðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�1=ðt � t?Þp ¼ i=

ffiffiffiffiffiffiffiffiffiffiffiffi
t � t?

p
for t> t* or,

alternatively, xðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð�ðt � t?ÞÞp ¼ �i=

ffiffiffiffiffiffiffiffiffiffiffiffi
t � t?

p
. This is per-

haps a prototypical (and tangible) example of the phase loss
feature argued in refs. 6,21. As a way of shedding further light into
these features, we provide a complexified version of dx/dt= x2

and of dx/dt= x3 in the Methods section, which provides insights
on these crossings and on the time that it takes for them to occur
(also explicitly computed in the Methods section).

Moreover in the Methods section, to show the applicability of
the proposed methodology to biologically/physically inspired
examples, we illustrate one such from computational neu-
roscience, namely the celebrated quadratic integrate-and-fire-
model (see also in the Methods section) reading12: dv/dt= I + v2.
To further cement the generality of the method beyond single
degree of freedom examples, we also consider a 2 species ODE,

namely the integrate-and-fire quadratic and quartic models
exhibiting fast and slow dynamics, and illustrate that the ideas
can be naturally generalized in such a setting. In particular, these
models may be represented by the following general form:

dv
dt

¼ I þ FðvÞ � u;
du
dt

¼ bv � u: ð11Þ

It has been shown13 that in the quadratic model corresponding
to F(v)= v2, the adaptation variable, u, blows up at the same time
with the membrane potential, v, while in the quartic model
corresponding to F(v)= v4 + 2v, the adaptation variable, u,
remains bounded when v blows up14.

A partial differential equation case. We now turn to a PDE
example, illustrating one of the ways that space dependence
modifies the crossing of infinity. Motivated by dx/dt=±x2, where
x−1 crosses infinity at a single moment in time, we study the case
where infinity is first reached in finite time, and then crossed
continuously in time, but (in one spatial dimension) at isolated
points in space. The geometry involved is illustrated in Fig. 2a,
showing a graph of the function u(x, t)= x2 + (0.1 − 0.1t), a
parabola shifting its values downward, at constant speed, but
without change of shape, crossing the 0 level. Initially it is
everywhere positive; the tip reaches the zero-level-set at t*= 1
and then crosses it. The function w(x, t)= 1/u(x, t) is shown
Fig. 2b: it reaches infinity at t*= 1 and subsequently crosses at
two points that move apart as dictated by the motion of the
parabola. In Fig. 2c, d are shown solutions u(x, t) of Eq. (12)
around their crossing of the 1 level, and the corresponding w(x, t)
= 1/(u(x, t) − 1) (solutions of Eq. (13)). Figure 2c corresponds to
the solutions just before crossing, and Fig. 2d to solutions just
after crossing infinity.
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We can then agree that the waveform returns from minus
infinity between these two crossing points as the definition of w(x,
t) formally suggests. Extension to higher-dimensional geometries
(e.g., a paraboloid initially touching a plane at a point and then
crossing it along a closed curve, such as a circle, that opens up
starting at the initial point in two spatial dimensions) can also
naturally be envisaged. The key observation is that the evolution
of w(x, t) actually involves a (potentially asymptotically) self-
similar collapse near the crossing of infinity.

This suggests that, upon detection—on the fly—of such an
asymptotically self-similar collapse and estimation of the
associated exponents (see below) for a bad w(x, t) PDE, a search
for a good observable u(x, t) be performed. Then,a conceptual
and computational program analogous to that of the previous
Section on ODEs may be carried through to obtain, and work
with, a good PDE in the vicinity of the collapse point.

The simple, linear equation

ut ¼ uxx � u; ð12Þ

provides an engineered, yet transparent and analytically tractable
illustration of the relevant ideas and hence will be used as our
workhorse in what follows. Generic initial data in this well-posed,
linear model decay and concurrently spread, asymptoting to u(x,
t)= 0 at long times. We select an arbitrary level set u*= r> 0 and
a modified variable w≡ 1/(u(x,t) − r) to study level set crossings;

for initial conditions everywhere above r, and on its way to zero, u
(x, t) will cross the level set r so that w(x, t) will cross the level set
at infinity.

The bad PDE for w(x,t) reads

wt ¼ wxx � 2
w
w2
x þ wþ rw2: ð13Þ

An auxiliary tool for the analysis of (asymptotically) self-similar
collapse in such equations is the so-called MN-dynamics27,35; a
dynamic renormalization scheme rescaling space36, time and the
amplitude of the solution so that the self-similar solution becomes
a steady-state in the co-exploding frame, i.e., the frame factoring
out the symmetry/invariance associated with the (potentially
asymptotic) self-similarity. This formulation is presented as a
separate, detailed section in Methods for completeness. In that
section, both the general case, and the special example of Eq. (13)
are treated. From this formulation we can infer that
w � 1=ðt� � tÞ, which, in turn, suggests the choice of a good
variable used below.

In our illustrative example we use Neumann Boundary
Conditions (BC) in [0, π] and initial conditions u(x, 0)= a cos
(2x) + c (here a= 0.4, c= 1.5), so that the solution u(x, t) of Eq.
(12) reads:

uðtÞ ¼ 0:4 expð�5tÞcosð2xÞ þ 1:5 expð�tÞ; ð14Þ
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and we choose r= 1. We do not, however, pre-assume such
knowledge of u(x, t) since the equation we have to solve is the bad
(focusing) w(x, t) equation, i.e., Eq. (13); our MN framework
applied to the focusing of the w(x, t) evolution then suggests that
a good observable is v(x, t)≡w(x, t)−1, a variable that will simply
be crossing 0 and thus the good PDE would simply be

vt ¼ vxx � v � r: ð15Þ

Recall that our goal is to seamlessly carry out the computation
without our numerical code ever realizing that (some part of) the
solution is becoming indefinitely large. To achieve this, as the bad
PDE solution grows toward infinity, it is adaptively tested, with a
user-defined threshold for (local, asymptotic) self-similarity, i.e.,
for growth according to a (potentially approximate) power law.
When this is numerically confirmed, a suitable power law
transformation is devised with the numerically estimated
similarity exponent; in the above example the detected exponent
is −1 and so the transformation is v=w−1. The easiest way to
realize the right observable in this case is to consider uniform
initial conditions—then the PDE reduces to an ODE that
asymptotically explodes as the _w ¼ w2, suggesting the v=w−1

change of observables.
Importantly, the transformation has to be performed—and the

good solution sought—over an entire spatial interval(s) surround-
ing the approaching singular point(s). This suggests the following
procedure, illustrated schematically in Fig. 3:

1. Upon detection of approach to infinity as the tip of the
collapsing waveform grows beyond a sufficiently large value
at a given point or points inside the computational domain,
we split the domain in 3 regions: two regular ones to the left
and to the right of the growing tip, where the original bad
equation for w is being solved; and a new singular one, in the
middle, where instead of solving the equation for w, now the
equation for its singularly transformed variant, the good
equation for v=w−1 is solved instead. The latter transforma-
tion is selected to comply with either the self-similar analysis
on the theoretical side, or the identified power law of
amplitude growth on the numerical side. These equations are
linked by continuity of the (transformed) observables at the
domain boundaries, and standard domain decomposition
numerical techniques are used37. The good equation simply
crosses zero rather than crossing infinity, as in the ODE case.

2. Once zero is crossed, the initial single crossing point in the
family of case examples under consideration (in one spatial
dimension) opens up into two infinity crossings (one can
visualize two waves that propagate in opposite directions, one
to the left and one to the right)—two zero-level-set crossings
for the good equation. These crossings are quantified, for our
example, in Fig. 3. They are bordered by the computed
locations of a high enough absolute level (here 104) for
asymptotic self-similarity.

3. To deal with the two new crossings computationally over
time, the central region is subsequently split into 3 regions.
The two outer ones are our singular buffers, surrounding,
and in some sense masking the infinity crossings to the left
and to the right. But now they are separated by another,
inner regular interval, where we can again solve the original
bad equation since in here it is again sufficiently far from
infinity. Thus, post collapse, we partition the domain into five
regions, three regular ones—the two outer ones, and the
innermost, for the bad equation—and then two singular
buffers for the transformed good equation, one around the
left zero crossing and one around the right zero crossing of v,

that correspond to the two infinity crossings of the bad
equation for w.

A nontrivial aspect of the computation is the gluing between
the regular regions and the singular buffers. Our numerical
scheme here is a simple one following37: for a finite difference
discretization in space, (a) an explicit forward Euler time step is
performed at the interface points, which provides the interior
boundary conditions for the next time step (the next computa-
tional era), while (b) an implicit Euler time step is adopted to
solve the good and bad PDE within the three (or the five)
domains. The scheme can be modified to allow for different space
and time steps in the different domains till the next computa-
tional era, when the new interface points will be detected, the new
interior BCs will be computed, and the good and bad PDE in each
domain will be solved. To recap the essence of the algorithm, by
solving the good equation inside the buffer regions (and following
the motion of the buffers on the fly), we ensure that the numerical
simulation is never plagued by the indeterminacy associated with
approaching/touching/crossing infinity.

The panels of Fig. 3 show representative instances just before
and just after the initial encounter of the w(x, t) profile with
infinity in both its good v(x, t)≡ (u(x, t) − r) and its bad w(x, t)
incarnations, in the spirit of Fig. 2a, b.

The approach to infinity for w(x, t) is indeed asymptotically
self-similar, as explained in the Methods section. As we approach
the event, an inverted bell-shaped profile comes close to, touches,
and then starts crossing through r= 1 in the variable u, or
crossing through 0 in the variable v≡ u − r, or equivalently
crossing through ∞ in the variable w. Using the good variable v
inside appropriate buffer regions, and the bad variable w outside
of these, as explained in the Methods section below, we are thus
able to continue the computation for all time, avoiding the
singularity of the bad PDE.

We now explore two more notions that were also examined in
the ODE context. The first is compactification: self-similar PDE
dynamics, although crossing through infinity, can simply be
compactified as evolving over a circle or -better- on a sphere. We
perform this step for a general 1D PDE (self-similar) solution of
the form –assuming independence from τ (see the MN
formulation in the Methods section):

uðx; tÞ ¼ 1
ðt? � tÞr f ðξÞ; ð16Þ

where ξ is a self-similar variable, e.g., ξ ¼ x=ðt? � tÞq. If the max
(f) >1, we can define ~f ¼ f =maxðf Þ (as well as rescale u by the
same factor) and subsequently drop the tilde in Eq. (16) ensuring
that fj j≤ 1. We can then rewrite Eq. (16) as:

ðt? � tÞru ¼ f ) ðt? � tÞr þ uð Þ2� ðt? � tÞr � uð Þ2¼ 4f ðξÞ:
ð17Þ

Then, upon suitable definition of the variables, we can
have X ¼ ðt? � tÞr � uð Þ= ðt? � tÞr þ uð Þ and Y ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
f ðξÞj jp

=
ðt? � tÞr þ uð Þ, in which case X2 + Y2= 1. In these (or similar)
variables, at every moment in time the trajectory can be thought
of as compactified along a circle. However, as the circle itself
represents an invariant shape, in this representation we cannot
straightforwardly visualize the trajectory’s dynamics; for this
reason, we next compactify the dynamics on a sphere. We define
g2= 1 − f2 and we can then write using the above variables (gX)2

+ (gY)2= g2= 1 − f2, which can be reshuffled to read:

g
ðt? � tÞr � u
ðt? � tÞr þ u

� �2

þ g
2
ffiffiffiffiffiffi
fj jp

ðt? � tÞr þ u

 !2

þf 2 ¼ 1: ð18Þ
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Choosing the three terms of the left hand side of Eq. (18)
as ðX′;Y ′;Z′Þ ¼ ðgððt? � tÞr � uÞ=ððt? � tÞr þ uÞ; g 2

ffiffiffiffiffiffi
fj jp� �

=
ððt? � tÞr þ uÞ; f Þ we observe that the dynamics can be seen as
evolving along the surface of a sphere. This compactification once
again underscores the possibility to think of infinity as a regular
circle (rather than point, as is the case for ODEs), a level set that
is crossed by the PDE solution evolving along the surface of the
sphere. Furthermore, as in the case of ODEs, we also examine the
complexified version of Eq. (13) in the Methods section.

Discussion
We attempted to address here a few prototypical cases of a
spectrum of problems arising in both ordinary and partial dif-
ferential equations, so as to deal with the emergence of infinities
during the evolution of the relevant models. In a number of cases
the model at hand will become physically inaccurate, and will
need to be suitably modified as these singular points are
approached; if not, our questions may be relevant for the physical
realm. In any event, the questions are of particular relevance
toward the mathematical analysis and numerical computation of
the models at hand. In that light, we argued that it is possible in
our context to perform singular transformations on demand, that
may sidestep—through the help of a suitable good equation—the
computational difficulties associated with infinities, rendering
them tantamount to the crossing of a regular point such as zero.
For ordinary differential equations, once the crossing has tran-
spired, one can safely return to the original bad equation and
continue the dynamics from there (until possibly a new infinity is
approached).

In the case of partial differential equations, the scenario at hand
is more complex. There, the solution is distributed in space, and
hence we assume and have analyzed the setting where a (gener-
ically assumed to be parabolic; see the relevant discussion in the
Methods section) tip of a waveform approaches infinity. We have
discussed in detail a scenario of initially touching infinity and
then crossing it. Suitable computational buffers need then to be
devised, where the detected singular transformation allows us to
locally re-interpret (for computational purposes) the crossing of
infinity as the crossing (in a transformed space) of a regular point,
such as zero. These buffers need to be in constant and consistent

communication, through appropriate continuity conditions, with
the rest of the computational domain (the rest of the world).
Typically, the buffers are defined by the location at which the
solution takes on a sufficiently large (absolute) value—say 104 to
the left and right of the growing tip in the pre-crossing regime, or,
say, 104 till −104 on the left, and −104 till 104 on the right in the
post-crossing regime.

Our computational findings were complemented by a com-
pactification approach, supporting the argument that infinity can
be addressed in the same way as a regular point or a regular level
set along the orbit. At the same time, a complexification of the
model –discussed more at length in the Methods section– is
observed to provide a regularization of the original real dynamics,
avoiding the collapse of the latter and offering insight on how
collapsing orbits can be envisioned as limiting scenarios of
nonlinear dynamical systems within the complex plane.

Methods
Complexification of ordinary differential equations. The complexified version
_z ¼ z2 (z= x + iy) leads to the two-dimensional dynamical system:

_x ¼ x2 � y2; _y ¼ 2xy: ð19Þ
The real axis is an invariant subspace, retrieving our real results; yet

complexification endows the dynamics with an intriguing capability: as Fig. 4a, b
illustrates through the (x, y) phase plane, collapse is avoided in the presence of a
minuscule imaginary part. Large elliptical-looking trajectories are traced on the
phase plane, eventually returning to the neighborhood of the sole fixed point of
(0, 0)—which in the real case one would characterize as semi-stable. The
system of Eq. (19) can be tackled in closed form since the ODE _z ¼ z2 yields
1/z= −t + 1/z(0). For z= x + iy (z(0)= x0 + iy0) we obtain the explicit orbit formula

xðtÞ ¼ x0 x20 þ y20
� �� t x20 þ y20

� �2
x0 � t x20 þ y20ð Þð Þ2þy20

; ð20Þ

yðtÞ ¼ y0
x20 þ y20

x0 � t x20 þ y20ð Þð Þ2þy20
: ð21Þ

Eliminating time by dividing the two ODEs within Eq. (19) directly yields an ODE
for y= y(x) (rather than the parametric forms of Eqs. (20), (21)). From this ODE,
one can obtain that the quantity

E ¼ y2 þ x2

y
¼ y20 þ x20

y0
; ð22Þ
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Fig. 4 Complexified variants of ODE models. a, b The complex dynamics of _z ¼ z2 as represented by ODEs of Eq. (19). Phase plane analysis a and sample
trajectory b. a Shows that the orbits close (and are, in fact, circles as shown in the text). b Illustrates the circular nature of the projection in the bottom x − y
plane, as well as the x − t and y − t plane projections while following the x − y − t composite trajectory. c, d The complex dynamics of the two-degree-of-
freedom system with _z ¼ z3. An example from the first quadrant of c is illustrated in more detail in the d, exhibiting how collapse is avoided in this case
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is an invariant of the phase plane dynamics, and thus the latter can be written as x2

+ (y − R)2= R2, where R2 ¼ x20 þ y20
� �2

= 4y20
� �

. That is, the trajectory evolves along
circles of radius R in the upper (resp. lower) half plane if y0> 0 (resp. y0< 0.)
Approaching the axis with y0→ 0, the curvature of these circles tends to 0 and their
radius to ∞ (retrieving the real dynamics as a special case). Figure 4 through its
planar projections illustrates not only the radial projection of the dynamics in the x
− y plane, but the x − t and y − t dependencies.

Starting with a minuscule imaginary part the real dynamics tends to infinity; yet
when the real part gets sufficiently large (somewhat in the spirit of our
computations above), the imaginary part takes over, grows rapidly, and chaperons
the real part to the negative side. Once the real part reaches the opposite (absolutely
equal) negative value, the imaginary part rapidly shrinks and the formerly bad, yet
now benign real equation takes over again.

We point out here that there is also a canonical way to generalize the
compactification of this complex picture to the Riemann sphere through the
inverse stereographic projection

X ¼ 2x
x2 þ y2 þ 1

; ð23Þ

Y ¼ 2y
x2 þ y2 þ 1

; ð24Þ

Z ¼ x2 þ y2 � 1
x2 þ y2 þ 1

: ð25Þ

Now the real dynamics become a great geodesic circle, while all other complex
plane curves become regular circles on the surface of the sphere. Under this
transformation all points with x2 + y2→∞ are identified with (0, 0, 1),
rationalizing the vanishing time needed to move from one to the other.

For the cubic case _z ¼ z3 the two-dimensional dynamical system becomes

_x ¼ x3 � 3xy2; ð26Þ

_y ¼ 3x2y � y3: ð27Þ

The corresponding phase portrait is shown in Fig. 4c, while a typical trajectory is
shown in figure Fig. 4d. Instead of one leaf in the upper half plane there are now

two leaves, one in each quadrant, see Fig. 4c; this suggests a natural generalization
to n − 1 leaves in each half plane in the case of _z ¼ zn . It does not escape us here
that a particularly intriguing case in its own right is when n is rational and perhaps
even more so when it is irrational. However, we will restrict our considerations to
the simpler integer cases herein, deferring the rest to future work. In the cubic case
there is collapse for both positive and for negative initial data, and reentry along
either the positive (resp. the negative) imaginary infinity (i.e., from +i∞, resp.−i∞)
could be chosen (in analogy to the arbitrariness in the phase factor).

However, for even infinitesimally small imaginary data, the symmetry is broken,
and unique trajectories are selected along each quadrant. A small real part
(accompanied by a small imaginary part) as Fig. 4d grows until eventually (when
sufficiently large) the imaginary part takes over. The real part then decays rapidly
to 0, while the imaginary decays slowly, closing the orbit in the quadrant of the
initial conditions; this is again a natural extension of the limiting case of purely real
initial data. This complex formulation also allows the quantification (in a vein
similar to ref. 38,39) of how long it takes for initial data, say, on the real axis, to
emerge on the imaginary axis. This time (see below in the Methods section) tends
to 0 for the transitions between +∞ and +i∞ for _z ¼ z3 (or from +∞ to −∞ in
_z ¼ z2).

Complexification of partial differential equations. As in the ODE case, we
discuss the possibility of complexifying the model in order to understand, as a
limiting case, how infinity is crossed for purely real initial data, while it may be
avoided (regularized) upon initialization with complex initial data. Using the
complex decomposition for w(x)= a(x) + ib(x) in Eq. (13), one can obtain the pair
of real and rather elaborate looking equations:

at ¼ axx � 2a
a2x � b2x
a2 þ b2

� 4b
axbx

a2 þ b2
þ aþ rða2 � b2Þ; ð28Þ

bt ¼ bxx þ 2b
a2x � b2x
a2 þ b2

� 4a
axbx

a2 þ b2
þ bþ 2rab: ð29Þ

We expect that the presence of an imaginary part in the initial data may avoid
collapse in analogy with Fig. 4. Given the quadratic nature of the nonlinearity, the
quadratic ODE example is especially relevant; we expect here to observe something
similar but in a PDE form, having space as an additional variable, over which the
profile is distributed (around the crossing tip). Again, the tractability of our
example allows us, via the solution of Eq. (15), to perform the relevant calculation
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analytically since at the level of the equation for v the complex model can be fully
solved. Then, assuming v= c + id, the variable w= a + ib= 1/v= 1/(c + id) leads to
a= c/(c2 + d2) and b=−d/(c2 + d2), and obtaining (c, d) explicitly, the same can be
done for (a, b). This program is carried out in Fig. 5. We reconstruct analytically
the spatial profile of the real and imaginary parts of w at different moments in time.

While the profile tends toward collapse in the real part of the variable (and
would go all the way to collapse) the imaginary part, in analogy to the dynamics of
Fig. 4, but in a distributed sense around the tip, eventually takes over. As it does so,
it forces the solution filament to turn around on itself in a spatially distributed
generalization of the ODE of Fig. 4. Finally, the solution appears to re-emerge from
the other side, practically extinguishing its imaginary part, and having avoided the
crossing of infinity. This illustrates how complexification, even in the case of the
PDE, results in the avoidance of collapse and the regularization of the model; the
collapsing real case is a special limit case of the more general complex one.

Parabola self-similar crossing. In the 1D case, starting from the assumption of a
self-similar solution approaching infinity, we can prescribe a generic unimodal
profile of the form:

u � 1
ðt? � tÞa f

x � x0

ðt? � tÞb
 !

; ð30Þ

where t* is the collapse time and x0 is the point around which the blowup solution
is centered.

Then, around x= x0 (and for t≠t?), we can use a Taylor expansion locally in the
form:

u � 1
ðt? � tÞa f ð0Þ þ f ′ð0Þ x � x0

ðt? � tÞb
þ f ′′ð0Þ

2
ðx � x0Þ2
ðt? � tÞ2b

" #
: ð31Þ

Combining the powers and bringing the dominant power to the left, we obtain that
the field v, defined as

v � uðt? � tÞaþ2b � f ð0Þðt? � tÞ2b þ f ′′ð0Þ
2

ðx � x0Þ2
� �

; ð32Þ

behaves like a regular field which crosses v= 0 at x= x0, when t ¼ t? . So, its
dynamics should be that of a rising parabola, cutting through 0 at the critical time.
In Eq. (32), we also used the fact that x= x0 was an extremum (having in mind in
particular a maximum) of the profile of the solution (hence f′(0)= 0).

MN-dynamics. As an auxiliary tool in our analysis, we will outline here and utilize
the so-called MN-dynamics (see ref. 35), i.e., the self-similar dynamical evolution of
a PDE which is collapsing toward a dynamical formation of a singularity. This
approach has been used in porous medium type equations, as well as in dispersive
(and conservative) NLS equations (see ref. 20 in the main text) and is broadly
applicable to problems with self-similar growth (or decay). To illustrate it in a
general form, we consider an evolutionary PDE of the form:

ut ¼ L½∂ξ�uþN ½u�; ð33Þ

By L here we designate the operator involving derivatives (which we will consider
to be a linear operator in what follows, although more generally products of powers
of derivatives can also be tackled), while by N we designate the local nonlinearity
bearing operator again here having in mind some power of u.

Using the ansatz

u ¼ AðτÞf ðξ; τÞ; ξ ¼ x
LðτÞ ; τ ¼ τðtÞ; ð34Þ

we introduce a new scaled system of coordinates, intended to be suitably adjusted
to the self-similar variation of the PDE solution. ξ is a rescaled spatial variable
(taking into consideration the shrinkage or growth of the width), while τ is a
rescaled time variable, not a priori tuned, but which will be adjusted so that in this
co-exploding frame, we factor out the self-similarity, in the same way in which
when going to the co-traveling frame, we factor out translation. This way, the self-
similar solution resulting in this dynamical frame will appear to be steady. Direct
substitution of Eq. (34) inside of Eq. (33) yields:

Aτf þ Afτ � Aξfξ
Lτ
L

� �
τt ¼ L½∂ξ�f A

La
þ AsN ½f �; ð35Þ

where a and s are powers tailored to the particular problem (linear and nonlinear
operators) of interest. In order to match the scalings of the two terms of the right
hand side of Eq. (35), as is required for self-similarity, we demand that:

1
La

¼ As�1 ) A � L�
a

s�1 ) G � Aτ

A
¼ � a

s� 1
Lτ
L
: ð36Þ

Thus, the model can now be rewritten as:

G f þ s� 1
a

ξfξ

� �
þ fτ

� �
τt ¼ As�1 L½∂ξ�f þN ½f �ð Þ: ð37Þ

Demanding then that the time transformation be such that there is evolution
toward a stationary state in this co-exploding frame, we remove any explicit time
dependence by necessitating that τt ¼ As�1 � L�a . Then, the stationary state in
this frame will satisfy:

G f þ s� 1
a

ξfξ

� �
¼ L½∂ξ�f þN ½f �: ð38Þ

It should be mentioned here that this analysis already provides an explicit estimate
for the growth/shrinkage of amplitude and width over time, given that we assume
that Aτ/A=G= const. In particular, At=Aττt= AτAs−1=GAs, which in
accordance to the considerations of the previous section leads to the evolution of
A � ðt? � tÞ1=ð�sþ1Þ. A similar analysis can be performed for L such that Lt= Lττt
= LτL−a= −G[(s − 1)/a]L1−a, leading to L � ðt? � tÞ1a . As a result of this analysis,
our pulse-like entity touching (and potentially crossing) infinity will do so in a self-
similar manner.

For the specific example of Eq. (13), using w=Af(ξ, τ), we obtain that

L½∂ξ�w ¼ A
L2

wξξ � 2
w
w2
ξ

� �
; N ½w� ¼ Awþ A2w2: ð39Þ

It is then evident that the dynamics is not directly self-similar (due to the different
scaling of the two terms within N ), but only asymptotically self-similar. When w
(and A) is small, the exponential growth associated with the linear term is
dominant. However, as the amplitude increases, eventually the quadratic term takes
over, leaving the linear term as one of ever-decreasing-significance offending to the
exact self-similar evolution. When the linear term becomes negligible, the self-
similar evolution requires that A/L2=A2, providing the scaling of A � 1=L2, i.e., in
this case s= 2 and a= 2 for the general formulation above. From there, all the
scalings associated with self-similarity can be directly deduced as explained
previously.

The linear ODE case. The mapping of the dynamics onto a circle can also be
performed for the case of the simple exponential (rather than the power law self-
similar, finite time collapse) arising from the simple linear ODE of the form:

_x ¼ ± x; ð40Þ

with the standard solution (assuming without loss of generality, positive initial
data)

xðtÞ ¼ e± t�t?ð Þ: ð41Þ

Here the dynamics can be written in hyperbolic form as

e� t�t?ð Þ þ x
2

� �2

� e� t�t?ð Þ � x
2

� �2

¼ 1; ð42Þ
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and the variables

X ¼ cosðθÞ ¼ e± ðt?�tÞ � x

e± ðt?�tÞ þ x
; ð43Þ

Y ¼ sinðθÞ ¼ 2

e± ðt?�tÞ þ x
; ð44Þ

can be defined so that X2 + Y2= 1. In fact, substituting the exact solution of Eq.
(41), it is straightforward to realize that X ¼ tanhð�ðt � t?ÞÞ and
Y ¼ sechðt � t?Þ, resulting in the circular dynamics being a realization of the
simple identity tanh2 þsech2 ¼ 1.

An asymptotically self-similar ODE case. We so far focused on genuinely self-
similar examples; the corresponding ideas can also be extended to asymptotically
self-similar cases that are not genuinely self-similar in that they possess offending
terms, yet upon approaching the singularity the self-similar terms dominate, with
the offending ones playing a progressively less important role. Our approach can
easily be adapted to this case.

Our simple example variant here will be of the form:

_x ¼ 2x þ x2: ð45Þ

Direct integration again can yield the exact solution in the form:

xðtÞ ¼ 2e2ðt�t?Þ

1� e2ðt�t?Þ : ð46Þ

It can be seen (when integrating Eq. (45)) that in this case the observable
log(x/(x + 2) is the one that linearly crosses through 0 (as 2ðt � t?Þ). For x large,
this quantity becomes

log
1

1þ 2
x

� �
� �2

1
x
þ 2

1
x2

� 8
3
1
x3

: ð47Þ

Hence, indeed at large times, it is the quadratic term that takes over since the
dominant behavior of x(t) is like 1=ðt? � tÞ. However, as t ! t? , the relevant
asymptotics reads:

xðtÞ ¼ 1
t? � t

� 1þ t? � t
3

� ðt? � tÞ3
45

þ ¼ ð48Þ

enabling one to observe the explicit (lower order) contribution of the terms
offending to the self-similarity. The collapse time, denoted by t*, is still determined
by the initial data as t? ¼ �ð1=2Þlogðxð0Þ=ðxð0Þ þ 2ÞÞ.

Nevertheless, in this case as well, our computational prescription can be carried
out. Eq. (45) can be integrated until x becomes large. we then revert to y= 1/x
which has the straightforward ODE dynamics:

dy
dt

¼ �2y � 1; ð49Þ

(using the transformation to obtain the initial condition y(0)) and the equally
simple solution y(t)= −1/2 + (y(0) + 1/2)e−2t. The solution of the latter problem of
Eq. (49) crosses 0 en route to its approach of the asymptotic value of −1/2. Finally,

once the infinity has been bypassed, we return to the simulation of Eq. (45), as
before.

Mapping the dynamics to a circle. The solution of Eq. (45) can be rewritten as:

xðtÞ ¼ 2

e2 t��tð Þ � 1
) x

e2 t��tð Þ � 1
� �

2
¼ 1: ð50Þ

Using the compactification the exact same way as Eqs. (3), (4) of the main text and
only replacing t* − t with: e2 t��tð Þ � 1

� �
=2, the compactification scheme carries

through.

a) In this case, if t→ t*, we Taylor expand and retrieve (from the first term) the
limit of exactly Eqs. (3), (4). This is the contribution that stems from the x2

term in the ODE.
b) In the case of t→ 0 (or anyway far from t*) the exponential dominates and

the (−1) coming from the x2 term is irrelevant. This is the contribution that
stems from the 2x term in the ODE.

The time between infinities. Following numerous works (including refs. 26,27 in
the main text), we consider a radial contour along the complex plane i.e., the arc of
a circle from the real to the positive imaginary axis. Then, along this arc (denoted
by C), we have for T, the elapsed time:

T ¼
Z

C
dt ¼

Z
C

dz
z3

¼
Z π=2

0

Rieiϕ

R3e3iϕ
dϕ: ð51Þ

Bearing in mind the radial nature of the contour (which renders R constant),
factoring out 1/R2 and taking the limit as R→∞, we obtain a vanishing result, even
though the angular integral amounts to unity. That is, interestingly, it takes a finite
time to reach from everywhere along the real axis an equidistant point along the
imaginary axis, yet this time vanishes as we approach infinity, in line with the
analytical result for _x ¼ x3. In the case of _z ¼ z2, there is a similar result justifying
the infinitesimal time of return there from the positive to the negative real axis.

One and two degree of freedom biologically inspired examples. To provide a
biologically relevant example of ODE blowup, we start from the following example
of ref. 12 [Ch. 8, Eq. (8.2)], namely a quadratic integrate-and-fire neuron model.
The voltage variable is described here by:

dx
dt

¼ I þ x2; ð52Þ

where x blows up in finite time. The analytical solution of this ODE is
xðtÞ ¼ ffiffi

I
p

tan
ffiffi
I

p ðcþ tÞ� �
. For I= 1, x(0)= 1 the specific solution is x(t)= tan(π/4

+ t) (shown in Fig. 6).
While the general transformation (e.g., for I= 1) v ¼ R x1=ð1þ s2Þds can always

be used, leading to dv/dt= −1, it is also possible to be guided by the dominant
nonlinear term toward a transformation y= 1/x which, intriguingly, leads to:

dy
dt

¼ �1� Iy2: ð53Þ

Although the latter equation has a similar behavior as our original one,
possessing blowup features, following our established numerical scheme, namely
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1. Integrate Eq. (52) until x blows up and then
2. Integrate Eq. (53) to pass y smoothly through 0, and finally
3. switch back to Eq. (52) after ∞ has been safely crossed,

will again work as shown in Fig. 7.
It is also sometimes possible to extend our considerations to a setting involving

multiple ODEs. In particular, once again inspired by the biologically relevant
dynamical systems of ref. 12, we select an example of fast-slow dynamics describing
the activation of K+ and inactivation of Na+ current [see Ch. 8, Eqs. (8.3)–(8.4) of
ref. 12]. More specifically, we have:

dv
dt

¼ I þ FðvÞ � u;
du
dt

¼ bv � u: ð54Þ

For the quadratic model corresponding to F(v) = v2, both variables blow up in
finite time14.

For simulation purposes, to avoid reaching infinity, one clips the voltage in the
above models as proposed in ref. 12 with a resetting feature at some sufficiently
large (cutoff) value. However as discussed in ref. 40, the cutoff value has no
biophysical interpretation and adds an extra artificial parameter to the model.
Importantly, it has been also shown that the system dynamics are very sensitive to
changes in the cutoff value, therefore rendering simulation robustness
problematic12,14. Here, we consider their potential approach to ∞, bearing in mind
that12,14 suggests that it may be a useful theoretical and computational
consideration to set the resetting voltage to ∞.

For this kind of behavior, i.e., when a simultaneous blow up of both variables is
observed, we use a polar coordinate decomposition: v= ρ sin(θ) and u= ρ cos(θ),
which captures the concurrent blowup of v and u through that of ρ. The resulting

equations read (for b= 1):

dρ
dt ¼ ρ2 sin3θ � ρ cos2θ þ I sin θ;

dθ
dt ¼ sgn ρð Þρ sin2θ cosθ � 1þ cos θ sin θ þ I

ρ cos θ:
ð55Þ

It is now possible to use the singular transformation r = 1/ρ to once again
bypass the finite time singularity of the (ρ, θ) model by a zero crossing of the (r, θ)
one. Once the singularity is crossed, it is possible to return both to (ρ, θ), as well as
to the original (u, v) variables. An example of this type is shown in Fig. 8.

Finally, we close this section by offering two remarks: It is straightforwardly
possible to envision variants of Eq. (54) which would involve a single degree of
freedom blowing up; such an example may be obtained by replacing the
nonlinearity F(v) in the first of Eq. (54) by a quartic one: F(v)= v4 + 2v. Such a case
is structurally simpler than that where both variables blow up simultaneously. Here
as shown14 the adaptation variable, u remains bounded when v blows up. Hence,
we need to perform a single transformation such as y= 1/v3 and consider the
system in the transformed (zero crossing in y) variables (y, u). Following the
proposed numerical protocol, ∞ is then smoothly crossed (Fig. 9).

The second remark is that similar examples to the polar coordinate one
discussed above have been considered (results not shown) in our studies in
completely different systems, such as the one stemming from complex forces and
complex orbits. A relevant system is that of Eq. (19) of the Contopoulos and Bozis
model41 which slightly transformed reads: dv/dt= 2vu and du/dt= 2v2. Here too,
the idea of a polar decomposition can be used to capture the concurrent infinity
crossing of the two variables.
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In summary, the techniques presented herein enable a consideration of settings
for ODEs in Rn where two (or more) degrees of freedom blow up simultaneously or
only some of them do.

Future challenges. Naturally, there are numerous directions of interest for
potential future studies. Clearly, exploring additional examples and examining
whether the ideas can be equally successfully applied to them is of particular
relevance. In the context of ODEs, this is especially relevant as regards vector/
multidimensional systems. In the same spirit, exploring further the dynamics of
complex ODE models both as generalizations of real ones, but also in their own
right, promises to yield useful insights on blowup phenomena (and how to possibly
avoid them)42; see also the lectures of ref. 43 on complex variable dynamics. A
related, especially important part in the realm of ODEs is that of convergence of
algorithms e.g., to fixed points (or extremizers) of functions. Recall that in such
cases, a concern always is whether the code may diverge along the way, rather than
reach a root (or an extremum). Our approach can be used to devise algorithms
with the ability to systematically bypass infinities during the algorithmic iterations
and such a boosted algorithm may be useful toward achieving enhanced, possibly
convergence to the roots (or extrema) of a function. This is particularly interesting
now that continuous time versions of time-honored discrete algorithms like
Newton or Nesterov iteration schemes have become a research focus; see the
related discussions in refs. 44–46.

On the PDE side, we are envisioning (and currently starting to explore) a
multitude of emerging aspects. For instance, when a distributed waveform reaches
infinity at a single point in space-time, different post-collapse outcomes are
possible. For example, an alternative possibility to the infinity-crossing presented
here has been argued to be that the solution may depart from infinity without
crossing (the transient blowup in ref. 29), as in the case of the standard collapsing
NLS equation discussed extensively in textbooks5,6. There, the crossing through
infinity is precluded by the existence of conservation laws. Past the initial point, it is
argued in refs. 6,21 that the solution will return from infinity incurring a loss of
phase. At the bifurcation level, the work of ref. 27 offers a suggestion of how the
return from infinity manifests itself: there, a solution with a positive growth rate
was identified, that was dynamically approached during the collapse stage. Yet a
partial mirror image of that, with negative growth rate, which presumably is
followed past the collapse point in order to return from infinity was also identified;
see, in particular, Fig. 1 and especially Fig. 2 of ref. 27.

It is also possible that such a touch and return from infinity may occur without
the loss of phase as, e.g., in the recent work of ref. 47. In examining a nonlocal
variant of NLS (motivated by PT-symmetric considerations, i.e., systems invariant
under the action of parity and time-reversal), ref. 47 identified a solution that goes
to infinity in finite time that can be theoretically calculated; subsequently this
solution returns from infinity and then revisits infinity again, in a periodic way,
always solely touching it and never crossing. This solution is analytically available
in Eq. (22) of ref. 47 and the collapse times are given by Eq. (23) therein; perhaps
even more remarkably, the model itself is integrable. In this case, infinity is reached,
subsequently returned from and then periodically revisited. Such an observation
would arise in our context if the original PDE for u (i.e., a variant of Eq. (12)) had a
spatiotemporal limit cycle that attained somewhere in space an extremal value r.
Then, w(x, t)≡ 1/(u(x, t) − r) would feature the above phenomenology. Such cases
where infinity is reached but not crossed merit separate examination. The same is
true for solutions exhibiting entire intervals at infinity, whose support progressively
grows (or anyway remains finite), bordered by moving fronts; here one may
envision that the good equation develops compacton-like solutions30.

A related issue that may be worth exploring with such techniques is the
possibility of bursting mechanisms (e.g., refs. 48,49 involving heteroclinic
connections with entire invariant planes at infinity) and the associated emergence
of extreme events in nonlinear PDEs. Generalizations of the techniques developed
herein to settings where, rather than u(x, t), ux(x, t)→∞ (or this happens for other
quantities associated with the dependent variable), as is, e.g., the case during the
formation of shocks, should also be interesting to explore. Effectively, our
considerations here can be thought of as identifying and numerically evolving the
infinity level set of the solution. Thus, a related interesting direction for future work
could be to try to connect the considerations herein with ones of level set
methods50,51, adapting the latter toward capturing, e.g., the regions of the singular
buffers.

Equally relevant are explicit examples similar to the one herein where multiple
collapses may occur and propagate. An intriguing such case is the defocusing
scenario of the nonlinear Schrödinger equation,

iut ¼ uxx � 2 uj j2u; ð56Þ

which, in fact, has been shown in ref. 52 to possess solutions such as u(x, t)= 1/x, or

uðx; tÞ ¼ 2xðx2 þ 6itÞ
x4 � 12t2

; ð57Þ

with propagating singularities at x=±121/4t1/2, and

uðx; tÞ ¼ 3 x8 þ 16itx6 � 120t2x4 þ 720t4ð Þ
x x8 � 72t2x4 � 2160t4ð Þ : ð58Þ

It is obvious that to follow such dynamical examples, a methodology bearing
features such as the ones discussed above is needed in order to bypass the
continuously propagating singular points. In turn, generalizing such notions to
higher dimensions (e.g., a two-dimensional variant of the analytically tractable
example herein) and addressing collapsing waveforms both at points, as well as in
more complex geometric examples such as curves53 is of particular interest for
future studies. It is tempting to explore whether the tools developed here may have
something to add in the way we analyze collapse in well-established PDEs like the
Navier−Stokes, or even singularities arising in a cosmological context. In the
context of, e.g., the Navier−Stokes equation, it may be possible to apply relevant
transformations either to the original equations for the velocity or, per fundamental
results such as the Beale−Kato−Majda criterion54, in those for the vorticity. Several
of these topics are under active consideration and we hope we will be able to report
on them in future publications.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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