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MicroRNAs promote skeletal muscle differentiation
of mesodermal iPSC-derived progenitors
Giorgia Giacomazzi1, Bryan Holvoet2, Sander Trenson3, Ellen Caluwé3, Bojana Kravic4, Hanne Grosemans1,

Álvaro Cortés-Calabuig5, Christophe M. Deroose2, Danny Huylebroeck 6,7, Said Hashemolhosseini4,

Stefan Janssens3, Elizabeth McNally8, Mattia Quattrocelli1,8 & Maurilio Sampaolesi 1,9

Muscular dystrophies (MDs) are often characterized by impairment of both skeletal

and cardiac muscle. Regenerative strategies for both compartments therefore constitute a

therapeutic avenue. Mesodermal iPSC-derived progenitors (MiPs) can regenerate both

striated muscle types simultaneously in mice. Importantly, MiP myogenic propensity is

influenced by somatic lineage retention. However, it is still unknown whether human MiPs

have in vivo potential. Furthermore, methods to enhance the intrinsic myogenic properties of

MiPs are likely needed, given the scope and need to correct large amounts of muscle in the

MDs. Here, we document that human MiPs can successfully engraft into the skeletal muscle

and hearts of dystrophic mice. Utilizing non-invasive live imaging and selectively induced

apoptosis, we report evidence of striated muscle regeneration in vivo in mice by human MiPs.

Finally, combining RNA-seq and miRNA-seq data, we define miRNA cocktails that promote

the myogenic potential of human MiPs.

DOI: 10.1038/s41467-017-01359-w OPEN

1 Translational Cardiomyology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium. 2Department of Imaging and Pathology,
Nuclear Medicine and Molecular Imaging, KU Leuven, 3000 Leuven, Belgium. 3 Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium.
4 Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany. 5 Genomics core, Center for Human Genetics KU
Leuven, 3000 Leuven, Belgium. 6Department of Cell Biology, Erasmus MC, 3015 CN Rotterdam, The Netherlands. 7 Laboratory of Molecular Biology
(Celgen), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium. 8 Center for Genetic Medicine, Northwestern University,
Chicago, IL 60611, USA. 9Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy.
Mattia Quattrocelli and Maurilio Sampaolesi contributed equally to this work. Correspondence and requests for materials should be addressed to
M.S. (email: maurilio.sampaolesi@med.kuleuven.be)

NATURE COMMUNICATIONS |8:  1249 |DOI: 10.1038/s41467-017-01359-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0

http://orcid.org/0000-0003-4862-1079
http://orcid.org/0000-0003-4862-1079
http://orcid.org/0000-0003-4862-1079
http://orcid.org/0000-0003-4862-1079
http://orcid.org/0000-0003-4862-1079
http://orcid.org/0000-0002-2422-3757
http://orcid.org/0000-0002-2422-3757
http://orcid.org/0000-0002-2422-3757
http://orcid.org/0000-0002-2422-3757
http://orcid.org/0000-0002-2422-3757
mailto:maurilio.sampaolesi@med.kuleuven.be
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Stem cells hold potential for understanding the regeneration
mechanisms with possible applications to degenerative
disorders1. In particular, the recent advancements in the

field of induced pluripotent stem cells (iPSCs) are paving the way
to multi-tissue differentiation in patient-matched, isogenic
settings2. This is particularly compelling for multi-tissue degen-
erative diseases, such as muscular dystrophies (MDs)3,4. MDs
encompass a heterogeneous group of inherited myopathies that
affect skeletal muscle but in some subgroups also cardiac muscle5.
At present, no regenerative treatments are available to counteract
myofiber and myocyte wastage and functional loss.

The differentiation ability of iPSCs is under the influence of
both extrinsic and intrinsic factors6. Extrinsic factors that direct
differentiation include the addition and withdrawal of specific
growth factors. Cell-intrinsic factors include the epigenetic factors
that influence the propensity of iPSCs towards the intended
lineage7. Albeit still unclear, the retention of progeny-specific
epigenetic imprinting in iPSCs, e.g., patterns of DNA methylation
and histone marks, has been often reported and exploited for
enhanced differentiation along the parental lineage8. However, it
is not yet possible to manipulate the aforementioned epigenetic
layers in specific loci. Therefore, the research involving the
so-called “epigenetic memory” is still mainly descriptive and the
main interventional path resides in the choice of the source cells
for iPSC generation9. Thus, the search for epigenetic signatures
that can be modulated to specifically alter the differentiation
propensity of iPSCs, or their derivatives, is still on.

MicroRNAs (miRs) are well positioned to contribute to epi-
genetic regulation of differentiation of stem cells10. The potential
of miR-based orchestration of cell fate is evident along the
striated muscle lineages and, recently, miRs have been described
as part of the epigenetic signature retained after cell reprogram-
ming11. MiRs are of particular interest because they and their
anti-miRs are small and readily deliverable to manipulate dif-
ferentiation potential. Better definition of transcriptional and miR
profiles will assist in the goal of designing cocktails for skewing
the differentiation propensity.

Recently, we described a novel pool of mesodermal, iPSC-
derived progenitors (MiPs) for striated muscle regeneration12,13.
MiPs were sorted as CD140a+/CD140b+/CD44+ cells from
differentiating iPSCs of murine, canine, and human origins.
Importantly, murine MiPs were able to functionally regenerate
both cardiac and skeletal muscles in murine models. Further-
more, the propensity of MiPs toward the skeletal muscle
lineage appeared augmented when derived from skeletal muscle
mesoangioblasts (MAB-MiPs), as compared to isogenic
fibroblast-derived MiPs.The boosted differentiation potential
toward skeletal muscle correlated with retained signatures of
DNA methylation and histone marks from parental progenies12.
In this study we investigated the in vivo capacity of human MiPs,
mainly focusing our attention on their skeletal myogenic com-
mitment. First, we assessed the translational potential of human
MiPs in xenograft-permissive dystrophic mice showing evidence
of striated muscle regeneration. Next, we compared the tran-
scriptional profiles of human fibroblast-derived—and MAB-
MiPs, and finally we compared their miRNAs profiles in order to
predict a miRNA cocktail amenable for modulating the intrinsic
propensity and for overcoming the parental lineage retention. We
showed that the treatment of MiPs with a selected pro-myogenic
miRNA cocktail further improved MiPs contribution to skeletal
muscle regeneration.

Results
In vivo relevance of human MiPs. To gain further translational
evidence of MiP application, we investigated the regenerative

potential of human MiPs in vivo. Importantly, we asked whether
the myogenic propensity of human MAB-MiPs, previously shown
in vitro12, was durable in vivo. In addition, we sought to deter-
mine whether the human MiPs are necessary for the putative
regenerative effect. To address these questions, we equipped
previously characterized human, isogenic fibroblast-derived MiPs
and MAB-MiPs with GFP, a sodium-iodide symporter (NIS)
tracer for non-invasive PET imaging14, as well as an inducible
suicidal gene, iCasp9. This iCasp9 gene triggers apoptosis of cells
when exposed to the synthetic inducer AP2018715. We first
validated the engineered GFP+/iCasp9+/NIS+ (GIN+) MiPs
in vitro. Suitability for PET imaging was determined by 99mTcO4

−

uptake assay (Fig. 1a). Also, cell death was specifically activated
within 48 h in GIN+ cells only after exposure to the inducer,
whereas the inducer alone had negligible effect on control cells
lacking iCasp9 (Fig. 1b). We then injected GIN+ MiPs in Rag2−/−;
γc−/−;Sgcb−/− mice, which bear skeletal and cardiac muscle
degeneration on a xenograft-permissive genetic background12.
The Sgcb model of limb girdle muscular dystrophy was used
because it displays more severe phenotype than the mdx mouse.
Each animal received 5 × 105 cells as an intramyocardial injection
in the left ventricle and during the same procedure 5 × 105 cells in
each femoral artery (bilateral). One week post injection, GIN+

cells were traceable in the heart and in the hindlimb muscles of
cell-treated animals, but not of sham-treated, by PET imaging,
although we observed some variability in the detection method.
(H and HL fields, Fig. 1c). Semi-quantitative analysis of the
standardized uptake value (SUV) showed no engraftment dif-
ference between fibroblast-derived MiPs and MAB-MiPs in the
heart, whereas hindlimb muscle engraftment was higher
(+38.32%) in MAB-MiP-treated animals (Fig. 1d). Four weeks
post injection, half of each cohort received intraperitoneal injec-
tion of AP20187, while the other half received a vehicle control.
The effect of AP20187 was then investigated 8 weeks after the cell
injections. Stereo- and immunofluorescence analyses showed that
MAB-MiPs engrafted the heart similarly to fibroblast-derived
MiPs. Conversely, MAB-MiPs engrafted the hindlimb muscles
more efficiently than fibroblast-derived MiPs. Moreover, detec-
tion of engrafted fibers was dramatically reduced after AP20187
administration (Fig. 2b). We quantitated MiP-specific contribu-
tion to hindlimb stem cells by cytometry-based sorting of the GFP
+ subfraction of resident CD56+ satellite cells and AP+ MABs. In
both pools, MAB-MiP-treated animals displayed larger GFP+

subfractions than fibroblast-MiP-treated ones and GFP+ cells
were undetectable after AP20187 administration (Fig. 1f).

Differentiation of engrafted MiPs was evaluated using
antibodies that detect human but not mouse dystrophin protein
(hDYS). hDYS was evident at the sarcolemma following
engraftment, and this same pattern was ablated after AP20187
administration (Fig. 2a, b). Four weeks post injection,
GFP+/hDYS+ areas accounted for 34.23± 5.96% and 32.68±
6.83% of the left ventricular wall in fibroblast-derived-MiP and
MAB-MiP-injected mice, respectively (P= 0.62, n= 5,
Mann–Whitney U-test). In the gastrocnemius muscles of the
same mice, GFP+/hDYS+ myofibers accounted for 7.25± 0.95%
and 22.201± 5.99% respectively (P< 0.05, Mann–Whitney
U-test). Myofiber measurement at 8 weeks showed that
GFP+/hDYS+ myofibers accounted for 4.23± 1.95% and
14.89± 3.73% in fibroblast-MiP- and MAB-MiP-injected mice
respectively (P< 0.05 Mann–Whitney U-test).

Regeneration of engrafted striated muscles was quantitated by
means of tetanic force measurement, treadmill assay, echocardio-
graphy and serum creatine kinase (CK) level monitoring. Four
and eight weeks post injection, extensor digitorum longus (EDL)
tetanic force and run time values on the treadmill showed that
MAB-MiP-treated animals performed better than fibroblast-
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Fig. 1 Human MiPs display differential myogenic propensity in vivo. a Validation of NIS transgene functionality for PET imaging by quantitation of 99mTcO4
−

uptake in vitro. *Kruskal–Wallis test and Mann–Whitney U-test vs ctrl, P< 0.05, n= 3/cohort. Scale bar ∼100 µm. b Validation of iCasp9 transgene by
viable cell count after AP20187 administration in vitro. Only iCasp9+MiPs did significantly undergo progressive cell death, which appeared virtually
complete after 48 h. *Two-way ANOVA with Bonferroni correction, P< 0.05 (interaction), n= 3/cohort. Data points depict average and min-to-max
span for each sample. c 1 week after injection, PET scan of live animals shows engraftment of GIN+MiPs in heart (H) and hindlimbs (HL) muscles of only
MiP-treated mice. T, thymus, S, stomach, B, bladder; endogenous positive PET signals. d SUV levels in heart and hindlimb regions of PET-scanned mice.
*P< 0.05 vs sham; **P< 0.05 vs sham and fibroblast-MiPs; Kruskal–Wallis and Mann–Whitney U test; n= 3/cohort. e Stereofluorescence analysis of heart
and hindlimb (gastrocnemius) muscles of recipient mice before (4 weeks p.i.) and after (8 weeks p.i.) AP20187 administration. f Live fluorescence and
cytometry analyses of CD56-isolated SCs and AP-isolated MABs from recipient mice at end-point.both SCs and Mabs MAB-MiP-treated animals displayed
larger GFP+ subfractions than fibroblast-MiP-treated ones and GFP+ cells were undetectable after AP20187 administration **P< 0.05 vs fibroblast-MiP-
treated mice; Kruskal–Wallis and Mann–Whitney U test; n= 3/cohort at end-point, scale bar ∼100 µm
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derived-MiP-treated animals (Fig. 2c). Left ventricle fractional
shortening was similarly improved by fibroblast-derived MiPs as
well as MAB-derived MiPs (Fig. 2d). Serum CK levels were
decreased in MiP-treated animals, with lower levels in MAB-MiPs
animals (9.7± 0.32 U/l; mean± s.e.m.-) than in fibroblast-
derived-MiP-treated (10, 8± 0.21 U/l) (Fig. 2d). Notably, all
functional parameters were reverted to baseline-like levels after
AP20187 administration (Fig. 2c, d). In addition, we evaluated the

morphology of neuromuscular junctions (NMJs) in the skeletal
muscles of injected animals. When stained with fluorescent
bungarotoxin, NMJs in sham animals appeared fragmented,
unlike the normal, contiguous structures found in WT muscles.
Fibroblast-MiP- or MAB-MiP-engrafted fibers (discriminated
from the non-engrafted according to GFP expression) displayed
NMJs with similar morphology to WT and strongly reduced
fragmentation (Fig. 2e). Finally we evaluated the extent of fibrotic

a
4 weeks post injection

Sham

H
ea

rt

b

H
in

dl
im

b 
m

us
cl

es

4 weeks
post injection

c d
8 weeks

post injection
4 weeks

post injection

8 weeks
post injection

T
et

an
ic

 fo
rc

e 
no

rm
to

 a
vg

 s
ha

m
 (

A
U

)
R

un
 ti

m
e 

(m
in

)

C
K

 s
er

um
 le

ve
ls

(U
/l)

F
ra

ct
io

na
l

sh
or

te
ni

ng
 (

%
)

e
Shamwt

f-MiP-
engrafted

MAB-MiP-
engrafted

f

E
D

L
S

ol
eu

s

4 weeks post injection 8 weeks post injection

Sham f-MiPs MAB-MiPs
f-MiPs

+ vehicle
f-MiPs

+ AP20187
MAB-MiPs
+ vehicle

MAB-MiPs
+ AP20187

%
 o

f t
ot

al
 N

M
Js

s
%

 o
f t

ot
al

 N
M

Js
s

* *

*
*

§
§

§
§

** **

****

*

§
§

**
*

**

1.8

1.6

1.4

1.2

1.0

0.8

1.8

1.6

1.4

1.2

1.0

0.8

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

10

50

40

30

20

10

14
13
12
11
10
9
8

13

12

11

10

100

Extensor digitorum longus <5 Number of
fragmentsp > 0.0001

Soleus
p > 0.0001

5–10
>10

50

0

100

50

0

9

20 μm

GIN+ MAB-MiPsGIN+ f-MiPs

8 weeks post injection

+GIN f-MiPs
+ vehicle

GIN+ f-MiPs
+ AP20187

GIN+ MAB-MiPs
+ vehicle

GIN+ MAB-MiPs
+ AP20187

D
Y

S
/M

yo
cd

/G
F

P

M
A

B
-M

iP
s

S
ha

m

G
IN

+
 f-

M
iP

s

+
V

eh
ic

le

+
A

P
20

18
7

+
V

eh
ic

le

+
A

P
20

18
7

+
V

eh
ic

le

+
A

P
20

18
7

M
A

B
-M

iP
s

S
ha

m

G
IN

+
 f-

M
iP

s

+
V

eh
ic

le

+
A

P
20

18
7

+
V

eh
ic

le

+
A

P
20

18
7

+
V

eh
ic

le

+
A

P
20

18
7

W
ild

ty
pe

S
ha

m

f-
M

iP
s

(n
on

-e
ng

ra
fte

d)

f-
M

iP
s

(e
ng

ra
fte

d)

M
A

B
-M

iP
s

(e
ng

ra
fte

d)

M
A

B
-M

iP
s

(n
on

-e
ng

ra
fte

d)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01359-w

4 NATURE COMMUNICATIONS |8:  1249 |DOI: 10.1038/s41467-017-01359-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


scarring in the skeletal muscle of injected animals. Masson’s
trichromic staining revealed that fibrosis was reduced to a higher
extent in MAB-MiP- than in fibroblast-MiP-treated animals,
while it appeared partially reconstituted after AP20187 admin-
istration (Fig. 2f). Together, these data suggest that human MiPs
have regenerative potential for dystrophic skeletal muscles
in vivo. Importantly, the reversal of the beneficial effects after
AP20187-induced cell death indicates that MiPs are necessary for
exerting the observed regenerative effects. Furthermore, the
intrinsic in vivo propensity towards the skeletal muscle lineage
was more evident and durable from MAB-MiPs than those
derived from fibroblasts.

Genetic determinants control myogenic potential of MAB-
MiPs. To gain insight in the myogenic difference between MAB-
and fibroblast-MiPs, we proceeded to investigate which genes
were differentially expressed between fibroblast- and MAB-MiPs,
and whether differentially expressed genes were conserved from
the parental cells. To this goal, we used RNA-seq to analyze the
transcriptional profiles of fibroblast- and MAB-MiPs and the
iPSC lines from which the MiPs were derived. For this analysis we
used iPSC at the first stage of our differentiation, namely already
primed to mesodermal lineages, in order to increase the chance of
identifying changes in lineage determination genes. The tran-
scriptional profile of both fibroblast-derived and MAB-derived
MiPs was enriched (count> 100 FPKM) in genes associated
with myogenic mesoderm formation, including the epigenetic
regulators TET1/2/3, DNMT1/3a, HDAC4, SMARCE1/2/3, the
mesodermal markers MEF2C, GATA4, TBX3, PAX3, SIX1, ISL1,
and the markers of striated muscle MYOM2/3, DMD, SGCB.
Conversely, pluripotency-related genes such as POU5F1,
NANOG, ZFP42, DPPA4, LIN28a, GDF3 were poorly detectable
or absent (count< 10 CPM; P< 0.05 vs all three categories of
enriched genes, Wald-log test) (Fig. 3a). Moreover, mRNAs of
AGRIN and UTROPHIN were highly enriched in MiPs (FPKM
(avg± s.d.), 1257.15± 191.58 and 1560.39± 329.15 in fibroblast-
and MAB-MiPs respectively). Unbiased sample clustering and
principal component analysis showed that samples clustered
primarily according to stage (iPSCs vs MiPs), and secondarily
according to progeny (Fig. 3b, c). Intriguingly, gene ontology
(GO) comparison of differentially expressed genes at iPSC
stage (fibroblast- vs MAB-iPSCs) and MiP stage (fibroblast- vs
MAB-MiPs) showed high overlap (79.53%) of Biological Process
terms. Overlapping GO terms mainly pertained to developmental
program, signaling and cellular metabolism (Fig. 3d and Sup-
plementary Data 1). When clustered on a heatmap, patterns of
gene expression emerged reflecting stage-specific (differing iPSCs
from MiPs, regardless of progeny) or progeny-specific (differing

fibroblast- vs MAB-derived cells, regardless of stage) (Supple-
mentary Fig. 1a).

We found 905 genes differentially expressed between
fibroblast-derived MiPs and MAB-MiPs (Fig. 3e, Supplementary
Data 2). Among the significantly differentially expressed genes
(Padj< 0.05), several myogenic inhibitors were upregulated in
fibroblast-derived MiPs, whereas several muscle proteins and
myogenesis-associated genes were upregulated in MAB-MiPs.
Agonists of BMP signaling such as BMP6, SMAD5, and LTBP4
were upregulated in fibroblast-MiPs, whereas the BMP signaling
inhibitor SMAD7 was upregulated in MAB-MiPs (Fig. 3f).
Plotting the fold change of significantly differentially expressed
genes in MiPs compared iPSCs, we found that 56.17% of
differentially expressed genes conserved the progeny-specific
trend across stages, including many identified with the previous
analysis (Fig. 3g). We validated a subset of genes important for
myogenesis using qPCR. We first compared the expression levels
by qPCR between fibroblast- and MAB-progenies at somatic,
iPSC and MiP stages. OSTN, MYB, LHX2, BMP6, and SMAD5
were consistently upregulated in fibroblasts, fibroblast-iPSCs and
fibroblast-MiPs, while ANXA3, SMAD7, and PAX7 were
upregulated in MABs, MAB-iPSCs, and MAB-MiPs. LTBP4 was
upregulated in fibroblasts and fibroblast-MiPs, but not in
fibroblast-iPSCs, and similarly ANXA7 was upregulated in MABs
and MAB-MiPs, but not in MAB-iPSCs (Supplementary Fig. 1b).

We then examined CpG methylation and histone mark
enrichment in the promoters of these same genes. Bisulfite
sequencing analyses revealed that CpG methylation for OSTN,
MYB, LHX2, BMP6, and SMAD5 was increased in the MAB
progeny, while CpG methylation for ANXA3, SMAD7, and PAX7
was increased in the fibroblast progeny (Fig. 3h). The CpG
methylation patterns appeared less discriminative for LTBP4 and
ANXA7 (Fig. 3h). Chromatin immunoprecipitation analyses
revealed that the non-permissive marker H3K9me3 was corre-
lated with the methylation patterns and, conversely, the
permissive markers K4me2 and K27ac correlated with the
transcriptional upregulation trends (Fig. 3i). Notably, LTBP4
showed enrichment of K9me3 in the MAB progeny, of K4me2 in
fibroblasts and fibroblast-MiPs, and of K27ac in fibroblast-iPSCs,
MAB-iPSCs and MAB-MiPs. Conversely, ANXA7 showed
enrichment in K9me3 in the fibroblast progeny and in permissive
marks in the MAB progeny, with a spike of K27ac in fibroblast-
iPSCs (Fig. 3i). In association with the myogenic propensity
shown by MiPs in vivo, we defined OSTN, MYB, LHX2,
LTBP4, BMP6, and SMAD5 as an anti-myogenic gene pool, and
ANXA3/7, SMAD7, and PAX7 as a pro-myogenic gene pool.

We then asked whether perturbation of these pools could
shift the myogenic propensity of fibroblast- and MAB-MiPs.
To this end, we combined the endoribonuclease-prepared small

Fig. 2 Human MiPs engraft and are able to functionally regenerate dystrophic muscles. a, b Four weeks after delivery, immunostaining shows that
fibroblast- and MAB-MiPs engraft and express hDYS to a similar extent in the heart, but differently in the hindlimb muscles (gastrocnemius). After AP20187
administration and at the end of treatment (eight weeks post delivery), the trend remains in vehicle-treated mice, whereas GFP and hDYS signals are
ablated from AP20187-treated mice. Scale bars, ∼100 μm; insets, 20× magnification of indicated field. c Tetanic force of EDL muscles and treadmill assay
showed that skeletal muscle performance was increased in fibroblast-MiP-treated vs untreated mice, and increased in MAB-MiP- vs fibroblast-MiP-treated
mice. Also, the functional gain was lost after AP20187 injection. d Functional assessment of the heart, by means of fractional shortening quantitation,
shows comparable amelioration in both MiP-treated cohorts, but not after induced MiP death. Furthermore, CK serum levels followed a trend similar to
functional assessment of the skeletal muscles. Data points depict the average value of each animal. In e, f: *P< 0.05 vs sham; **P< 0.05 vs sham and
fibroblast-MiPs; §P< 0.05 vs own vehicle-control; Kruskal–Wallis and Mann–Whitney U test; n= 6/cohort before AP20187, n= 3/cohort at end-point. e
Bungarotoxin-based staining of NMJs throughout whole EDL and soleus muscles (n= 3/cohort) reveals that dystrophic mice (sham) present highly
fragmented NMJs, while MiP-engrafted fibers present NMJs with a morphology siilar to WT fibers. Quantitation of non-, mildly and highly fragmented
NMJs displays that only MiP-engrafted, but not non-engrafted, fibers in treated animals have a WT-like quantitative pattern (n= 3/cohort). Depicted are
average± st. dev bars. f-, fibroblast-derived. f Masson’s trichromic staining of hindlimb (quadriceps) muscles of recipient mice. Scale bar ∼50 µm. Blue
scars denote fibrosis, while myocytes are stained in red. Fibrosis is significantly reduced in MAB-MiPs recepient muscles at 4 weeks p.i., while the
difference is ablated after AP20187 amministration at 8 weeks p.i
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interfering RNAs (esiRNAs) targeting the anti-myogenic pool in a
pro-myogenic cocktail. Conversely, the esiRNAs targeting the
pro-myogenic pool were combined in the anti-myogenic cocktail
(Supplementary Table 1). Scramble esiRNAs were used as control
conditions. Since several key components of the BMP cascade
were involved in both gene pools, we enhanced the anti-myogenic

cocktail with soluble BMP6 and the pro-myogenic cocktail with
soluble Noggin. We first validated the effects of anti-myogenic
and pro-myogenic cocktails on target gene expression. Anti-
myogenic pool genes, LHX2, LTBP4, MYB, OSTN, and SMAD5,
were downregulated in the presence of pro-myogenic cocktail.
Similarly, the pro-myogenic pool genes, including ANXA3,
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ANXA7, PAX7, and SMAD7, were downregulated in the presence
of anti-myogenic cocktail (Supplementary Fig. 1c). We then
tested the effect of these cocktails on in vitro myogenic propensity
of MiPs in co-culture with C2C12 myoblasts and we proceeded to
stain with lamin A/C human nuclei in chimeric myotubes
(Supplementary Fig. 1d, e). We observed a significant increase
(P< 0.05 vs own ctrl (scramble), two-way ANOVA,
Kruskal–Wallis test) in the number of myofibers with three
human nuclei after PMC treatment compared to cells that
received the AMC treatment or to controls. We additionally
performed the co-cultures also in presence of the suicidal gene in
the MiPs, GIN+ MiPs (Supplementary Fig. 4a). A higher
myogenic propensity would result in higher contribution to
chimeric myotubes and hence a higher loss of myotubes after
exposure to AP20187. Myogenic propensity was significantly
reduced (P< 0.05 vs own ctrl (scramble), two-way ANOVA,
Kruskal–Wallis test) in fibroblast-derived MiPs and MAB-MiPs
after treatment with anti-myogenic cocktail, whereas it was
increased in pro-myogenic cocktail-treated cells (Supplementary
Fig. 4a). Importantly, pro-myogenic cocktail-treated fibroblast-
derived MiPs showed comparable myogenic differentiation to
control MAB-MiPs. Thus, perturbation of gene subsets by means
of defined factor cocktails enabled perturbation of MiP myogenic
propensity. Particularly, reduction of anti-myogenic genes in
fibroblast-derived MiPs resulted in a myogenic potential that is
comparable to MAB-MiPs.

Cell type-specific miRNAs regulate myogenic potency of MiPs.
In light of retained miRNA signatures after reprogramming11, we
asked whether miRNAs also influenced the myogenic potential of
MiPs. We analyzed the miRNA component of the same samples
that we previously analyzed by RNA-seq. The miRNA profile of
both fibroblast derived and MAB-MiPs was enriched (count> 30
FPKM) in miRNAs associated with mesodermal progression and
myogenesis including let-7a, miR-1/-590/-497/-34a/-27b/-101/-
133a/-138/-15a/-15b/-16/-199a/-21/-22/-221/-23a/-24. In contrast,
miRNAs associated with pluripotency including miR-372/-302a/-
302b/-302c/-302d/-367/106a/-363 were barely detectable or absent
in these cells (count< 2 FPKM; Fig. 4a). Similar to the observa-
tions in the RNA-seq dataset, unbiased sample clustering and
principal component analysis showed stage-specific clustering
(iPSCs vs MiPs), with cell type-specific segregation (fibroblast-
derived vs- MAB-derived) among each stage (Fig. 4b, c). At the
MiP stage, we found 611 differentially expressed miRNAs dis-
criminating fibroblast-derived MiPs vs. MAB-MiPs (Fig. 4d,
Supplementary Data 2). Among the significantly upregulated
miRNAs in fibroblast-MiPs, we selected those with predicted
targets among the upregulated genes previously identified by

RNA-seq. However, we did not experimentally confirm that
selected miRNAs are directly targeting the selected differentially
expressed genes. Data on the 3ʹ UTR binding prediction
and related mirsvr scores were obtained from microRNA.org
(Supplementary Fig. 2). Following this RNA-seq-based filter, we
identified miR-34c-5p/34c-3p/-362/-210/-590 for fibroblast-
derived MiPs, and miR-212/-132/-424/-146b/-181a for MAB-
MiPs (Fig. 4e and Supplementary Fig. 2). Among those, miR-34c-
5p/-34c-3p/-362 and miR-132/-424/-146b followed the same
differential expression trend seen at the iPSC stage, together with
44.84% of total differentially expressed miRNAs (Fig. 4f). We
validated the expression profile of all these miRNAs across
somatic, iPSC and MiP stages using qPCR (Supplementary
Fig. 3a). As in the previous experiments, we sought to define
oligonucleotide cocktails to simultaneously perturb these miR-
NAs. We combined synthetic inhibitors of fibroblast-MiP-
associated miRNAs and synthetic mimics of MAB-MiP-
associated miRNAs and tested whether this had pro-myogenic
potential. Conversely, inhibitors of MAB-MiP-associated miR-
NAs and mimics of fibroblast-MiP-associated miRNAs were
tested for anti-myogenic potential. These inhibitor and mimics
were tested for their effect on target miRNA level expression
(Supplementary Fig. 3b). Notably, MiPs treated with this miRNA-
based anti-myogenic cocktail showed downregulation of pro-
myogenic genes. Those MiPs treated with a miRNA-based pro-
myogenic cocktail had decreased levels of anti-myogenic genes
(Supplementary Fig. 3c). Consequently, we asked whether the
miRNA-targeting cocktails could shift the myogenic propensity of
MiPs when co-cultured with C2C12. We found that miRNA-
based anti-myogenic cocktail decreased myotube formation while
the miRNA-based pro-myogenic cocktail increased the myogenic
differentiation. We tested the cocktails in presence and in absence
of the apoptotic drug (Fig. 4g, h and Supplementary Fig. 4b).
Similarly to what we reported in Supplementary Fig. 1d, e, we
observed a significant (P< 0.05 vs own ctrl (scramble),
Kruskal–Wallis) upregulation of chimeric fibers containing three
or more human nuclei in co-cultures that received pro-myogenic
treatment compared to cells that received the anti-myogenic
treatment or to controls. Finally, we tested the translational
relevance of such approach by injecting cocktail-pretreated cells
in the femoral artery of Rag2−/−;γc−/−;Sgcb−/− mice. Four weeks
post injection, MiP-specific engraftment and hDYS expression
appeared significantly decreased (P< 0.05 vs own ctrl (scramble),
Kruskal–Wallis) for anti-myogenic-treated cells and increased for
pro-myogenic-treated cells, when compared to relative controls
(Fig. 4i). Quantitating the regeneration levels by means of hDYS
protein levels, we found that pro-myogenic-treated fibroblast-
MiPs performed as control MAB-MiPs (Fig. 4j). Thus, we have
shown that a defined combination of miRs and soluble ligands

Fig. 3 RNA-seq shows progeny-specific retention of part of transcriptional profile. a Log10 plot of variance vs normalized (norm) count for all genes
detected in fibroblast- and MAB-MiPs. Data points depict average values of detected genes. Genes associated with pluripotency and with epigenetic/
genetic control on muscle mesoderm are highlighted. b Unbiased clustering of all MiP and parental iPSC samples analyzed by RNA-seq. c PC analysis of all
samples reveals stage-specific, progeny-specific clustering. d GO analysis (Biological Process) of DE genes between fibroblast- and MAB-derived cells
reveals that >79% GO terms are overlapping between MiP and iPSC stages. Sub-categorization of overlapping GO terms is charted at the right. e Heatmap
(z-test) of DE genes (threshold, >10 norm counts) discriminating fibroblast- and MAB-MiPs. f Volcano plot of fold change vs p-value of all DE genes at MiP
stage (threshold, P= 0.05, dashed line). Left side of the chart, all genes and highlighted candidates enriched in fibroblast-MiPs; right side, genes and
candidates enriched in MAB-MiPs. g Log2 chart of fold change at MiP stage vs at iPSC stage of significantly DE genes (threshold, P< 0.05 at MiP stage).
Light blue dots depict genes upregulated in fibroblast-iPSCs and fibroblast-MiPs, while light red dots depict upregulated genes in MAB-iPSCs and
MAB-MiPs. Circled dots represent the candidates, as identified in f, with conserved DE trend. h Quantitation of results obtained from bisulfite sequencing
of upstream CpG islands of selected gene shortlists in fibroblast- and MAB-MiPs, and their parental iPSC and somatic cells. Data is depicted as heatmap
(z-test) of average percentages of methylated CpGs (n= 3 replicates/cell clone). i Quantitation of results obtained from ChIP-qPCR experiments analyzing
fibroblast- and MAB-MiPs, and their parental iPSC and somatic cells. H3k9me3, repressive mark; H3k4me2, H3k27ac, permissive marks. Data is depicted
as heatmap (z-test) of average percentages of IP-enriched vs total input DNA (n= 3 replicates/cell clone). f-, fibroblast-derived, DE, differentially
expressed
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contributes to somatic lineage determination in MiPs. Further-
more, perturbation of defined subsets of miRNAs by means of
oligonucleotide cocktails was able to rescue the myogenic
potential gap observed in fibroblast-MiPs compared to MAB-
MiPs.

Next, in order to unravel additional potential targets of the
miRs we performed RNA-seq analysis after the treatment with
the selective miRNA cocktails. As shown in Fig. 5a cells clustered
according to the treatment that was conducted. We found over
6,000 genes differentially regulated between MAB-MiPs treated
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with pro-myogenic cocktails and untreated, and 3,736 genes
differentially expressed between MAB-MiPs treated with anti-
myogenic vs untreated (Supplementary Data 3). For the
fibroblast-MiPs we detected 1,194 differentially expressed genes
between pro-myogenic-treated cells and untreated, and 829
between anti-myogenic-treated cells and untreated (Padj< 0.05,
Wald-log test, Fig. 5, full list in Supplementary Data 3).
Consistent with previous analysis ANXA3 was upregulated in
MAB-MiPs upon pro-myogenic treatment, while component of
the BMP cascade, such as SMAD9 and BMP6 were downregulated
in MAB-MiPs treated with pro-myogenic and upregulated in
MiPs treated with anti-myogenic cocktails (Fig. 5c–e). LTBP4 was
also upregulated in cells treated with anti-myogenic cocktail,
whereas MYB was downregulated upon pro-myogenic treatment
(Fig. 5d, e). In addition, genes encoding for muscle proteins,
including MYL6, ACTA2, TNNT1, were upregulated in pro-
myogenic cocktail-treated MiPs, and conversely downregulated in
anti-myogenic treated. In these cells myogenic promoters and
genes critical for muscle regeneration such as HAND1, CXCL16,
MET, and DLL were found downregulated (Fig. 5d). Interestingly,
we observed genes involved in smooth muscle differentiation,
including CNN2 and CNN3 and other genes relevant for skeletal
muscle functionality like MAST1 significantly downregulated in
cells that received an anti-myogenic treatment (Fig. 5d, f).
Epigenetic regulators, including TET1, CBX6, and HDAC6 were
found differentially regulated following the miRNA treatment.
Furthermore in cells treated with anti-myogenic cocktails we
detected upregulation of several genes that could be involved in
the muscle homeostasis, TGFB ligand GDF15 and autophagy
related genes ATG10 and ATG14. (Fig. 5e, f).

Finally, we investigated the CpG methylation and the histone
markers enrichment in the promoters of the putative pro-
myogenic gene pools and anti-myogenic gene pools (Fig. 5g, h).
In accordance to the RNA-seq data anti-myogenic genes
BMP6, SMAD5, and MYB showed a decrease in methylation in
MAB-MiPs treated with anti-myogenic cocktail (Fig. 5g).
Furthermore in these cells MYB displayed an increase in
permissive histone markers H3k4me2, H3k27ac. When treated
with pro-myogenic cocktails, MAB-MiPs showed a decrease of
the non-permissive marker H3k9me3 in ANXA3 as well as an
enrichment of permissive histone marker H3k4me2 in the
promoters of pro-myogenic genes PAX7, ANXA3, and SMAD7
(Fig. 5h).

In fibroblast-MiPs methylation was increased in the promoters
of SMAD7 and ANXA7 upon anti-myogenic treatment and this
correlates with an increase in H3k9me3 in the promoters of these
genes. Conversely anti-myogenic genes such as MYB and BMP6

were found partially methylated and decreased in permissive
markers H3k4me2 and H3k27ac after treatment with
pro-myogenic cocktail in accordance to what we observed in
the RNA-seq data. Taken together our results provide more
insight on the anti-myogenic and pro-myogenic miRNA cocktails
that we have previously defined, adding additional interesting
targets that could be responsible for the differential in vivo
performance of MiPs.

Discussion
Simultaneous regeneration of skeletal and cardiac muscle in
dystrophic subjects is compelling, considering that effective repair
of skeletal muscle would likely worsen heart conditions16. In this
regard, MiPs may represent a valid cell tool, as they can be
injected in the circulation and efficiently regenerate both striated
muscle types12. However, two main questions remained unad-
dressed with respect to the actual translational potential of this
iPSC-based strategy: in vivo behavior of human MiPs and
whether the myogenic differentiation potential of human MiPs is
influenced by reprogrammed cell types or origins, and if external
modulators could improve the performance.

To this end we explored the in vivo potential of human MiPs in
immunodeficient dystrophic mice in order to determine whether
the source of MiPs alters the outcome after engraftment. Taking
histological, molecular and functional data together, the capacity
to regenerate skeletal muscle of MAB-MiPs appears greater than
fibroblast-derived MiPs. Interestingly, the cardiomyogenic
potential seems comparable between the two MiP types. These
features recapitulate the in vitro behavior previously shown for
those cells12. In order to document that improvement after
engraftment was due to cell-intrinsic effects, we used induced
apoptosis in engrafted MiPs and found that this associated with
reversal of the beneficial effects at both molecular and functional
levels. We cannot exclude that the detrimental effects were par-
tially linked to the drug that induced apoptosis, AP20187.
However, this seems unlikely considering that the compound has
negligible toxic effects in vivo below 10 mg/kg17. Intriguingly,
MiP engrafted fibers showed improved NMJ morphology to levels
comparable to WT fibers. The mRNAs for AGRIN and UTRO-
PHIN, reported agonists of NMJ formation18,19, were highly
enriched in MiPs. More refined studies are still needed to address
the mechanism by which MiPs regenerate the fragmented NMJs
in engrafted skeletal muscle fibers.

In this study, we used dual delivery by injecting into both the
heart and femoral arteries to remain consistent with previously
reported conditions in mice12. However, we decided to further

Fig. 4 miRNA-seq analysis allows identification of progeny-specific miRNA cocktails for propensity perturbation. a Variance vs norm count plot of all
detected miRNAs in fibroblast- and MAB-MiPs. Data points depict average values of detected miRNAs. miRNAs associated with pluripotency and with
muscle mesoderm are highlighted. b Unbiased clustering of all MiP and parental iPSC samples analyzed by RNA-seq. c PC analysis of all samples reveals
stage-specific, progeny-specific clustering. d Heatmap (z-test) of DE miRNAs (threshold, >10 norm counts) discriminating fibroblast- and MAB-MiPs.
e Volcano plot of fold change vs p-value of all DE miRNAs at MiP stage (threshold, P= 0.05, dashed line). Left side of the chart, all genes and highlighted
candidates (miRNAs predicted to bind 3ʹ UTR of MAB-MiP-upregulated genes) enriched in fibroblast-MiPs; right side, genes and candidates (miRNAs
predicted to bind 3ʹ UTR of fibroblast-MiP-upregulated genes) enriched in MAB-MiPs. f Log2 chart of fold change at MiP stage vs at iPSC stage of
significantly DE miRNAs (threshold, P< 0.05 at MiP stage). Light blue dots depict miRNAs upregulated in fibroblast-iPSCs and fibroblast-MiPs, while
light red dots depict upregulated miRNAs in MAB-iPSCs and MAB-MiPs. Circled dots represent the candidates, as identified in e, with conserved DE trend.
g, h Quantification of MiP myogenic propensity in co-culture with C2C12 myoblasts after seven days of differentiation. Myotubes with three or more nuclei
were counted as well as human nuclei contributing to chimeric myotubes. Representative fields and quantitation of chimeric myotubes are presented.
P< 0.05 vs treated and non treated. Kruskal–Wallis and Mann–Whitney U test; n= 3 replicates per clone. f-, fibroblast-derived, AMC, anti-myogenic
cocktail (gene-based), PMC, pro-myogenic cocktail (gene-based), scale bar ∼100 µm. i Immunostaining analysis of hindlimb (gastrocnemius) muscles of
dystrophic, immunodeficient mice injected with AMC- or PMC-treated MiPs. Upper panels show engraftment, lower panels show appearance of human-
specific DYS subsarcolemmal pattern in engrafted fibers. Scale bars, ∼100 μm. j DYS quantitation by protein analysis is reported on the right. In g–i: ns, non
significant difference; *P< 0.05; Kruskal–Wallis test and Mann–Whitney U-test vs own ctrl (scramble oligos), n= 3/cohort. Depicted are average± st. dev
bars. f-, fibroblast-derived, DE, differentially expressed, AMC, anti-myogenic cocktail (miRNA-based), PMC, pro-myogenic cocktail (miRNA-based)
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explore only the mechanisms to enhance the myogenic potential
of MiPs, given the different performance in vitro and in vivo of
MiPs towards skeletal muscle, dependent on their cell type of
origin, while the cardiac commitment in vivo did not show dif-
ferences between human f- and MAB-MiPs, consistently with

murine and canine MiPs20. Analysis of transcriptional profiles in
MiPs confirms that MiPs retain much of the identity of their
original cell source. We selected genes to be manipulated to
enhance myogenic potential based on their known involvement
in MD or in muscle biology. Both LTBP4, which was upregulated
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in fibroblast-MiPs, and ANXA7 which was upregulated in MAB-
MiPs, showed progeny-specific differential expression in somatic
cells, but not in iPSCs. Considering the epigenetic data, it appears
that both genes presented a rather permissive histone signature in
our iPSCs. This probably contributed to restoring similar
expression levels of LTBP4 and ANXA7 in fibroblast- and MAB-
iPSCs. Therefore, it may be possible that the progeny-related
trends of differential expression for these genes are linked to a
non-pluripotent state. LTBP4 is a TGFβ regulator in the skeletal
muscle, and can modify muscular dystrophy21. Intriguingly,
annexins are also being investigated as genetic modifiers of dys-
trophic progression22. In our experiments, LTBP4 appeared
associated with decreased myogenic potential, while ANXA7,
together with ANXA3, associated with increased propensity.
Thus, more focused efforts should be directed on how these
factors possibly modify the lineage potential of human MiPs.

Use of miRNAs for enhancing myogenic fate in vivo is parti-
cularly compelling and may have high translational potential23. To
address whether we could identify miRNAs promoting myogenesis,
we overlaid RNA-seq and miRNA-seq data with the aim of defining
key components that could be used to enhance myogenic potential.
In both RNA- and miRNA-seq, the samples cluster primarily
according to cell type and this is reflected in the iPSCs and their
resulting MiPs. However, MiPs, whether derived from fibroblast or
MABs, share many differentially expressed genes but fewer miR-
NAs. This observation suggests that MiPs may require a more
complex body of miRNAs to tightly control a smaller transcrip-
tional divergence. Based on parental cell progeny, we defined
combinations of miRNAs to modulate MiP myogenic propensity.
Myogenic differentiation in vitro and in vivo was respectively
decreased or increased using cocktails of miRs. Notably, a cocktail
of pro-myogenic miRs was able to rescue fibroblast-derived MiPs to
the degree that they performed similarly to MAB-MiPs. Intrigu-
ingly, among the miRNAs we filtered into the anti-myogenic pools,
miR-34c/-362/-210 have been previously associated with patholo-
gical state of muscles24–26 and miR-590 has been recently associated
with differentiation inhibition and the TGFβ pathway27. Con-
versely, within the pro-myogenic pool, miR-424/-146b/-181a are
associated with myogenesis and muscle development28–30. miR-
212/-132 have been shown to inhibit MECP231, which in turn
regulates muscle maturation32. The miRNAs tested in the cocktails
were selected based on their known functions as well as their dif-
ferential expression.

RNA-sequencing analysis after anti-myogenic and pro-
myogenic miRNA treatment allowed identifying target genes
involved in miRNA regulation of MiPs. We found a high number
of genes differentially expressed upon miRNA cocktail exposures.
Among those, ANXA3, SMAD5, BMP6, MYB, LTBP4 were pre-
dicted targets of miRNAs included in the cocktails. In particular
exposure to pro-myogenic cocktail determined a consistent
downregulation of elements of the BMP/TGFβ signaling pathway,
and conversely anti-myogenic exposure resulted in an increased of
the TGFβ agonist GDF15, that has been interestingly associated
with muscle wasting in vivo33. Upon pro-myogenic treatment we

detected upregulation of genes coding for proteins important for
skeletal (ACTA2, ABLIM3) and smooth (CNN2, CNN3) muscle
homeostasis. These findings suggest potential contributions of the
pro-myogenic miRNAs we selected in enhancing smooth muscle
differentiation, opening the research of MiPs for appealing new
strategies for muscle degenerating diseases, where smooth muscles
are highly affected. Consistent with the modus operandi of miR-
NAs many epigenetic modulators were found differentially regu-
lated in treated cells. Interestingly we detected an upregulation of
SAFB2 in pro-myogenic-treated cells. It has been shown that its
paralog SAFB1 facilitates the transition of myogenic gene chro-
matin from a repressed to an activated state34; our results suggest
that SAFB2 could be involved in similar processes. Finally, we have
detected upregulation of autophagic markers such as ATG10 fol-
lowing anti-myogenic treatment, whose aberrant expression has
previously been implicated in disease associated with atrophy of
the skeletal muscle35.

Moreover, CpG island methylation and histone markers
enrichment analysis after miRNA treatment shed more light on
the set of anti-myogenic and pro-myogenic genes that we have
put forward. Although CpG island methylation analysis was
conducted on the most proximal CpG islands to the transcription
start site, this does not indicate that they are directly implicated in
gene regulation, nor that they are the only CpG islands respon-
sible for it. Nevertheless, our data suggests that these genes might
be epigenetically regulated at the same time by miRNAs, DNA
methylation and histone modifications.

In particular anti-myogenic BMP6, SMAD5, and MYB dis-
played a consistent pattern of DNA methylation and histone
markers enrichment, suggesting a simultaneous multifactorial
regulation. Other genes, such as ANXA3 and LTBP4 did not show
univocal signature at epigenetic level upon treatment. Finally,
ANXA7, PAX7, and SMAD7 promoters’ methylation and histone
markers enrichment was modulated upon treatment, although we
did not detect them among the differentially expressed genes,
suggesting once again the multifactorial mechanisms of actions of
epigenetic regulators.

We acknowledge that multiple strategies remain to refine and
optimize miRNAs useful for promoting myogenesis. In the future,
these miRNA-based strategies might benefit muscle regeneration
not only based on cell delivery, but also mobilizing and mod-
ulating resident stem cells.

This growing knowledge will be fundamental to improve preci-
sion and efficiency of miRNA modulation and, ultimately, MiP fate.
Moreover, it will be primarily important to test our approach in
large animal models, as a proof of a potential scale up. To this end
the Golden Retriver Muscular Dystrophy model (GRMD) would
provide the ideal fit to investigate cell engraftment, dystrophin
restoration and functional rescue of both striated muscle types.

Methods
Injection of MiPs and animal models. Human fibroblast- and MAB-MiPs derived
from fetal fibroblasts and MABs12 were transduced with GFP-iCasp9-36 and NIS-
PuroR-bearing14 viral vectors. GIN+cells were then sorted for GFP and cultured in

Fig. 5 RNA-seq after miRNA cocktail exposures shows myogenic-specific comittment enhancement of transcriptional profile. a PC analysis of a MAB-MiPs
samples reveals stage-specific, progeny-specific clustering. b Unbiased clustering of MAB-MiPs analyzed by RNA-seq. c–f Volcano plots of fold change vs
p-value of all DE genes in different conditions (threshold, P= 0.05, dashed line). MAB-MiPs untreated vs MAB-MiPs+AMC c, MAB-MiPs untreated vs
MAB-MiPs+PMC d, fibroblast-MiPs untreated vs fibroblasts-MiPs+AMC e, fibroblast-MiPs untreated vs fibroblasts-MiPs+PMC f. Left side of all charts, all
genes and highlighted candidates enriched in untreated-MiPs; right side, genes and candidates enriched in treated-MiPs. Blue dots depict genes that were
found downregulated while red dots depict genes that were found upregulated upon treatments. g Quantitation of results obtained from bisulfite
sequencing of upstream CpG islands of selected anti-myogenic and pro-myogenic gene pools in treated and untreated cells. Data is depicted as heatmap of
average percentages of methylated CpGs. h Quantitation of results obtained from ChIP-qPCR experiments analyzing fibroblast- and MAB-MiPs treated and
untreated. H3k9me3, repressive marker; H3k4me2, H3k27ac, permissive markers. Data is depicted as heatmap of average percentages of IP-enriched vs
total input DNA (n= 3). f-, fibroblast-derived. AMC, anti-myogenic cocktail (miRNA-based), PMC, pro-myogenic cocktail (miRNA-based)
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the presence of 1 μg/ml puromycin (Sigma-Aldrich), following reported condi-
tions12. All protocols on live mice were performed in compliance with the Belgian
law and the Ethical Approval of KU Leuven (P095/2012).

Rag2-null/γc-null/Sgcb-null male mice12 were divided in randomized groups at
3 months of age (n = 6, sham; n= 6, fibroblast-MiPs; n= 6, MAB-MiPs) and
injected with GIN+ MiPs (passages 7–10). MiPs were exposed to RPMI20%10%
medium for 48 h, then injected in parallel in the left ventricle myocardium and in
both femoral arteries under isofluorane anesthesia into each animal (5 × 105 cells/
5 × 2.5 μl in the myocardium; 5 × 105 cells/100 μl per femoral artery). Sham-treated
controls received equal treatment and amounts of cell-free saline solution.
Engraftment, regeneration and functional outcome were investigated at 4 and
8 weeks post-injection. 1 day after the mid-term analyses, three mice from each
cohort were injected with AP20187 (5 × 2 mg/body-kg every other day, i.p.),
whereas the other mice of each cohort received vehicle injections.

High-resolution digital ultrasound images were obtained by an experienced
echocardiographer using Vevo 2100 Imaging System (Visualsonics) with a 30MHz
probe. Mice were anaesthetized using 1% isofluorane in oxygen, and positioned on
the heating pad of the system, in order to maintain normothermia under
continuous monitoring. Pre-warmed ultrasound gel was applied on the shaved
thorax. B-mode-based 3D reconstruction was carried using the VisualSonics rail
system with fixed probe, with ECG- and respiratory gating. FS was calculated based
on LVIDd/s values, whereas EDV and CO were calculated based on 3D analysis.
Raw data were collected in blind.

Treadmill analysis was conducted on a 10°-uphill oriented treadmill belt with
1 m/min2 acceleration on a starting speed of 10 m/min. Mice run was stopped after
≥5 consecutive seconds on the pulsed grill.

Muscle force assessment was performed on freshly isolated EDL muscles upon
sacrifice, using a 1200 A in vitro muscle test system (Aurora Scientific). Muscle
force was probed upon 20 iterated bouts of isometric contractions (200 Hz, 80 V,
0.5 ms stimulation, 0.5 s tetanus, 10 s interval; 30 °C) in dedicated buffer (1.2 mM
KH2PO4, 0.57 mM MgSO4*7H2O, 2 mM CaCl2*2H2O, 10 mM HEPES, 0.5 mM
MgCl2*6H2O, 0.5 mM MgCl2*6H2O, 4.5 mM KCl, 120 mM NaCl, 0.7 mM
Na2HPO4, 1.5 mM NaH2PO4, 10 mM D-Glucose, 15 mM NaHCO3; pH 7.3; Sigma-
Aldrich). Data were analyzed as % of max absolute force of input sham muscles.

CK levels were measured in resting conditions (>24 h after last treadmill
exercise) from serum obtained from >50 μl blood (withdrawn from the tail vein).
CK level quantitation was performed using the Creatine Kinase Activity
Colorimetric Assay kit (BioVision), following manufacturer’s instructions for both
sample preparation and standard curve assessment.

Cell differentiation. MiP differentiation with C2C12 myoblasts was conducted as
previously reported12. Briefly cell were seeded 1:10 MiP/myoblast ratio in RPMI
20%/10% medium on collagen-coated vessels for 24 h, then differentiated in
DMEM 2% Horse serum medium for 96–120 h in 5% O2/5% CO2 at 37 °C. MiPs
and C2C12 were seeded and AP20187 (10 nmol) was added 48 h prior to immu-
nostaining analysis. Myogenic differentiation of human MiPs was conducted
seeding 5,000 cells/cm2 on gelatin(Millipore)-coated plastic (NUNC) in DMEM-
F12 supplemented with 20% FBS and 1% ITS (all reagents from Thermo Fisher
Scientific). After 24 h, medium was changed to DMEM-F12 supplemented with
20% FBS, 2 nM SB431542 hyclate and 2 nM LDN193189 hydrochloride (Sigma-
Aldrich). After 48 h, medium was changed to DMEM-F12 supplemented with 2%
horse serum, 2 nM SB431542 hyclate and 2 nM LDN193189 hydrochloride for
additional 48 h, prior to immunostaining analysis.

Gene-targeting cocktails were composed as follows: AMC, esiRNAs anti-
ANXA3/-ANXA7/-PAX7/-SMAD7 (Sigma-Aldrich); PMC, esiRNAs anti-OSTN/-
MYB/-LHX2/-BMP6/-SMAD5/-LTBP4 (Sigma-Aldrich). Cells were transfected
with a total of 1 μg esiRNAs and 1 μl lipofectamine 2000 (Thermo Fisher Scientific)
per mw24 well. AMC-treated cells were then kept in medium supplemented with
100 ng/ml BMP6 (Peprotech), whereas PMC-treated cells in medium
supplemented with 100 ng/ml Noggin (Thermo Fisher Scientific). Gene expression
and differentiation assays were conducted 48 h after transfection. miRNA-targeting
cocktails were composed as follows: AMC, miR-mimics for miR-34c-5p/-34c-3p/-
362/-210/-590, anti-miRs anti-miR-132/-146b/-424/-212/-181a; PMC, miR-mimics
for miR-132/-146b/-424/-212/-181a, anti-miRs anti-miR-34c-5p/-34c-3p/-362/-
210/-590 (all oligonucleotides from Sigma-Aldrich). Cells were transfected with
100 nmol of each miR-mimic and 20nmol of each anti-miR per mw12 well, with 2
μl lipofectamine 2000. Gene/miRNA expression and differentiation assays were
conducted 48 h after transfection.

Non-invasive imaging. Wild type and GIN+ MiPs were plated in quadruplet and
incubated with pertechnetate (99mTcO4

−) tracer solution (0.74 MBq/ml in DMEM)
for 1 h. Afterwards, cells were rinsed with ice-cold PBS and supernatant was col-
lected. The cells were lysed and collected. The radioactivity of the pellet and
supernatant was measured by 2480 Wizard2 Automatic Gamma Counter (Perki-
nElmer, Waltham, MA, USA). The results were adjusted for tracer decay. Uptake
values were corrected for cell amounts in the according samples as measured via
the NucleoCounter NC-100 system (ChemoMetec, Allerod, Denmark). The mice
received an intravenous injection of 3.7–5.55 MBq124I (PerkinElmer) on day 3 and
an intramuscular injection of 100 µl LASIX (20 mg/ml, Sanofi, Paris, France) as
diuretic. At 3 h later, a 20 min static scan was acquired with the Focus 220 small-

animal PET system (Siemens Medical Solutions, Malvern, PA, USA). A trans-
mission scan was acquired using a 57Co source (185 MBq, Eckert and Ziegler,
Berlin, Germany). PET images were reconstructed using a maximum a posteriori
(MAP) image reconstruction algorithm and were then analyzed with PMOD 3.0
(PMOD technologies, Zurich, Switzerland) Data were averaged on both legs per
animal to keep the intra-injection variability in account. SUV was calculated
according to the following formula: SUV=activity concentration in volume of
interest/(injected activity/weight of animal). Volumes of interest were manually
positioned around the graft regions.

Molecular and immunostaining assays. Validation of RNA-seq and miRNA-seq
data was carried out by means of qPCR, using SybrGreen for gene levels and
Taqman for miRNA levels. Gene qPCR was performed on 1:5 diluted cDNA
obtained from 1 μg total RNA (SybrGreen mix, SSIII cDNA production kit and
RNA extraction kit from Thermo Fisher Scientific), using Viia7 384-plate reader
(Thermo Fisher Scientific; final primer concentration, 100 nM; final volume, 10 μl;
PGK, internal reference; thermal profile, 95 °C 15 s, 60 °C 60 s, 40×). miRNA qPCR
was performed on 1:15 diluted cDNA obtained from 20 ng total miRNA pre-
paration (miRNA isolation kit, Thermo Fisher Scientific). Reagents and probes for
reverse transcription and Taqman-based qPCR are from Thermo Fisher Scientific,
and manufacturer’s protocols were applied.

Methylation patterns were assayed by means of bisulfite sequencing of CpG
islands in the promoter regions of target genes (as reported in UCSC genome
browser (hg19); primers by MethPrimer). Genomic DNA was isolated through
genomic DNA mini kit (Thermo Fisher Scientific), then 1 μg/20 μl was bisulfite-
converted using EpiTect Bisulfite kit (Qiagen). Single CpG island amplicons were
amplified by PCR (final primer concentration, 330 nM; final volume, 20 μl; thermal
profile: 95 °C 30 s, 55 °C 60 s, 72 °C 60 s, 40×, primers are listed in Supplementary
Table 2) at T3000 thermocycler (Biometra) using Taq polymerase (Thermo Fisher
Scientific), then gel-extracted by means of Gel Extraction kit (Thermo Fisher
Scientific) and ligated into pGEM plasmids via TA cloning (Promega). Single
bacterial clones were bulk-sequenced (GATC Biotech) and analyzed by means of
QUMA online software. Statistical analysis was performed on average methylation
values of 5 sequences per cell clone (3 clones per cell type, from independent
donors).

Histone mark levels were assayed by means of chromatin immunoprecipitation
(ChIP) on the same CpG islands assayed by bisulfite sequencing, adapting
previously reported conditions37 to 5 × 106 cell pellets. In total, 1 μg/10 μg DNA
polyclonal antibodies anti-K9me3 (repressive mark), anti-K4me2 (permissive
mark) and anti-K27ac (active mark; all antibodies from Active Motif #39142/
39133/39765) was used in the ChIP, and protein-A-coated sepharose beads (GE
Healthcare) were used for the subsequent pull-down. IgG isotype (eBioscience) was
used as negative ChIP control. In total, 5 μl out of 100 μl initial sonicated genomic
DNA fragment suspension was used as reference input. Purification of ChIP and
input DNA was performed by means of MinElute kit (Qiagen) and quantification
as % of input was performed through SybrGreen qPCR, following conditions
reported above. Statistical analysis was performed using 3 qPCR replicates per cell
clone (3 clones per cell type, from independent donors).

Western blot (WB) analyses were performed on 50 μg cell/tissue lysate (100 μg
for DYS analysis) according to commonly used procedures in 10% acrylamide (6%
for DYS analysis) hand-cast gels. Here follows the list of antibodies and relative
dilutions: mouse anti-sarcomeric α actinin (Abcam #ab72592), 1:500; rabbit anti-
GFP (Thermo Fisher Scientific, #A11122), 1:500; mouse anti-DYS3 (interacting
with canine and human isoforms, Novocastra #DYS3-CE-S), 1:500. Bands were
detected and pictured at Bio-Rad GelDoc by means of Pico substrate (Thermo
Fisher Scientific; Dura substrate for DYS analysis). Densitometric analyses were
carried on gels loaded, blotted and detected in parallel by means of QuantityOne
software (Bio-Rad).

Whole fluorescence imaging of injected tissues was performed at Olympus
SZX12 stereomicroscope by means of SISgetIT software (2″ exposition for GFP,
0.2″ for brightfield, semirefringent bottom), and with Zeiss SteREO Discovery V12
microscope by means of AxioImaging software (2″ exposition for GFP, 0.2″ for
brightfield, semirefringent bottom). For NMJ imaging and quantitation, mouse
soleus and extensor digitorum longus muscles were dissected and fixed in 4% PFA.
Muscle fibers were prepared and stained with rhodamine-coupled bungarotoxin
using 1:2.500 dilution (rhodamine-BTX, Invitrogen) for 1 h at room temperature.
Stained bundles were washed three times and embedded in Mowiol. Z-stacks of
individual NMJs were taken with 40× oil objective (Zeiss Examiner Z1). Images
were deconvoluted and analyzed using 3D deconvolution and 3D measurement
modules in AxioVision Software. Data are presented as the mean values, and the
error bars indicate ± s.e.m. The number of biological replicates per experimental
variable (n) is usually n > 5 or as indicated in the figure legends. The significance is
calculated by unpaired two-tailed t test and provided as real p-values that are
believed to be categorized for different significance levels, like,***p< 0.001, **p <
0.01, or *p< 0.05. Immunofluorescence staining was performed following the
commonly used steps of Triton-based (Sigma-Aldrich) permeabilization, donkey
serum-(Sigma-Aldrich) background blocking, overnight incubation with primary
antibody at 4 °C, 1 h incubation with 1:500 AlexaFluor-conjugated donkey
secondary antibodies (Thermo Fisher Scientific), and final counterstain with
Hoechst. Here follows the list of primary antibodies and relative dilutions: rabbit
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anti-laminin (Sigma #L9393), 1:300; goat anti-GFP (Abcam #ab5450), 1:500;
mouse anti-MyHC (DSHB #MF20), 1:3; mouse anti-sarcomeric α actinin (Abcam
#ab72592), 1:300; rabbit anti-Myocd (SantaCruz #sc-33766), 1:100; mouse anti-
DYS3 (canine- and human-specific, Novocastra #DYS3-CE-S), 1:100; mouse anti-
Pax3 (R&D #MAB2457), 1:300; rabbit anti-lamin A/C (#Epitomics 2966-1), 1:600.
Imaging was performed at Eclipse Ti microscope (Nikon) by means of Image-Pro
Plus 6.0 software (Nikon). Quantitation of engraftment, satellite cell and fiber
counts was performed by means of ImageJ software (NIH, USA) on at least 10
fields across heart and muscle samples. SCs and MABs were sorted as CD56+ and
AP+ populations at passage 0. Antibodies: mouse anti-CD56 (R&D, FAB7820A), 2
μl/105cells; mouse anti-AP (R&D, #FAB1448P), 2 μl/105cells.

RNA-seq and miRNA-seq. A 10 × 106 cell pool per clone was divided in two 5 ×
106 pools for RNA (Total RNA isolation kit and post-isolation DNase, Thermo
Fisher Scientific) and miRNA (miRNA isolation kit, Thermo Fisher Scientific)
extraction, respectively. RNA (>10 μg) and miRNA (∼1 μg) samples were then
verified and processed by the Genomics Core (KU Leuven – UZ Leuven, Belgium).
RNA-sequencing libraries were constructed with the TruSeq RNA Sample Prep
Kits v2 (Illumina). RNA-sequencing after miRNA treatment was performed 48 h
after treatment (n= 3 per conditions). Three RNA samples per group (one per
clone) were indexed with unique adapters and pooled for single read (50 bp)
sequencing in Illumina HiSeq2000. RNA-seq reads were aligned with TopHat
v2.0.2 to the human genome version hg1938. Transcripts were assessed and
quantities were determined by Cufflinks38. Differential expression levels were
assessed using DESeq39 and Wald-log test was applied. GO analysis was performed
by means of BinGO (biological process; within Cytoscape 3.2.1) on DE genes in
fibroblast- vs MAB-iPSCs, and in fibroblast- vs MAB-MiPs comparisons. GO terms
with P< 0.05 were subsequently compared between iPSC and MiP stages. Var-
iance, count and fold change analyses, as well as charts and z.test matrices were
conducted by means of Excel software (Microsoft). Heat maps were obtained
analyzing the z.test value matrices with GITools 2.2.240 (hierarchical clustering,
Manhattan distance, average linkage). Data about 3ʹUTR binding prediction and
related mirsvr scores were obtained from microRNA.org41,42 (Aug 2010 release;
conserved, good-score matrix).

Statistical analyses. Sample size for in vitro/in vivo experiments was calculated by
means of Sample Size Calculator (http://www.stat.ubc.ca/~rollin/stats/ssize/index.
html; parameters: power, 0.80; alpha, 0.05). When applicable, sample size analysis
was based on average values obtained from preliminary optimization/validation
trials. When comparing multiple data pools, Kruskal–Wallis test followed by
Mann–Whitney U test between two target populations were applied and sig-
nificance was scored when P< 0.05 for both tests. When comparing two data pools,
Mann–Whitney U test was applied and significance scored when P< 0.05. All
statistical analyses were conducted using Prism v5.0 (GraphPad).

Study approval. All protocols and experiments on mice and murine samples were
performed in compliance with the Belgian law and the Ethical Approval of KU
Leuven.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its supplementary information files or
from the corresponding author upon request. RNA-seq and miRNA-seq data have
been deposited in GEO NCBI under the accession code GSE102283.
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