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Colloidal zinc oxide-copper(I) oxide nanocatalysts
for selective aqueous photocatalytic carbon dioxide
conversion into methane
Kyung-Lyul Bae 1, Jinmo Kim 1, Chan Kyu Lim 1, Ki Min Nam2 & Hyunjoon Song 1

Developing catalytic systems with high efficiency and selectivity is a fundamental issue for

photochemical carbon dioxide conversion. In particular, rigorous control of the structure and

morphology of photocatalysts is decisive for catalytic performance. Here, we report the

synthesis of zinc oxide-copper(I) oxide hybrid nanoparticles as colloidal forms bearing copper

(I) oxide nanocubes bound to zinc oxide spherical cores. The zinc oxide-copper(I) oxide

nanoparticles behave as photocatalysts for the direct conversion of carbon dioxide to

methane in an aqueous medium, under ambient pressure and temperature. The catalysts

produce methane with an activity of 1080 μmol gcat−1 h−1, a quantum yield of 1.5% and a

selectivity for methane of >99%. The catalytic ability of the zinc oxide-copper(I) oxide hybrid

catalyst is attributed to excellent band alignment of the zinc-oxide and copper(I) oxide

domains, few surface defects which reduce defect-induced charge recombination and

enhance electron transfer to the reagents, and a high-surface area colloidal morphology.
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There has been intensive research on direct carbon dioxide
(CO2) conversion reactions via photochemical, electro-
chemical, and biological approaches1–3. A photochemical

method using sun light in aqueous solutions is regarded as a
leading potential approach due to the prospect of using free and
plentiful solar energy without damaging the environment4–6.
Titanium dioxide (TiO2) is a representative photocatalytic
material for this purpose, due to its effective charge separation
ability, abundance, and low environmental toxicity7, 8. The
addition of co-catalysts such as platinum (Pt) and copper (Cu)
can enhance the catalytic activity9–11. However, these TiO2-based
hybrid catalysts mostly generate hydrogen (H2) rather than car-
bon species from carbonated water12, because the electrochemical
reduction potentials of water to H2 (−0.41 V vs. normal hydrogen
electrode (NHE)) and CO2 to reduced species (−0.58 to −0.24 V
vs. NHE) are in a similar range9. Consequently, a novel strategy
for increasing selectivity would be helpful for enhancing CO2

conversion reactions.
Copper oxides are p-type semiconductors with narrow bandgaps

(CuO, Eg= 1.35 to 1.7 eV; Cu2O, Eg= 1.9 to 2.2 eV) and have been
employed in pigments, solar cells, electrodes, and catalysts for organic
reactions13, 14. In particular, their favorable light absorption in the
visible range enables copper oxides to be photocatalytic materials.
The formation of hybrids with TiO2 can form p–n type junctions,
which exhibit better charge separation and enhanced activity for
photocatalytic CO2 reduction13. Schaak et al.15 deposited TiO2 onto
Cu3N nanocubes at high temperature to yield hollow TiO2−xNx-CuO
nanocubes, which showed high conversion of CO2 to CH4

15. Ye
et al.16 synthesized porous TiO2-Cu2O nanojunction materials, which
exhibited a large enhancement in CH4 evolution activity. Although
the proper combination of semiconductor and co-catalyst is essential,

the structure and morphology (e.g. size, shape, and surface structure
of each domain and their interfaces) is also critical in determining the
catalytic properties. Rigorous control of these factors is critical for
designing a photocatalyst with optimal performance17.

Here, we select the combination of Zn(II) oxide and Cu(I) oxide
for effective photocatalytic CO2 conversion. Zn-Cu oxides are
known from their use as photocatalysts for dye degradation18, 19.
We expect that Zn and Cu oxides will also be an excellent photo-
catalyst for CO2 reduction, due to the fact that CO2 species are
readily adsorbed on the surface sites of metal oxides20, 21. Guided by
this inspiration, we are able to successfully grow Cu2O single-
crystalline nanocubes on ZnO surfaces, generating a ZnO-Cu2O
hybrid nanostructure with well-defined surface structures. In the
absence of any additional sacrificial reagents, CO2 reduction occurs
in neutral carbonated water using the colloidal ZnO-Cu2O catalyst.
The resulting CH4 production rate is 1080 μmol gcat−1 h−1, which is
one of the highest activities reported thus far in an aqueous med-
ium. The estimated quantum efficiency (QE) is 1.5%, and the
selectivity of CH4 production exceeds 99%, whereas a control
experiment with a TiO2-Cu2O catalyst mainly generates H2.

Results
Synthesis and characterization of ZnO-Cu2O hybrid nano-
particles. ZnO-Cu2O hybrid nanoparticles were synthesized via a
two-step process in a single batch. ZnO spheres were formed
through a polyol process in the presence of PVP (poly(vinyl
pyrrolidone)) behaving as a surfactant. After the complete
hydrolysis of Zn precursors, a Cu precursor solution was added
in situ to the reaction mixture and heated for an additional 5 min.
Rapid cooling and separation yielded ZnO-Cu2O nanoparticles
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(Fig. 1a)22. The transmission electron microscopy (TEM) image
in Fig. 1b shows that each particle has an isolated structure
containing multiple cubic shapes attached to a spherical core. The
average diameter of the spherical cores was 40± 7 nm, and that of
the cubic domains 18± 3 nm. The high-resolution TEM
(HRTEM) image in Fig. 1c shows that the spherical core is
actually an aggregate of small single-crystalline domains, in which
the average size of each domain is estimated to be 7± 1 nm. A
cubic domain attached to the core is also single crystalline. The
distances between adjacent lattice fringe images are nearly iden-
tical over all domains, 0.247 nm in the core and 0.246 nm in the
cubic domain. The scanning transmission electron microscopy
(STEM) image in Fig. 1d clearly shows that an individual particle
is composed of a spherical aggregate of small particulates in the
core, with multiple rectangular domains bound to it. The ele-
mental mapping image by energy dispersive X-ray spectroscopy
(EDX) in Fig. 1e indicates that Zn and Cu components are
completely separated, with Zn located in the spherical core and
Cu in the cubic domains.

X-ray diffraction (XRD) data in Fig. 1f show that the pattern is
an exact sum of the diffractions from hexagonal wurtzite ZnO
(red, JCPDS #36-1451) and primitive cubic Cu2O (blue, JCPDS
#77-0199). The single-crystalline domain size of the ZnO cores is
estimated to be 7.9 nm from the FWHM of ZnO(101) peak using
the Scherrer equation, in good agreement with the size measured
by the HRTEM image. The ultraviolet (UV)–visible (Vis)
spectrum of the ZnO-Cu2O nanoparticles in Fig. 1g is also a
linear combination of those for ZnO and Cu2O nanoparticles.
The band gap energies of the ZnO and Cu2O domains are 3.3 eV
and 2.3 eV, respectively, estimated using Tauc plots of the
UV–Vis spectra (Supplementary Fig. 1)23. X-ray photoelectron
spectroscopy (XPS) in the Zn 2p3/2 region shows that a single
peak at 1021.4 eV is assignable to Zn(II) (Fig. 1h). In particular,
the spectrum in the Cu 2p3/2 region shows a single symmetric
peak at 932.1 eV, indicating that there was no formation of Cu(II)
during the synthesis (Fig. 1i). These observations confirm that the
product is ZnO-Cu2O hybrid nanoparticles with ZnO in the cores
and Cu2O in the cubic domains.

It is known that the Zn precursors were hydrolyzed in an
alcoholic medium to generate Zn alcoxides, which were
transformed into ZnO nanocrystalline seeds by dehydration at
high temperature. The small seeds were simultaneously aggre-
gated to yield large spheres via an oriented attachment
mechanism24. Then, the Cu precursors were hydrolyzed and
reduced to Cu+ and formed Cu2O on the ZnO surface. It is noted
that the distance (0.247 nm) of adjacent lattice fringe images in
the sphere in Fig. 1c matches the distance of ZnO(101) planes. It
is nearly identical to the distance of lattice fringes in the cubic
domain of 0.246 nm, assignable to the distance of Cu2O(111).
This low lattice mismatch may lead to the direct growth of Cu2O
on the ZnO surface forming good junctions. The crystal structure
of Cu2O is primitive cubic so the Cu2O domains grow to generate
cubic-type morphology by preferential adsorption of PVP on the
Cu2O(100) surface.

Photocatalytic CO2 conversion using ZnO-Cu2O hybrid cata-
lysts. The photocatalytic CO2 conversion reaction was conducted
using our well-defined ZnO-Cu2O hybrid nanoparticles in an
aqueous medium. ZnO is an n-type metal oxide semiconductor
with a large band gap (3.2 to 3.3 eV) with a low dielectric constant
and high electron mobility, compared to those of TiO2

25, 26. For
dye degradation reactions, ZnO catalysts show better photo-
catalytic activity than TiO2 counterparts under the irradiation of
UV–Vis light27. A few examples of ZnO-Cu2O heterostructures
exhibited enhancement of dye degradation through the formation
of p-n junctions18, 19, 28. In the present experiments, the pH of the

reaction medium was fixed to 7.4 by the addition of perchloric
acid. At this pH, the ZnO-Cu2O hybrid catalysts were stable to
assess the photocatalytic reactions by prolonged UV–Vis irra-
diation. The CO2 saturation in the aqueous medium was achieved
using a 0.2 M Na2CO3 solution stirred under CO2 pressure of 2.6
bar for 40 min29. After release of the pressure, CO2 bubbling was
continued at ambient pressure and temperature. By the irradia-
tion of light using a 300W Xe lamp, only two chemicals, CH4 and
CO, were detected as gaseous products using gas chromato-
graphy. CH4 was the primary product with the amount of 62
μmol for 3 h (Fig. 2a), equating to catalytic activity of 1080 μmol
gcat−1 h−1 with respect to the total amount (19 mg) of the ZnO-
Cu2O catalyst used in this reaction. Remarkably, the amounts of
CO and H2 generation were only 1.4 and 0.7 μmol, respectively,
which means that the selectivity of CH4 production was higher
than 99%. To prove the CH4 production was not from organic
residues, a control experiment was carried out under N2 atmo-
sphere. By irradiation with light for 3 h, the catalyst showed a
negligible CH4 production of 8.4 × 10−3 μmol (red, Fig. 2b). No
reaction occurred in the absence of irradiation or catalyst,
meaning that the CH4 production actually originated from pho-
tocatalytic CO2 reduction in the presence of the ZnO-Cu2O
catalyst. The reaction in the presence of 13CO2 was also carried
out (Supplementary Fig. 2). Based on a signal at m/e= 17,
assignable to the 13CH4 peak in the gas chromatography–mass
spectrometry (GC–MS) chromatogram when 13CO2 and
Na213CO3 were used, the percentage of CH4 directly generated
from CO2 was estimated to be 88% during the reaction.
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Eq. 1 was used to estimate the QE of CO2 photoconversion to
CH4:30

QE %ð Þ ¼ 8 ´Number of CH4 molecules
Number of incident photons

´ 100 ð1Þ

It is noted that eight electrons are required for the production
of one CH4 molecule from CO2. The number of photons was
calculated using the wavelength region between 200 to 540 nm
based on the UV–Vis absorption of the catalysts (Fig. 1g) and the
intensity of the incident light. The QE from photons to CH4

molecules was estimated to be 1.5%.
To ensure that the ZnO-Cu2O hybrid structure is critical in

CH4 production, ZnO spheres and Cu2O cubes with similar size
and morphology were prepared (Fig. 3a, b) and employed for
photocatalytic CO2 conversion. Under the experimental condi-
tions, the activity of the ZnO spheres was estimated to be 15
μmol gcat−1 h−1, and that of the Cu2O particles was 180 μmol
gcat−1 h−1, for CH4 production (Fig. 3c). The lifetime of
photogenerated electrons was directly measured by means of
time-correlated single photon counting (TCSPC). The decay of
transient absorption was measured at 620 nm, which corresponds
to transition between the energy bands at the interface31. The
photoexcited electron lifetime of ZnO-Cu2O nanoparticles (τ1/2=
837.1 ps) is large, compared to those of ZnO (τ1/2= 491.4 ps), and
Cu2O (τ1/2= 206.5 ps) nanoparticles (Supplementary Fig. 3). This
may be attributed to the interfacial states trapping electrons,
which reduces the rate of charge recombination from the
conduction band to the valence band of ZnO and facilitate

tunneling to the valence band of Cu2O32. The photo-response of
the ZnO-Cu2O catalysts was measured during irradiation with
UV–Vis and visible light (>425 nm). The catalyst deposited on a
FTO electrode generated cathodic photocurrents at an applied
potential of −0.45 V vs. Ag/AgCl in a phosphate buffer, implying
a p-type characteristic of the Cu2O domains. The electrode
generated almost identical photocurrents under UV–Vis and
visible light irradiation, indicating that the visible light absorption
in the Cu2O domains is critical to generate photoelectrons
(Fig. 3d).

The CH4 production rates were also measured using ZnO-
Cu2O catalysts synthesized from various ratios of the Zn/Cu
precursors, but the activities were inferior to that of the optimized
catalyst (Supplementary Fig. 4). This is because either the Cu2O
domains were not fully grown on the ZnO surface, or the
resulting catalyst was not uniform in its morphology. This
indicates that the catalyst structure is an essential factor to
maximize the catalytic performances.

Mechanistic aspects of CO2 conversion reactions. A mechanism
of CO2 reduction is proposed based on these experimental results.
The ZnO-Cu2O hybrid catalyst absorbs both UV and visible light
corresponding to the bandgaps of 3.3 eV for the ZnO and 2.3 eV
for Cu2O domains (Fig. 1g). Well-defined domain structures are
expected to induce an appropriate bandgap alignment as depicted
in Fig. 3e4, 33–35. In the Z-scheme mechanism, the effective
electron transfer from the conduction band of ZnO to the valence
band of Cu2O domains leads to long-lived charge separation
states with the excited electrons at the conduction band of the
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Cu2O domain and the holes at the valence band of the ZnO
domain. The excited electrons are eventually transferred to the
surface-adsorbed CO2, and the holes are transferred to water
molecules. With this mechanism, high activity of the ZnO-Cu2O
catalyst system can be explained by the following aspects. First,
ZnO has a lower dielectric constant and a higher electron mobility
than TiO2

25–27, which causes a low electron-hole recombination
rate in photochemical reactions. The valence band edge energy of
ZnO (2.8 eV vs. NHE) is far lower than the water oxidation
potential (0.82 V vs. NHE), which overcomes the large over-
potential commonly required for water oxidation reactions. Cu2O
is also superior to CuO for CO2 reduction by water, due to its large
bandgap (2.4 eV) with a high-conduction band edge energy (−1.4
V vs. NHE) compared to that of CuO (−0.8 V vs. NHE)4, 36. It is
also significantly higher than the reduction potentials of CO2 to
other reduced products (−0.24 ~ −0.58 V vs. NHE)5, 9, supplying a
sufficient amount of energy to the reactants. These bandgap
energies render the combination of ZnO-Cu2O a good fit with the
ideal band diagram for facile CO2 reduction (Fig. 3e). Second, the
formation of uniform domain structures facilitates electron and
hole transfers to the reagents. When a photocatalyst is immersed
in water, charge transfer occurs at the semiconductor-solution
interface due to the equilibration of electron density between two
phases37, 38. The net result is the formation of an electrical field at
the semiconductor surface. In the case of n-type semiconductors
(ZnO), when photogenerated electron-hole pairs form in the space
charge region, this leads to hole transfer to the surface and water
oxidation. Similarly, photogenerated electrons move to the surface
and reduce CO2 in p-type semiconductors (Cu2O). In general,
surface defects result in the formation of defect energy levels, and
trap the charges, lowering the quantum yields39. In our ZnO-
Cu2O hybrid nanoparticles, the cubic Cu2O domains are covered
by the defect-less Cu2O(100) facets, and the ZnO is composed of
single-crystalline domains as large as 8 nm in diameter. These
have fewer surface defects than any other Zn-Cu
structures18, 19, 28, and this enhances charge transfer to the
reagents. Third, the discrete morphology of the nanoparticles, by
which a colloidal dispersion is readily formed in aqueous medium,
is advantageous in terms of higher surface area than those of large
powders or aggregates. CO2 molecules should be continuously
adsorbed onto the surface sites of the Cu2O domains, and protons
in water also approach the reaction sites. Therefore, the high
surface area resulting from the colloidal morphology is critical for
the absorption of both reactants needed to achieve high activity.

The other mechanism, double charge transfer, which includes
electron transfer from the conduction band of Cu2O to ZnO
domains and hole transfer from the valance band of ZnO to Cu2O,
has also been proposed in several photoreduction systems16, 31, 39.
However, in our catalysts, the CH4 production of the pure ZnO
aggregates was negligible, while the pure Cu2O nanoparticles
showed a significant activity (Fig. 3c), indicating that the Cu2O
domains are main active sites for CO2 reduction. In the aspect of
band edge energies, the Z-scheme mechanism in Fig. 3e is more
reasonable to provide large overpotentials of both CO2 reduction
and water oxidation reactions, which the double charge transfer
mechanism cannot offer. To suggest the proper photophysical
mechanism, the reaction was carried out by irradiation with visible
light (UV cutoff filter λ> 420 nm) under the present conditions.
The CH4 production was almost negligible during the reaction,
and the surface state of the catalyst was unchanged after the
reaction. After the removal of the cutoff filter, CH4 was generated
with activity similar to that of the original experiment at a fixed
light intensity of 0.59Wcm−2 (Supplementary Fig. 5). This result
indicates that the excitation of electrons in the ZnO domain is
critical to activate the catalyst, and a Z-scheme is a more reliable
reaction mechanism for our catalytic system.

For the issue of selectivity, this photocatalytic system provides
sufficient energy, due to the Z-scheme, to provide photoexcited
electrons at a high energy level for CO2 reduction. It is known
that the products are highly dependent upon the relative energy
levels of intermediates4, 5, 40. Gattrell and many other researchers
suggested that the radical anion of CO2 is adsorbed on the metal
surface and forms a carboxylic radical, which converts to CO by
the interaction with surface hydrogen radical8, 41, 42. According to
the calculations, the rate determining step of the process is the
hydrogenation of CO into the formyl radical, which strongly
influences the product distribution. Cu has a strong binding
strength for adsorbed intermediates and facilitates the hydro-
genation. More specifically, it is reported that the intermediates
are particularly stabilized on the Cu2O(100) surface43, which
prevents the desorption of CO and allows efficient coupling with
protons during the reaction. In the present reaction conditions,
the reaction medium contains a high proton concentration at
neutral pH and behaves as a rich hydrogen source that directly
supplies protons8, 41. The resulting intermediates, such as formyl
radicals or carbenes, are further hydrogenized to eventually
produce CH4. To understand the reaction mechanism in detail
further studies are required.

The counter reaction, oxidation, should be driven by the
photogenerated holes at the same time. Mostly the holes were
transferred to water molecules and led to oxygen evolution, which
was detectable by GC, but the PVP adsorbed on the catalyst
surface might also behave as a hole scavenger during the early
stage of the photocatalytic reaction.

Comparison to the TiO2(P25)-Cu2O hybrid catalysts. For
comparison, we synthesized a TiO2(P25)-Cu2O hybrid structure
to investigate the composition and morphology effects vs. cata-
lytic performance. The TiO2(P25)-Cu2O hybrids were synthe-
sized via the reduction of the Cu precursors in the presence of
commercial P25. A TEM image and EDX analysis indicate that
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the Cu domains were successfully deposited on P25 (Fig. 4a and
Supplementary Fig. 6). The XPS data in the region of Cu 2p3/2
also indicates the presence of Cu species on the surface (Fig. 4b).
Under the present reaction conditions of CO2 reduction by
irradiation for 3 h, the quantity of gaseous products using the
TiO2(P25)-Cu2O catalysts (9.5 mg) were 3.8, 0.28, and 17 μmol
for CH4, CO, and H2, respectively. The activity for each product
was estimated as 130, 10, and 580 μmol gcat−1 h−1 for CH4, CO,
and H2, respectively, of which the total gas production was
inferior to that using the ZnO-Cu2O catalyst (Fig. 4c). In parti-
cular, the TiO2(P25)-Cu2O catalysts generated H2 as a major
product and CH4 as the second, whereas the ZnO-Cu2O catalysts
showed 99% selectivity for CH4 (Fig. 4d). Regarding direct CO2

conversion, the ZnO-Cu2O catalysts are superior to TiO2(P25)-
Cu2O for both reaction activity and selectivity.

Stability of the ZnO-Cu2O catalyst. The durability of the ZnO-
Cu2O catalyst was tested under the present reaction conditions.
The CH4 production rate was constant under prolonged irra-
diation up to 8 h, and then dropped at over 11 h. (Fig. 5a). The
reaction was carried out in a closed chamber; therefore, CO2

depletion in the reaction medium may be the main reason for this
activity decrease (See Supplementary Information). To prove the
catalyst stability, multiple reactions with repeated CO2 charging
in the chamber were attempted. The reaction profile indicates
that the CH4 production linearly increased for more than 4 h. At
this period, the reaction was stopped, the catalyst particles were
re-dispersed in a fresh reaction medium with 0.2 M Na2CO3, and
additional reactions were carried out under identical conditions.
This process was repeated one more time. In each trial, the
amount of CH4 production linearly increased, and the reaction
activity was nearly unchanged as shown in Fig. 5b. This implies
that the catalyst stability was maintained over the reaction period
of 12 h, when the fresh reaction medium was supplied. Instead of
using the static reaction conditions inside the chamber, a con-
tinuous CO2 flow through the reaction mixture is a potential
solution to enhance the catalyst stability.

Comparison to other photocatalysts used for CO2 conversion.
The catalytic performance of the ZnO-Cu2O hybrid catalyst is listed
with those of other catalysts reported in the literature (Table 1). It is
very difficult to provide a direct comparison to other CO2 reduction
catalysts, due to different experimental conditions such as light
source, reaction medium, and distinct products. However, the ZnO-
Cu2O catalyst exhibits one of the highest activities and quantum
yields among catalysts in aqueous media; sometimes two or three
orders of magnitude higher than those of the other catalysts. The
activity of the ZnO-Cu2O catalyst is comparable to the highest
activities observed among solid catalysts under the conditions of
high pressure CO2 and high temperature.

Discussion
ZnO-Cu2O hybrid nanoparticles were synthesized through the
direct surface growth of Cu2O on ZnO spheres. The resulting
nanoparticles have ZnO and Cu2O domains with few surface
defects and well-defined junctions. Photochemical CO2 reduction
reactions were carried out using the ZnO-Cu2O catalyst in an
aqueous medium under ambient conditions. The catalyst exhib-
ited a high reactivity of 1080 μmol gcat−1 h−1 with a QE of 1.5%
and 99% selectivity for CH4. This performance for selective CH4

generation is attributed to the energetic match between the ZnO
and Cu2O components, and their defect-less surface and junc-
tions. These properties suppress charge recombination and
enhance effective charge transfer. This strategy to design and
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Fig. 5 Stability experiment of the ZnO-Cu2O catalysts. a Amount of CH4

production using the ZnO-Cu2O catalysts as a function of the irradiation
time up to 14 h. The reaction conditions were pH= 7.4 and λ> 200 nm. The
CH4 amount was converted based on the catalyst amount fixed to 19mg. b
The amount of CH4 production under the identical reaction conditions
except the change of the reaction medium at each 4 h reaction time

Table 1 Comparison of the reaction conditions and performances with other catalysts for photocatalytic CO2 reduction

Catalyst Light source Reaction medium Products Activity Reference

ZnO-Cu2O 300W Xe lamp Saturated CO2 in water, 0.2M Na2CO3 CH4 1080 μmol gcat−1 h−1 QE= 1.5% This work

Colloidal CdS Medium pressure arc lamp Saturated CO2 in water, 0.1 M TMACl,
0.01 M hydroquinone

HCOOH, CH2O,
glyoxylic acid

3.21 μmol gcat−1 h−1 for HCOOH
QE= 0.125%

Grimshaw et al.
(ref. 44)

NiO-InTaO4 Circular fluorescent lamp Saturated CO2 in water, 0.2 M NaOH CH3OH 2.8 μmol gcat−1 h−1 QE= 0.0045% Wu et al. (ref. 45)
2.0% Cu/TiO2 8W UV Hg lamp Saturated CO2 in water, 0.2 M NaOH CH3OH 19.75 μmol gcat−1 h−1 QE= 10.02% Wu et al. (ref. 46)
Nafion/Pd-TiO2 300W Xe lamp Saturated CO2 in water, 0.2M Na2CO3 CH4 45 μmol gcat−1 h−1 Choi et al. (ref. 29)
Ru(bpz)32+/Ru λ> 420 nm Saturated CO2 in water/CH3CH2OH,

0.05M NaHCO3, 0.17M TEOA
CH4 QE= 0.04% Willner et al. (ref. 47)

Pt-TiO2 thin film 400W Xe lamp CO2 and water flow of 3 mLmin−1 CH4 1361 μmol gcat−1 h−1 QE= 2.6% Biswas et al. (ref. 11)
AuCu-P25 1000W Xe lamp (AM 1.5) 1.7 atm water saturated CO2, 60 °C CH4 2200 μmol gcat−1 h−1 Garcia et al. (ref. 48)
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synthesize well-defined nanostructures as colloidal forms could be
expandable to other materials for photochemical reactions. It
might also have a significant impact on the understanding of the
mechanisms and key factors needed to achieve maximum cata-
lytic performance.

Methods
Chemicals. Zinc(II) acetylacetonate hexahydrate (Zn(acac)2∙6H2O, 99.995%), 1,5-
pentanediol (1,5-PD, 96%), poly(vinyl pyrrolidone) (PVP, Mw= 55,000), copper
(II) acetylacetonate (Cu(acac)2, ≥ 99.95%), titanium (IV) oxide (P25, TiO2, 99.5%),
sodium carbonate (Na2CO3, ≥ 99.0%), and perchloric acid (HClO4, 60%) were
purchased from Sigma-Aldrich and used without further purification.

Synthesis of ZnO-Cu2O hybrid nanoparticles. Zinc acetylacetonate hexahydrate
(0.10 g, 0.40 mmol) and PVP (1.0 g, 9.0 mmol) were dissolved in 1,5-PD (50 mL)
under inert conditions at 130 °C to ensure complete dissolution. The solution was
heated to 225 °C for 6 min and allowed to stir for 3 min at the same temperature.
Copper acetylacetonate (0.10 g, 0.40 mmol) was dissolved in 1,5-PD (5.0 mL) under
an inert condition. The Cu precursor solution was added to the reaction mixture at
225 °C, followed by stirring for 5 min at the same temperature. After rapid cooling
to room temperature using an ice bath, the product was separated by the addition
of ethanol (60 mL) with the aid of centrifugation at 10,000 rpm. The precipitates
were thoroughly washed with ethanol.

Synthesis of ZnO spheres. Zinc acetylacetonate hexahydrate (0.10 g, 0.40 mmol)
and PVP (1.0 g, 9.0 mmol) were dissolved in 1,5-PD (50 mL) under an inert
condition at 130 °C to ensure complete dissolution. The solution was heated to
225 °C for 6 min and allowed to stir for 5 min at the same temperature. After rapid
cooling to room temperature using an ice bath, the product was separated by the
addition of ethanol (60 mL) with the aid of centrifugation at 10,000 rpm. The
precipitates were thoroughly washed with ethanol.

Synthesis of Cu2O nanocubes. PVP (1.0 g, 9.0 mmol) was dissolved in 1,5-PD
(50 mL) under an inert condition at 130 °C to ensure the complete dissolution.
Copper acetylacetonate (0.10 g, 0.40 mmol) was dissolved in 1,5-PD (5.0 mL) under
inert conditions. This Cu precursor solution was added to the reaction mixture at
225 °C, followed by stirring for 5 min at the same temperature. After rapid cooling
to room temperature using an ice bath, the product was separated by the addition
of ethanol (60 mL) with the aid of centrifugation at 10,000 rpm. The precipitates
were thoroughly washed with ethanol.

Synthesis of TiO2(P25)-Cu2O hybrid nanoparticles. Titanium (IV) oxide (P25,
0.030 g, 0.40 mmol) and PVP (0.5 g, 4.5 mmol) were dissolved in 1,5-PD (50 mL)
under inert conditions at 130 °C to ensure complete dissolution. Copper acet-
ylacetonate (0.10 g, 0.40 mmol) was dissolved in 1,5-PD (5.0 mL) under an inert
condition. The Cu precursor solution was added to the reaction mixture at 225 °C,
followed by stirring for 5 min at the same temperature. After rapid cooling to room
temperature using an ice bath, the product was separated by the addition of ethanol
(60 mL) with the aid of centrifugation at 10,000 rpm. The precipitates were thor-
oughly washed with ethanol.

Characterization. TEM images and energy dispersive X-ray diffraction (EDX) data
of the nanoparticles were obtained by FEI Tecnai G2 F30 S-Twin (300 kV, KAIST),
and HRTEM images and elemental mapping were obtained by FEI Titan cubed G2
60–300 (double Cs corrected, KAIST) transmission electron microscopes. Samples
were prepared by dropping a few samples dispersed in ethanol on carbon-coated
200 mesh nickel grids (Ted Pella Inc.). XRD patterns of the samples were recorded
on a Rigaku D/MAX-2500 diffractometer. X-ray photoelectron spectra (XPS) were
obtained by K-alpha X-ray photoelectron spectroscopy (Thermo VG Scientific).
UV–Vis spectra were measured on a UV-3600 UV-vis-NIR spectrophotometer
(Dong-il Shimadzu Corp.). TCSPC was measured by a FL920 spectrometer
(Edinburgh Instruments).

Photocatalytic CO2 conversion experiments. The ZnO-Cu2O catalysts (19 mg)
were dispersed in a 0.2 M Na2CO3 aqueous solution (20 mL), and the dispersion
was neutralized to pH = 7.4 by the addition of HClO4. The reactor was a home-
made quartz flask with a total volume of 41 mL. Supercritical-fluid grade CO2 gas
was used to avoid any hydrocarbon contamination. To reach CO2 saturation in the
reaction medium, the catalyst dispersion was stirred for 40 min in a high pressure
chamber under a CO2 pressure of 2.6 bar. After the pressure release, CO2 gas was
transferred to the quartz reactor and was additionally bubbled at ambient pressure
and temperature for 30 min. Photocatalytic CO2 conversion was conducted by
irradiation from a Xe lamp (300W, Oriel) equipped with a 10 cm IR water filter.
During the reaction, the gas product was collected using a needle-type probe
passing through a sealed rubber septum. The gas samples were analyzed by thermal
conductivity detector (TCD) and flame ionization detector (FID) equipped with a
carboxen 1000 column (Supelco) via gas chromatography (YL6100 GC). Before the

FID detector, a methanizer (500 mg Ni, ~65 wt% on silica/alumina (Agilent)) was
equipped for the detection of CO and CO2. To avoid the oxidation of the
methanizer, a valve was connected and adjusted by a program for the ventilation of
evolved oxygen. For the isotope study, the gas samples were analyzed by GC–MS
(Agilent 7890 A/5977B) equipped with a HP-5MS (Agilent) capillary column.

Data availability. The data that support the findings of this study are available
from K.M.N. (email: namkimin.chem@gmail.com) or H.S. (email: hsong@kaist.ac.
kr) upon reasonable request.
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