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Atmospheric observations show accurate reporting
and little growth in India’s methane emissions
Anita L. Ganesan 1, Matt Rigby 2, Mark F. Lunt2, Robert J. Parker3,4, Hartmut Boesch3,4, N. Goulding1,

Taku Umezawa5,11, Andreas Zahn6, Abhijit Chatterjee7, Ronald G. Prinn8, Yogesh K. Tiwari 9,

Marcel van der Schoot10 & Paul B. Krummel10

Changes in tropical wetland, ruminant or rice emissions are thought to have played a role in

recent variations in atmospheric methane (CH4) concentrations. India has the world’s largest

ruminant population and produces ~ 20% of the world’s rice. Therefore, changes in these

sources could have significant implications for global warming. Here, we infer India’s CH4

emissions for the period 2010–2015 using a combination of satellite, surface and aircraft data.

We apply a high-resolution atmospheric transport model to simulate data from these plat-

forms to infer fluxes at sub-national scales and to quantify changes in rice emissions. We find

that average emissions over this period are 22.0 (19.6–24.3) Tg yr−1, which is consistent with

the emissions reported by India to the United Framework Convention on Climate Change.

Annual emissions have not changed significantly (0.2± 0.7 Tg yr−1) between 2010 and 2015,

suggesting that major CH4 sources did not change appreciably. These findings are in contrast

to another major economy, China, which has shown significant growth in recent years due to

increasing fossil fuel emissions. However, the trend in a global emission inventory has been

overestimated for China due to incorrect rate of fossil fuel growth. Here, we find growth has

been overestimated in India but likely due to ruminant and waste sectors.
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Methane (CH4) is the second largest anthropogenic
contributor to climate change after carbon dioxide
(CO2)1. Because of its short lifetime of 9.8 years2,

reductions in CH4 emissions will reduce radiative forcing on
relatively fast timescales compared with other greenhouse gases.
For this reason, CH4 has been identified as a target for greenhouse
gas emission reduction schemes3; however, to do so requires an
improved understanding of its main emissions sources today.

India is currently thought to have the second largest CH4

emissions of any country4, but emissions have not been quanti-
fied from the top-down using atmospheric observations from
within the country and a high-resolution modelling approach.
We used a combination of satellite, aircraft and surface obser-
vations (Supplementary Fig. 1) between 2010 and 2015 to
quantify CH4 emissions from India and to investigate sources of
discrepancies between the top-down derived emissions and two
inventories, EDGAR2010 (Emissions Database for Global Atmo-
spheric Research v4.2 FT 20105) and India’s BUR (First Biennial
Update Report to its National Communications6). This work has
become possible now because we have a unique dataset com-
prising observations from the GOSAT (Greenhouse Gases
Observing Satellite) satellite7, passenger aircraft observations
from CARIBIC (Civil Aircraft for the Regular Investigation of the
atmosphere Based on an Instrument Container)8 and surface
measurements from Darjeeling9, Sinhagad10 and Cape Rama11,
India. Our approach uses a high-resolution regional atmospheric
transport model and a hierarchical Bayesian inverse modelling
framework. Given the uncertainties in the main CH4 sink12, 13,
the benefit of this regional approach is that our inversion is
insensitive to uncertainties associated with CH4 lifetime.

We estimate average emissions over the period 2010–2015 to
be 22.0 (19.6–24.3) Tg yr−1. These emissions are consistent with
India’s reports to the United Nations Framework Convention on
Climate Change (UNFCCC), but are ~ 30% smaller than the most
widely used global CH4 inventory, EDGAR and ~ 40% smaller
than previous atmospheric inversion studies over India14. We
also find that annual emissions did not change significantly
between 2010 and 2015 (0.2± 0.7 Tg yr−1), suggesting that the
major CH4 sources, including ruminants, rice paddies, waste and
fossil fuels, did not vary appreciably during this period.

Results
Bottom-up quantification CH4 emissions in India. There are
significant differences in the CH4 emissions calculated by bottom-
up inventories, further highlighting the need for top-down ver-
ification. EDGAR2010 estimated India’s 2010 anthropogenic
emissions to be 29.6 Tg yr−1 with ~44%, 20%, 19% and 12% of
these emissions from ruminants, waste (solid and wastewater),
fossil fuels and rice paddies, respectively. As a signatory to the
UNFCCC, India is required to submit National Communications.
According to India’s BUR, in 2010, total emissions were 19.8
(13.6–26.0) Tg yr−1, with ruminants, rice, fossil fuel and waste
comprising 55%, 17%, 13%, and 12%, respectively. These reported
emission rates, which for many source sectors use different
activity data or accounting methodologies, are substantially lower
than EDGAR2010 emissions over the same period and are more
weighted toward the agriculture sector. The largest absolute
differences between 2010 EDGAR2010 and BUR emissions are
from waste (3.46 Tg yr−1), fossil fuels (3.0 Tg yr−1) and ruminants
(2.29 Tg yr−1).

EDGAR v4.2 FT 20124 (EDGAR2012) reports growth of
0.4 Tg yr−2 in India’s CH4 emissions during 2010–2012. The
growth rate is driven by nearly equal contributions from
ruminants, waste and fossil fuels. Animal husbandry metrics
from India’s Ministry of Agriculture15, however, show a 3%
decrease in ruminant population between 2006 and 2014, which
would imply decreasing emissions from the ruminant sector. If
correct, this finding suggests that India may not be a major
contributor to the growth in ruminant emissions recently
proposed16.

Emissions evaluation using atmospheric observations. We
estimated mean Indian CH4 emissions to be 22.0 (19.6–24.3) Tg
yr−1 (all reported ranges are 5th–95th percentile) over the period
2010–2015 (Fig. 1a) and our estimates are consistent with the
2010 BUR emissions reported to the UNFCCC. Top-down
emissions, which for India are largely comprised by anthro-
pogenic sources, are substantially lower than those reported by
global inventories (EDGAR2010 anthropogenic+Yan et al.17 rice,
+Global Fire Emissions Database v3, GFED18) and previous
atmospheric inversions over India14. The total growth we derived

Prior (EDGAR excl. rice + Yan et al. + rice, GFED)

First Biennial Update Report to the UNFCCC
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Fig. 1 Comparison of India’s top-down CH4 emissions and seasonal cycle with bottom-up inventories. a Indian CH4 emissions (as Tg yr−1) for the prior
inventories (orange, solid line) and for the top-down estimated here (dark blue line). The prior was comprised by EDGAR2010 (excluding rice), Yan et al.17

rice and GFED v3.118 biomass burning. For comparison, the dashed orange line corresponds to EDGAR2010 (including rice) and GFED. The turquoise line
and shading indicates a 12-month running mean of the top-down emissions (uncertainties assuming full correlation between months). The black line and
grey shading correspond to 2010 emissions submitted to the UNFCCC (BUR) and uncertainties (based on percentage uncertainties for the year 2000, the
last year for which uncertainties were published: 50% enteric fermentation, 8% rice, 125% fossil fuel, 150% waste23). b Average prior (orange) and top-
down (blue) seasonal cycle. In all panels, shading corresponds to 5th–95th percentile uncertainties. The monsoon season is highlighted in pink bars

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00994-7

2 NATURE COMMUNICATIONS |8:  836 |DOI: 10.1038/s41467-017-00994-7 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


over this period 2010–2015, 0.2± 0.7 Tg yr−1 is not statistically
different from zero. This is in contrast to inventories such as
EDGAR2012 which have estimated a 0.7 Tg yr−1 change between
2010 and 2012 alone (uncertainties on EDGAR’s emissions are
not provided). These results do not follow the same patterns as
found in other high-emitting regions of the world. In the United
States, a substantial underestimate was found in EDGAR emis-
sions19. In addition, the trend in EDGAR2012 indicated decreasing
USA emissions, while atmospheric observations showed flat
(~ 0± 1 Tg yr−2) emissions over 2000–201420. In contrast, Chi-
nese emissions were found to be overestimated in EDGAR and
increasing at 1.2± 0.2 Tg yr−2 over the period 2002–2013, a trend
that is ~ 50% smaller than EDGAR’s reported trend21, 22. Dif-
ferences in the trend in China’s emissions have been attributed
mainly to the fossil fuel sector14, 21, 22. Compared with China, the
fossil fuel sector is a much smaller component of India’s emis-
sions (~ 16%) and therefore the difference between our top-down
estimates and EDGAR’s trend is more likely to be driven by non-
fossil fuel components of the inventory (e.g., ruminants or waste).
China’s reported trend is ~2± 0.3% growth per year over
2010–2013, while we infer India’s trend to be 0.2± 0.6% per year
over 2010–2015 (relative to the mean of the period). This finding
suggests that the two countries have very different drivers of
change in recent CH4 emissions.

The magnitude of the difference between our top-down
estimate and inventories (Fig. 1) remains relatively constant for
most of the year (~ 9 Tg yr−1 during spring and autumn) but is
largest in summer (~ 16 Tg yr−1). This suggests that the majority
of the discrepancy between the top-down and prior inventories is
likely due to the combination of emission sources that do not
have a large seasonal cycle and those with a seasonal signature
(see below). Of the sources that we do not expect to vary
seasonally, ruminant and waste sectors show significant dis-
crepancy between inventories and are therefore likely to be the
most uncertain. While fossil fuel emissions are also uncertain and
have been shown to be too high in China14, 21, this sector is a
smaller component of the emissions in India, and is unlikely to
explain the full discrepancy. Therefore, we propose that the
seasonally invariant difference could be driven in large part by
ruminant and waste sectors.

Known seasonal sources include rice and biomass burning.
Natural sources such as wetlands and termites each represent
only a small fraction of the total, at less than 2% of national
emissions23, 24. However, there is evidence for additional CH4

emissions from sources such as open waters25, which may be
somewhat more significant, but have not been included here
owing to the limited availability of spatially and temporally
explicit priors across the whole inversion domain. A double-peak
was found in CH4 emissions, with the maximum in August
(Fig. 1b) followed by a second, smaller peak in February–March.
The driver of the summer maximum is likely due to monsoon
season rice emissions, the time of year when the majority of the
crop is grown26. The amplitude of the summer enhancement is
approximately two-thirds of that predicted by Yan et al.17, which
estimates annual Indian rice emissions to be 6 Tg (by integrating
the emissions profile over the year). Therefore, our estimates are
likely to be more consistent with annual rice emissions of ~3.9
(3.3–4.5) Tg, assuming that other sources remained relatively
constant during the summer monsoon. Our rice estimate is
consistent with the 2010 rice emissions in EDGAR and in the
BUR. Year-to-year variability in the magnitude of the summer
emissions (Supplementary Fig. 2) appears to be relatively small
(8%) but is not statistically significant within uncertainties, so any
changes in environmental drivers that would affect rice emissions
are likely to have been smaller than the uncertainties on these
emissions. The smaller winter peak indicates that there are
sources that could have a seasonal signature that may not be
represented well by inventories. This could be due to winter rice,
which comprises 14% of total rice production in India26 or
wintertime increases in fossil fuel emissions23. The latter is
primarily comprised by biomass burning of dung cakes and fuel
wood from the residential sector27. Large-scale biomass burning,
based on satellite data, represents < 5% of the total emissions in
this region apart from slightly increased emissions (10% of total)
during March and is less likely to be the source of this winter
peak.

One utility of high-resolution modelling is that spatial maps
can be used to identify patterns of change to provide an
additional fingerprint for source identification. An analysis of the
difference between summer or winter emissions (i.e., during peak
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Fig. 2 Differences in emissions between seasons. a Difference between the average summer (June–Sept) or b average winter (Jan–Feb) peak emission
periods, and the average of spring/autumn minimum emission periods (March–May, October–December) in gm−2 s−1. Scaling factors to the prior flux map
for each month were estimated for ~40 spatial basis functions within this domain; the prior map was scaled up or down by this factor for each basis function
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emission periods) and the average of the spring and autumn
emissions (i.e., minimum emissions periods) show where peak
emissions are enhanced relative to the minima for the year. The
main summer peak shows enhancement in the primary rice
growing regions of the Indo-Gangetic Plains and North-eastern
India (Figs. 2a and 3a). In contrast, the secondary winter peak
during February–March corresponds with increased emissions
from populated areas and a decrease in the northeast relative to
spring/autumn (Fig. 2b). This pattern suggests that the winter
peak is not likely due to winter rice but to an anthropogenic
source occurring in populated areas (Fig. 3c). Additional
information using other tracers would be required to specifically
identify the sector associated with this increase. The small
decrease in the northeast is due to the difference relative to small
spring/autumn rice emissions in the inventory (isolated to
Northeast India) (Fig. 3b).

Emission maps and their uncertainties are shown in Supple-
mentary Figs. 3–5. The posterior uncertainty maps in Supple-
mentary Fig. 6 indicate that the data has the greatest constraint
on emissions from the Indo-Gangetic Plains of Northeast India,
the region with the largest emissions, but the majority of the
country is well-sampled with the satellite data.

Discussion
Our results imply little growth in Indian CH4 emissions during
the period 2010–2015. Robust evaluation of national emissions
and their trends will be vital to the success of international cli-
mate agreements, particularly in light of large uncertainties on
some sectoral components of inventory estimates. Our results
here are consistent with India’s BUR and should go some way to
enhance confidence in India’s CH4 inventory. In contrast, our
estimates are 30% smaller than global inventories such as
EDGAR. These findings demonstrate the need for more robust
bottom-up accounting, using country-specific data and more
advanced accounting methodologies. They also highlight the
value of top-down evaluations of emissions inventories for
regions of the world that are critical for global climate and policy,
but like India, are under-studied and are therefore poorly quan-
tified contributors to climate change.

Methods
Observations. We used data from satellite, aircraft and surface sources over the
period 2010–2015. These data come from the GOSAT satellite, CARIBIC aircraft
and Darjeeling (DJI), Cape Rama (CRI) and Sinhagad (SNG), India surface sta-
tions. A map of site locations and typical CARIBIC and GOSAT sampling is
provided in Supplementary Fig. 1. GOSAT dry air column-averaged mole fractions
(XCH4) and the percentage difference between three chemical transport models
used to derive XCH4 are found in Supplementary Figs. 7, 8. In addition, a
comparison between CO2 observations and one of the chemical transport models
used in the generation of XCH4 is found in Supplementary Fig. 9. A description of
each dataset is found in Supplementary Note 1.

Generation of NAME sensitivity maps. We used a model to provide the link
between fluxes and atmospheric concentrations and this allows us to use measured
concentration data to infer fluxes. Here, we used a Lagrangian Particle Dispersion
Model (LPDM) to quantify the sensitivity of changes in mole fractions to (i)
changes in surface emissions and to (ii) changes in boundary conditions at the
edges of the LPDM domain. These were calculated using the UK Met Office model
NAME (Numerical Atmospheric dispersion Modelling Environment 3) model28.
NAME was driven by the Unified Model’s South Asian Model meteorology at 12
km horizontal resolution (until 2014) and the Unified Model Global Meteorology
at 16 km after 2014, for 70 vertical levels and at three-hourly temporal resolution9,
29. While transport processes at finer scales, such as convection, are parameterized
within NAME, the effects of flux processes occurring at small-scales (<10 km) will
not be resolved by the model. However, it is important to note that it is not the
intention of a study such as ours to resolve these small-scale fluxes. Instead, we aim
to interpret larger-scale fluxes (>100 km). This is possible because the atmosphere
integrates CH4 fluxes over regional scales through advection and mixing. It is these
large-scales that we primarily observe with atmospheric concentration data, in
contrast to for example, flux data (e.g., eddy covariance or chamber measure-
ments), which observe small-scale processes (typically <1 km). The inversion
domain spanned from 55–110°E to 6–48°N and up to 19 km vertically. Output
resolution was 0.352×0.234°. Model sensitivities were derived with respect to the
surface and this was defined to be 0–40 metres above ground level. All simulations
were run for a maximum of 30 days backwards in time but the majority of particles
exited the domain prior to this time. The time and location that particles left the
domain were recorded to provide the sensitivity to boundary conditions. NAME
has been used extensively to model atmospheric concentrations of long-lived
greenhouse gases30–33 and was one of the participating models in a regional flux
inversion comparison exercise34.

Surface and aircraft observations. For each measurement point, 2000 particles
were released per hour and this number was chosen to ensure a high signal-to-
noise in the resulting footprints. Release rates used in other LPDM studies have
ranged between 500 and 10,000 particles per hour19, 35. For DJI, the release height
was chosen to be 500 m.a.g.l. to account for any unresolved topography at the site.
This release height is the midpoint between the true surface height and the model
height. This approximation has been used at other mountain sites36. Observations

Anthropogenic
annual

Rice
spring/autumn

Rice
summer

a b c

0 1.5 3 4.5 6
1e–8

Fig. 3 Prior emissions in gm−2 s−1 by source sector. a Yan et al.17 average rice emissions for June–September. b Yan et al.17, average rice emissions for
March–May and October–December. c EDGAR v4.2FT2010 anthropogenic emissions excluding rice and ruminants (diffuse sources)
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were averaged into 3 h periods. For flask sites CRI and SNG, the release height was
10 magl, the height of sampling on the towers.

The relationship between concentrations and emissions can be expressed
through Eq. (1):

y ¼ Hx ð1Þ

where y is a vector of m simulated mole fractions, H is a matrix of sensitivities of
dimension m x n with n being the resolution of the underlying basis function in the
inversion and x is a vector of n unknowns. As discussed further below, an ensemble
of inversion grids was sampled in the inversion such that the dimension n was not
fixed a priori.

Satellite observations. Dry-air column-averaged mole fraction, XCH4, was
derived based on 20 vertical levels for the CH4 prior, averaging kernel and pressure
weights. NAME simulations were performed for each vertical level. For compu-
tational efficiency, the following method was employed. Particles were released at a
rate of 1000 per hour for levels 1–8 and at 100 per hour for levels 8–17. Above level
8, there was no significant sensitivity to the surface and these particles were
required only to provide the sensitivity of each level to boundary conditions. In this
way, the computational time required to compute the sensitivity map for each
retrieval was kept to a minimum.

Above some maximum level (maxlev), which was usually level 17 for this
domain, the column height exceeded the height of the NAME model (set here at
19 km) and therefore, concentrations at these levels were assumed to be the
concentrations from the prior CH4 field. This assumption is discussed further in
Supplementary Note 2.

Equation (2) governs the conversion of model mole fractions generated at each
level to a column value that could be compared to the satellite observation. For
each retrieval occurring at time index t:

XCHmodel
4 jt ¼

X20

1

pi Ai � CHmodel
4;i þ 1� Aið Þ � CHprior

4;i

h i
ð2Þ

where pi is the pressure-weighting at level i as discussed in O’Dell et al.37. Ai is the
averaging kernel at level i, CH4,i

prior is the prior mole fraction at level i and
CH4,i

model is the model mole fraction at level i38. For NAME, CH4,i
model is made up

of a signal due to regional emissions and a signal due to boundary conditions (Eq.
(3)).

XCHmodel
4;i jt ¼ hi � qþ hb;i � b ð3Þ

where hi is the NAME surface sensitivity derived for level i, q is a vector of
emissions, hb,i is the sensitivity of level i to boundary conditions and b is a vector of
boundary conditions.

Because the second term of Eq. (2) is known before the inversion, this term can
be removed from both XCH4

model|t and the observation. To account for the mole
fractions above maxlev, the weighted contribution of mole fractions from the prior
model above this level was also removed from XCH4

model|t and the observation.
This generates XCH4,pert

model for each retrieval t (Eq. (4)).

XCHmodel
4;pert jt ¼ XCHmodel

4 jt �
Xmaxlev

1

pi 1� Aið Þ � CHprior
4;i

h i
�

X20

maxlev

pi CHprior
4;i

h i
ð4Þ

Equation (4) thus reduces to the following:

XCHmodel
4;pert jt ¼

Xmaxlev

1

pi � Ai � ðhi � qþ hb;i � bÞ ð5Þ

Equation (5) can be written in a form for all retrievals (i.e., over all times) (Eq.
(6)).

XCHmodel
4;pert ¼ Hx ð6Þ

Because q and b are fields that are independent of level, for row t in H, the
columns are made up of the sum over levels of hi and hbi (weighted by averaging
kernel and pressure weight). x is a vector stacked with q and b. With these
modifications to the equations representing modelled mole fractions from the
satellite, Eqs. (1) and (6) are now in the same form and can be compressed into a
single equation for all observations (surface, aircraft and satellite), but with the
GOSAT observations in the data vector being the modified values.

Supplementary Fig. 10 shows an example NAME footprint generated for a
single GOSAT observation. This figure indicates that each GOSAT observation is
most sensitive to surface emissions within ~ 100 km.

Boundary conditions. A priori information about boundary conditions were taken
from the global Eulerian model MOZART (Model for OZone And Related Tracers)

39, output at 1.9×2.5°and monthly resolution, by mapping the exit location of
particles to the mole fractions represented on curtains to the NAME domain
(Supplementary Fig. 11). MOZART was run using global emission inventories
(EDGAR v4.2 for anthropogenic emissions40, Bloom et al.41 for wetlands and rice,
Fung et al.24 for other natural sources and GFED v3.1 for biomass burning
emissions18) and were not optimised with any measurement information, thus
maintaining independence between this inversion and the prior.

The boundary condition curtains were decomposed into a set of basis functions,
adjustments to which were also estimated in the inversion. These terms included:
an offset shifting the entire field up or down uniformly, a scaling to multiply the
entire field, a scaling to the North-South gradient, a scaling to the East-West
gradient, and a scaling to the stratospheric gradient. In total, five boundary
condition terms were estimated per month. Because these adjustments to the
MOZART boundary conditions were estimated in the inversion, uncertainties in
the CH4 lifetime, which were used to generate the prior, become insignificant in the
posterior solution.

Trans-dimensional Markov Chain Monte Carlo inversion. Bayesian inversions
are a statistical tool used to develop posterior beliefs by refining our prior
knowledge with the assimilation of data. Uncertainties in the prior and the data
indicate the relative weights in each set of information. Data is never itself altered.
Improvements made to the emissions field can be assessed by comparing the
posterior mole fractions (emissions run through the atmospheric transport model)
with the original data to see how the fit has improved over the prior.

LPDM sensitivities were applied in a hierarchical Bayesian inverse framework
using trans-dimensional Markov chain Monte Carlo (TDMCMC) to estimate
monthly fluxes, boundary conditions, an offset term representing differences
between satellite/calibrated data and uncertainty parameters. The hierarchical
Bayesian methodology followed that described in Ganesan et al.42. To reduce the
subjectivity of incorrectly specified uncertainties, hyper-parameters were included
consisting of model error, prior emissions error and hyper-parameters that govern
the number and spatial distribution of unknowns in the underlying flux field. These
hyper-parameters, each with their own PDFs that were sampled in the inversion,
allowed us to explore any uncertainties in uncertainties. This allows us to better
account for random uncertainties in the system, which traditionally have been fixed
but largely subjective quantities. The posterior PDF includes the effect of these
unknown uncertainties and are therefore more representative of the true unknowns
in the system. Systematic errors, which may arise from, for example, structural
errors in the model were not quantified through this method. Quantifying such
uncertainties is an area of on-going research. The MCMC approach also allowed us
the flexibility to use any probability density function (PDF), without needing to
impose Gaussian distributions, a limitation of many traditional inversions.

We built on this approach following advancements made in Lunt et al.43, by
also including hyper-parameters that govern the number and spatial distribution of
unknowns in the underlying flux field (i.e., the underlying inversion grid which has
typically been subjectively chosen)43. In this trans-dimensional system, which
refers to the fact that the dimension of the problem is also characterised in the
inversion, we were also able to account for uncertainties in the underlying model
decomposition. Fluxes were not inferred at the resolution of the meteorological
drivers running NAME (12 km); instead, the inversion domain was decomposed
into a set of basis functions (grid cells that are grouped into larger regions), and it
was different configurations of this grouping that was also sampled in the
inversion. Lunt et al.43 have shown that this algorithm explores an ensemble of
inversion grids that cluster around solutions that maintain the most simplicity to
explain the data, while minimising aggregation error. While the Lunt et al.43

method updated one emissions element per step, the code used in this work was
modified to update ten random elements per step for improved efficiency.

In this framework, each iteration samples a new value of parameters from the
PDFs, which are characterised by hyper-parameters. We assumed a lognormal
emissions PDF to prevent non-physical negative solutions and the shape of this
PDF was governed by hyper-parameters for the median and standard deviation.
We have chosen PDFs of our hyper-parameters to be as uninformative as possible
(i.e., a uniform distribution with a broad range) to allow flexibility for the data to
drive the solution. For the emissions PDF, we assumed the median to lie in a range
of 0.1–10 times the inventory value and for the standard deviation to lie in a range
of 5–500% of the median value. We assumed a Gaussian model-measurement
discrepancy PDF with the s.d. lying in a uniform distribution with range 5–200
ppb. Measurement uncertainty was treated as a fixed, known quantity, comprised
by instrumental precision and variability within the averaging period and added to
the hyper-parameter model error in quadrature. Model error was assumed to be
uncorrelated based on findings from Ganesan et al.33 which showed that for
networks of this type, measurements averaged over 3 h and 100 km were largely
uncorrelated.

Fluxes, boundary conditions and hyper-parameters were estimated for each
month separately. For each month, we sampled 100,000 times with an additional
100,000 burn-in samples to remove any memory of the initial state. We thinned
these samples to reduce redundant (auto-correlated) information in the chain by
storing every 100th sample. The acceptance ratio for parameters ranged between
0.2 and 0.5, which is recommended for optimal mixing44. This was achieved by
varying the step sizes of each boundary condition element individually, each fixed
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region emissions element individually and for all the variable emission regions
through a single parameter. A single step size was used for emissions from all the
variable regions since the dimensionality changes with each step. The acceptance
ratio was then calculated as the average of all emissions elements in the trans-
dimensional domain. Tuning step sizes helps to achieve optimal mixing so that
convergence is reached with greatest efficiency. This was done automatically by
adjusting the step size every 500 iterations through the burn-in period, calculating
the acceptance ratio (individually for boundary condition and fixed emissions
elements and as an average for the variable emissions elements), and then
increasing/decreasing the step size if the acceptance ratio of the previous 500
iterations was not in the range 0.2–0.5. Step sizes then remained fixed after the
burn-in period. Though we only tuned one step size for all the variable regions, we
assessed convergence for each grid cell (by disaggregating the emissions element to
the native grid at each step) in the trans-dimensional domain by performing
Geweke’s diagnostic. This was done by quantifying the mean of the first 10% and
the last 50% of the chain. Convergence was reached when these two values were not
statistically different. The number of parameters estimated each month was ~50.
This is comprised of five boundary condition elements, one ‘offset’ term
representing differences between the satellite and calibrated data, four parameters
describing emissions in fixed regions outside of the trans-dimensional area, and
~40 emissions parameters estimated within the trans-dimensional area. The
number of regions estimated is shown by the histogram in Supplementary Fig. 12,
which represents the frequency of the number of regions in the 100,000 samples.
This is an example for 1 month but was typical for most months. Uncertainty
characteristics of the inversion are discussed further in Supplementary Note 2.

Comparison of the prior and posterior mole fractions for each site is found in
Supplementary Figs. 13–30.

Sensitivity analyses. We performed five sets of sensitivity studies. (1) We
quantified the effect of using a prior without a seasonal cycle to assess the influence
of the prior on the top-down emissions (Supplementary Fig. 31). (2) To assess the
accuracy of the CO2 field used to generate XCH4, we analysed both the variability
in three CO2 chemical transport models/inversion setups as well as the overall fit of
the CO2 model to independent (i.e., not assimilated) CO2 data. The XCH4

retrievals used in this study were derived using the median XCO2 from an
ensemble of three models: MACC-II, Carbon-Tracker and GEOS-Chem7. We
explored the effect of perturbing XCH4 to higher and lower values based on the
range of XCO2 for each sounding (Supplementary Fig. 32). (3) We quantified the
effect of
randomly re-sampling the GOSAT soundings to assess the effect of the GOSAT
track on the derived emissions. In each month over the period, the inversion was
re-run using a random selection of 200 samples with replacement (Supplementary
Fig. 33). (4) We assessed the effect of using GOSAT data alone vs. the full set of
surface, aircraft and satellite observations to understand any differences associated
with sampling (Supplementary Fig. 34). (5) We quantified the effect of errors in the
MOZART model’s simulation of the stratosphere on derived emissions (Supple-
mentary Fig. 35). Sensitivity studies are discussed further in Supplementary Note 3.

Code availability. Code will be made available upon request by contacting Anita
Ganesan. The TDMCMC inversion code was written in Fortran 90 and additional
components are available for setting up the simulation in Python 2.7.

Data availability. Data can be accessed by contacting data leads: Robert Parker
for GOSAT, Andreas Zahn for CARIBIC, Anita Ganesan for Darjeeling,
Paul Krummel for Cape Rama and Yogesh Tiwari for Sinhagad.
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