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Stereoselective one-pot synthesis of
polypropionates
Guo-Ming Ho1, Medel Manuel L. Zulueta 1 & Shang-Cheng Hung1

Polypropionates—motifs with alternating methyl and hydroxy groups—are important

segments of many natural products possessing high bioactivity and therapeutic value.

Synthetic access to these structures remains an area of intensive interest, focusing on the

establishment of the contiguous stereocentres and a desire for operational simplicity. Here

we report an efficient strategy for the stereoselective assembly of polypropionates with three

or four stereocentres through a three-step relay process that include Diels–Alder reaction,

silylenol ether hydrolysis and Baeyer–Villiger oxidation. The stereochemistry and functionality

of the resulting polypropionates depend on the substitution pattern of the diene and

dienophile substrates of the Diels–Alder cycloaddition. More importantly, the relay sequence

is effectively performed in one pot, and the product could potentially undergo the same

sequence for further elaboration. Finally, the C1–C9 segment of the macrolide etnangien is

constructed with four of the six stereogenic centres established using the relay sequence.
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Polyketides are a large class of structurally diverse secondary
metabolites isolated from fungi, bacteria and sponges1.
They exhibit a wide range of biological activities,

including antibiotic, antitumour, antifungal, cholesterol-lowering,
antiparasitic and immunosuppressive properties1, 2. In particular,
several polyketide-containing natural products, such as the
antibiotics erythromycin3 and monensin A4 and the antitumour
discodermolide5 (Fig. 1), have displayed clinical significance.
A common feature of natural products with polyketide structures
are polypropionate segments characterized by alternating methyl
and hydroxy groups6. The multiple stereogenic centres displayed
in these segments provide for large numbers of possible
stereochemical permutations. A stereotetrad motif (structure with
four contiguous stereogenic centres), for example, could have
16 possible diastereomers. Consequently, the preparation of
polypropionates has been a longstanding interest in the synthesis
community6–10.

Numerous synthetic approaches have been developed to
address the architectural complexity of polypropionates. Forging
a single C–C bond into adjacent methyl and hydroxy-bearing
stereogenic centres could be accomplished by established
aldol reactions11, but crotylation12–14, allenylation15, epoxide
opening6, [2 + 2]-cycloaddition16 and many other methods6 are
available. Although the application of these methods in iterative
protocols allowed for more complex polypropionate subunits,
additional step-consuming transformations are required for each
subsequent C–C bond extensions. In addition, the stereochemical
control of the newly created stereocentres over the course of the
propionate chain elongation is often complicated. Attractive
alternatives, especially considering atom and step economy,
are multicomponent domino (or cascade) reactions17–19 that
could create more than one C–C bond, and hence, multiple
stereocentres in a single-pot operation. Nevertheless, only
particular sets of stereoisomers could be achieved in these
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procedures. Thus, further development of convenient entries to
several possible stereotriads, stereotetrads or stereopentads,
as well as their related structures that exploit operationally
simple strategies in library design and drug discovery of
polypropionate-containing molecules are still highly desirable.

Motivated by the intensive interest towards the expedient
synthesis of polypropionates, we herein devise an alternative
stereoselective strategy from simple and readily available
precursors. This approach involves sequential Diels–Alder
cycloaddition of silylenol ethers and enones acting as the
respective dienes and dienophiles, silylenol ether hydrolysis to
afford a cyclic ketone and Baeyer–Villiger oxidation to enable
double oxygen insertions with stereoretention at key positions.
Ultimately, the relay sequence provides a suitable access into
polypropionates with three or four contiguous stereocentres both
in stepwise and one-pot manner. Using this procedure, the
synthesis of the C1–C9 segment of the macrolide natural product
etnangien is also successfully demonstrated.

Results
Synthetic strategy. Our synthetic design follows the formation
of the seven-membered lactone 1, harbouring three to four
stereocentres (Fig. 2). The embedded oxygen functionalities at C4
and C6 positions of lactone 1 can be traced back to cyclohex-
anone 2 by Baeyer–Villiger oxidation. Analysis of compound 2
shows possible access from a pivotal Diels–Alder cycloaddition of
silyloxydiene 3 and dienophile 4. Previous studies have demon-
strated the strong effect of the terminal substitution of dienes and
dienophiles in the exo- and endo-stereochemical outcome of
the Diels–Alder reaction20, 21. Thus, we anticipate a favourable
control of stereoselectivity during the formation of the cycload-
duct. Finally, the required dienes, and in certain cases, the
dienophiles could be afforded from the commercially or readily
available enone 5. This synthetic approach benefits from the
inherent flexibility of the Diels–Alder reaction and the ready
availability of various dienes and dienophiles, with the potential
option to grow the polypropionate chains having the desired
diastereomeric relationships. In addition, the transformations of
the diene 3 and dienophile 4 towards the lactone 1, that is, the
Diels–Alder/Baeyer–Villiger relay process, could be performed
using compatible reagents to permit not only stepwise handling
but also one-pot operation. Furthermore, with synthetically
versatile groups at the terminal positions of the corresponding
open form of the lactone 1, it is, in principle, possible to reiterate
the process through compound 6 carrying the familiar enone
structure.

Evaluation of the Diels–Alder/Baeyer–Villiger relay process. To
examine the proposed relay concept, we first applied the designed
procedure to the prototypical enones 7 and 9 in a stepwise
manner (Fig. 3a). Deprotonation of enone 7 with lithium
hexamethyldisilazide followed by silyl trapping supplied the
silylenol ether 8 in 89% yield ((Z,E)/(E,E)= 86/14). Alternatively,
use of triethylamine as base to permit the same reaction led
to lower yield (82%) and diastereoselectivity for the desired
(Z,E)-isomer (85/15). The cycloaddition of diene 8 and dieno-
phile 9 is expected to produce the exo-adduct based on the methyl
substitution at C1 of 8 and Cβ of 921 (for the carbon designations
of dienes and dienophiles used in this paper, refer to Fig. 2).
Thus, the boron trifluoride-catalysed Diels–Alder reaction
effectively provided the product 10 in excellent yield and
exo-selectivity. Other Lewis acid catalysts, such as copper(II)
triflate, scandium(III) triflate, trimethylsilyl triflate, dimethylalu-
minum chloride and tin tetrachloride, also gave similar
exo-preference, but only in moderate-to-good yields (Supple-
mentary Table 1). Notably, the supposed Diels–Alder cycloadduct
between the (E,E)-isomer of 8 and the enone 9 was not observed
in these cases. The desilylation of 10 could be achieved by
tetrabutylammonium fluoride (TBAF), but acid hydrolysis
offers better compatibility with Baeyer–Villiger oxidation in light
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of our desire for a one-pot operation. Consequently, treatment
with trifluoroacetic acid (TFA) for 20 min delivered the
corresponding dione, which was directly treated with meta-
chloroperoxybenzoic acid (mCPBA) for the double oxygen
insertion to afford the expected ε-lactone 11 carrying a poly-
propionate syn,syn,syn-stereotetrad in 75% yield (two steps, one
pot). The structure of 11 was unambiguously confirmed by X-ray
crystallographic analysis (Fig. 3b, Supplementary Table 2,
Supplementary Data 1) and further characterized by nuclear
magnetic resonance (NMR) spectroscopy (Supplementary
Methods). Curiously, the exposure of compound 10 to TBAF led
to a complete epimerization at the α-carbon leading to compound
12 (77%) as a single diastereomer, providing a possible point of
access to another stereotetrad structure.

Treatment of the lactone 11 with catalytic sodium methoxide
in methanol resulted in deacetylation and transesterification,
supplying the γ-lactone 13 (96%). This cyclic system should offer
more stability than the initial seven-membered ring structure and
could serve as key intermediate with various potential for further
manipulation. With the intent to explore the possibility of
reiterating the tandem Diels–Alder/Baeyer–Villiger reaction
process, we examined the elaboration of compound 13 to further
generate an advanced enone structure. The operation started
from the silyl group protection of the free hydroxy group (97%),
followed by nucleophilic addition to the carbonyl using
allylmagnesium chloride. Subsequent base-promoted double
bond isomerization ultimately afforded the desired enone 14
(78% in two steps). This and similar compounds offer prospective
applications for the assembly of longer and more complex
polypropionate chains.

After successfully demonstrating stereotetrad formation via
Diels–Alder cycloaddition and Baeyer–Villiger oxidation in
stepwise manner, we then explored the feasibility of our

envisioned one-pot operation (Table 1). Pleasingly, the
Diels–Alder exo-adduct, formed in situ from compounds 8 and
9 by the catalytic assistance of boron trifluoride, was smoothly
converted to the desired ε-lactone 11 in 63% yield upon
successive treatment with TFA and mCPBA in the same vessel
(entry 1). For cycloaddition with enone 15, we found that copper
(II) triflate provided the best product yield and selectivity for the
expected endo-adduct20 (Supplementary Table 1). Thus, the
sequential Diels–Alder cycloaddition of 8 and 15, acid hydrolysis
and Baeyer–Villiger oxidation supplied the ε-lactone 16 in 53%
yield for the one-pot process (entry 2). Further application of the
one-pot procedure to different diene and enone combinations all
provided satisfactory results (entry 3–12). Curiously, when the
phenyl-substituted 32 was employed as starting enone (entries 11
and 12), minor amounts of the separable corresponding γ-lactone
(34 and 36), apparently resulting from acid-induced translacto-
nization22, was acquired along with the expected ε-lactone
(33 and 35). The structures of the duly formed lactones were
confirmed by NMR spectroscopy as well as X-ray crystallographic
analysis for compounds 16, 23, 29 and 34 (Supplementary Fig. 1,
Supplementary Tables 3–6, Supplementary Data 2–5). Treatment
of all the lactone products with sodium methoxide in methanol
resulted into the corresponding γ-lactone akin to compound 13
with variously substituted stereogenic centres (Supplementary
Table 7).

Preparation of the C1–C9 segment of etnangien. To demon-
strate the utility of the tandem one-pot Diels–Alder/
Baeyer–Villiger relay process for the assembly of polypropionates
leading to more complex molecular architectures, we targeted
the stereohexad structure present at the C1–C9 subunit of the
macrolide etnangien (Fig. 1). Etnangien, an antibiotic isolated

Table 1 One pot operation for the tandem Diels–Alder and Baeyer–Villiger transformations

Entry Diene Enone Lewis acid Product Yield (%)a

1 8 (R1= R2=Me) 9 (R3=Me) BF3·Et2O 11 (type a) 63
2 8 15 (R3=H) Cu(OTf)2 16 (type b) 53
3 17 (R1= (CH2)2OBn, R2=Me) 15 Cu(OTf)2 18 (type b) 43
4 17 9 BF3·Et2O 19 (type a) 64
5 20 (R1=CH2Ph, R2=Me) 9 BF3·Et2O 21 (type a) 64
6 22 (R1= Ph, R2=Me) 9 BF3·Et2O 23 (type a) 62
7 24 (R1=CH2iPr, R2=Me) 9 BF3·Et2O 25 (type a) 64
8 26 (R1= CH2iBu, R2=Me) 9 BF3·Et2O 27 (type a) 60
9 28 (R1=Me, R2=H) 9 BF3·Et2O 29 (type a) 62
10 30 (R1= (CH2)2OBn, R2=H) 9 BF3·Et2O 31 (type a) 61
11 28 32 (R3= Ph) BF3·Et2O 33 (type a)/34 (γ-lactone) 45/18
12 30 32 BF3·Et2O 35 (type a)/36 (γ-lactone) 42/14

aBased on product isolated after chromatographic separation
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from the myxobacterium Sorangium cellulosum, is a potent
inhibitor of the RNA polymerase of Gram-positive bacteria23.
Our synthesis began with the Weinreb amidation (85%) of the
commercially available (S)-3-phenylbutanoic acid (37) (Fig. 4a).
Nucleophilic allyl addition to the amide, followed by double-bond
isomerization established the familiar enone structure 38.
Silylation of this enone fashioned the desired 1,4-disubstituted
diene 39 in 82% yield ((Z,E)/(E,E)= 70/30).

With required diene 39 in hand, the formation of the target
ε-lactone through the crucial relay process was first performed in
a stepwise fashion. Thus, the Diels–Alder cycloaddition of the
diene 39 and enone 9 employing the boron trifluoride-catalysed
condition produced two exo- and two endo-cycloadduct diaster-
eoisomers (exo/endo= 84/16) of which the desired silylenol ether
and exo-adduct 40 was obtained as the major diastereomer in
65% yield; the other diastereomers were collectively afforded in
25% yield (see the Supplementary Methods for details). A
preliminary X-ray analysis of the racemic version of 40 supported
the structure of this major diastereomer (Supplementary Fig. 1,

Supplementary Table 8, Supplementary Data 6). The facial
selectivity of the Diels–Alder reaction towards 40 is perceived as a
result of the asymmetric induction of the stereocentre attached to
C1 of the diene (Supplementary Fig. 2). Having the desired
stereochemistry and the necessary carbon atoms of the target
subunit, the exo-adduct 40 was subjected to sequential hydrolysis
and Baeyer–Villiger oxidation utilizing TFA and mCPBA,
respectively, generating the required ε-lactone 41 in 75% yield
as a single isomer. X-ray crystallography confirmed the structure
of 41 with the prescribed relative configuration of the contiguous
stereocentres on the seven-membered lactone ring (Fig. 4b,
Supplementary Table 9, Supplementary Data 7). After the
successful stepwise attempt, we next pursued the transformation
in one pot. To our satisfaction, the three-step sequence also
proceeded smoothly and provided the expected lactone 41 in 40%
overall yield. Treatment of 41 with sodium methoxide resulted to
deacetylation and subsequent conversion into the γ-lactone 42
(96%). Again, an X-ray analysis supported the structure and
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relative configuration of the stereopentad motif of the crystalline
42 (Fig. 4c, Supplementary Table 10, Supplementary Data 8).

With implicitly positioned terminal groups, 42 was further
modified to form the more elaborated C1–C9 fragment of
etnangien, particularly using a Birch reduction/ozonolytic
cleavage sequence24. Thus, exposure of the alcohol 42 to lithium
metal in the presence of ammonia25 reduced the lactone into a
terminal alcohol and the phenyl group into a 1,4-cyclohexadiene
structure. A side product of this reaction, with the phenyl group
remaining unscathed, was further converted to 42 using the same
Birch reduction in moderate yield (Supplementary Methods).
Silylation of the alcohol groups led to compound 43. Ozonolysis
transformed the 1,4-cyclohexadiene portion of 43 into the
keto/cis-enol pair as verified by NMR spectroscopy of 44 with
likely stabilization by hydrogen bonding. Treatment of 44 with
hydrogen fluoride in pyridine provided for partial desilylation
and subsequent enol ether formation via a lactol intermediate.
Acetylation of the so-formed 45 followed by Luche reduction26

established the alcohol 47 as a single diastereosomer in excellent
yield. Final silylation and oxidation provided the desired C1–C9
fragment of etnangien containing six stereocentres (48). This
fragment possesses the synthetic versatility that would enable
further elaboration towards etnangien and other more advanced
molecules.

Discussion
We have developed an efficient approach to stepwise and one-pot
stereoselective synthesis of polypropionate structures through a
three-step Diels–Alder cycloaddition/Baeyer–Villiger oxidation
relay process. The highly substrate-controlled Diels–Alder
reaction, facilitated by the Lewis acid catalysts boron trifluoride
and copper(II) triflate, enabled the establishment of the necessary
cyclohexene ring featuring the silylenol ether and three-to-four
stereogenic centres. Following an acid hydrolysis to provide the
aptly positioned dicarbonyl groups, Baeyer–Villiger oxidation
with mCPBA formed the lactone and ester functionalities. Using
this procedure, a range of polypropionate stereoisomers with high
stereochemical flexibility and substantial skeletal diversity was
accessed. The amenability of our strategy for a one-pot operation
offers a rapid and convenient method to the many possible
polypropionate motifs as demonstrated herein. Importantly, the
resulting products not only feature the polyketide subunits, but
also render functionalities that could, in principle, be further
transformed for use in subsequent C–C bond forming events or
other elaborations to more complex structures. Further extension
of this methodology to provide more comprehensive access to
other biologically significant polypropionate motifs is ongoing
and will be reported in due course.

Methods
One-pot preparation of compound 41. Freshly distilled ketone 9 (0.24 mL,
2.38 mmol) in CH2Cl2 (2 mL) was added by syringe to a solution of BF3·OEt2 (12 µL,
99 μmol) in CH2Cl2 (2mL) at −78 °C under argon atmosphere. After stirring at
−78 °C for 10min, diene 9 ((Z,E)/(E,E)= 70/30, 0.600 g, 1.99 mmol) in CH2Cl2
(2.0mL) was added dropwise, and the reaction was allowed to stir for 12 h at the same
temperature. TFA (0.18 mL, 2.38 mmol) was next added in one portion, and the
reaction was allowed to warm to 0 °C. After 20min at 0 °C, the resulting mixture
was poured into a solution ofmCPBA (77%, 3.56 g, 15.9mmol) in CH2Cl2 (20mL) at
0 °C. The reaction was warmed to ambient temperature and stirred for 24 h. The
reaction mixture was slowly quenched with satd. Na2S2O3(aq) at 0 °C, and the crude
organic portion was extracted with CH2Cl2. The combined organic layer was washed
with satd. NaHCO3(aq) and brine, dried over MgSO4, filtered and concentrated under
reduced pressure. Purification via flash column chromatography (n-hexane/ethyl
acetate= 4/1) provided the ε-lactone 41 (0.169 g, 40%) as a colourless solid.
[α]23D= −7.28 (c 10, CHCl3); m.p. 130–131 °C (recrystallized from n-hexane/CHCl3);
Infrared Spectrum (thin film): ν 2973, 1734, 1637, 1454, 1239, 1183, 1087, 1020, 767,
703 cm–1; 1H NMR (600MHz, CDCl3): δ 7.28 (t, J= 7.5 Hz, 2H; Ph-H), 7.21 (t, J=
7.2Hz, 1H; Ph-H), 7.12 (d, J= 7.8Hz, 2H; Ph-H), 4.70 (d, J= 10.6Hz, 1H;
ε-methine-H), 4.67 (s, 1H; γ-methine-H), 3.28 (dd, J= 14.0, 6.7Hz, 1H; α-methylene-

H), 2.99 (dq, J= 13.4, 6.7Hz, 1H; benzylic H), 2.44 (dd, J= 14.0, 5.2 Hz, 1H; α-
methylene-H), 2.10 (br, 1H; β-methine-H), 1.90 (s, 3H, CO2CH3), 1.56–1.54 (m, 1H;
δ-methine-H), 1.38 (d, J= 6.7Hz, 3H; CH3), 1.14 (d, J= 7.7 Hz, 3H; CH3), 1.01 (d, J
= 7.6Hz, 3H; CH3); 13C NMR (150MHz, CDCl3): δ 173.6 (C), 168.9 (C), 143.1 (C),
128.9 (CH × 2), 127.2 (CH × 2), 127.2 (CH), 80.9 (CH), 77.7 (CH), 41.9 (CH), 37.4
(CH), 35.1 (CH2), 32.6 (CH), 21.1 (CH3), 20.2 (CH3), 16.9 (CH3), 10.1 (CH3); High
Resolution Mass Spectrum (Electrospray Ionisation): m/z calcd for C18H24O4Na ([M
+Na]+): 327.1572, found: 327.1580. An X-ray analysis of the crystal supported the
structure of 41 and the relative configuration of its contiguous chiral centres ((Fig. 4b,
CCDC 1556026).

The complete experimental details and compound characterization data can be
found in the Supplementary Methods. For the NMR spectra of the compounds in
this article, see Supplementary Figs. 3–102.

Data availability. The X-ray crystallographic coordinates for compounds 11, 16,
23, 29, 34, 40, 41 and 42 in this study have been deposited at the Cambridge
Crystallographic Data Centre (CCDC), under deposition numbers CCDC 1511846,
CCDC 1511847, CCDC 1511848, CCDC 1511849, CCDC 1511880, CCDC
1511850, CCDC 1556026 and CCDC 1556034, respectively. These data can be
obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.
All data that support the findings of this study are available from the corresponding
author upon reasonable request.
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