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On the role of initial velocities in pair dispersion in a
microfluidic chaotic flow
Eldad Afik 1,2 & Victor Steinberg 1

Chaotic flows drive mixing and efficient transport in fluids, as well as the associated beautiful

complex patterns familiar to us from our every day life experience. Generating such flows at

small scales where viscosity takes over is highly challenging from both the theoretical and

engineering perspectives. This can be overcome by introducing a minuscule amount of long

flexible polymers, resulting in a chaotic flow dubbed ‘elastic turbulence’. At the basis of the

theoretical frameworks for its study lie the assumptions of a spatially smooth and random-in-

time velocity field. Previous measurements of elastic turbulence have been limited to two-

dimensions. Using a novel three-dimensional particle tracking method, we conduct a

microfluidic experiment, allowing us to explore elastic turbulence from the perspective of

particles moving with the flow. Our findings show that the smoothness assumption breaks

already at scales smaller than a tenth of the system size. Moreover, we provide conclusive

experimental evidence that ‘ballistic’ separation prevails in the dynamics of pairs of tracers

over long times and distances, exhibiting a memory of the initial separation velocities. The

ballistic dispersion is universal, yet it has been overlooked so far in the context of small scales

chaotic flows.
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To truly appreciate how come many find elastic turbulence
astonishing, we first have to realise that our intuition is
based on scenarios where the flow is dominated by inertia,

quantified by high values of the Reynolds number. When we stir
sugar in a cup of coffee, we typically drive the liquid in circles
using the tea-spoon, yet the flow quickly evolves into a three-
dimensional (3D) chaotic one, tremendously accelerating
the homogeneous distribution of the sweetener throughout the
beverage. This mixing flow is a manifestation of the nonlinearity
due to the inertia of the fluid taking over the viscous dissipation;
the ratio of the two is estimated by the Reynolds number.

Now imagine a fly walking in honey or a bacterium swimming
in water—one cannot expect any dramatic effects on the flow
beyond a few ‘bug’ distance units away from it. When the typical
velocities and length scales are small, corresponding to very low
values of the Reynolds number, the flows of non-complex liquids
—also known as ‘Newtonian’—are dominated by dissipation. As a
result they can be generically characterised as smooth and pre-
dictable. So long as the driving force and the boundary conditions
are steady, so will be the flow. A special class of geometries can
induce 3D flows, which despite being steady in time, may lead to
mixing1–3; these ‘chaotic mixers’ rely on patterned boundaries2 or
the vessel geometry3 to continuously generate recurring diverging
streamlines, which due to the low Reynolds remain fixed in space
and time. Therefore, mixing in microfluidic devices is normally
limited to diffusion.

Nevertheless, when even a minute amount of long flexible
polymers, such as DNA and protein filaments, are introduced, the
flow may develop a series of elastic instabilities which render it
irregular and twisted. This flow—‘elastic turbulence’4–6—which is
chaotic in time, has been shown to drive efficient mixing in
microfluidic devices as it can take place at extremely low values of
the Reynolds number7; in the case of our experiment, more than

six orders of magnitude smaller than the critical value for inertial
turbulence in a pipe8. It is exactly for this reason that even a fluid
dynamics expert may be amazed when presented with the visual
contrast between the mixing due to elastic turbulence and the
expected separation between fluid layers in a laminar flow when
the polymers are absent, as presented in (ref. 5, Fig. 1) and
(Figs 21–22 of ref. 9); more background on elastic turbulence can
be found in the review paper ref. 10 and the references therein.

Understanding transport phenomena at small scales is of
importance and wide interest mainly for two reasons: first, much
of the dynamics relevant for biology and chemistry takes place at
these scales5,11–13; second, microfluidic devices are playing an
important role in research and industrial technologies2,14–17,
often including complex fluids and flows whose dynamics still
lack a universal description.

To achieve a fundamental understanding of mixing and
transport phenomena, these need to be related and derived from
their underlying microscopic level of description, at its simplest,
the dispersion of pairs of particles11,18,19. Inspired by seminal
works on turbulence beneath the dissipative scale, theoretical
attempts to understand elastic turbulence rely on the assumptions
that the velocity field is smooth in space10,20,21, associating it with
the class known as the ‘Batchelor regime’18,22. For the dynamics
of passive point-like tracers this means that the relative velocity
between pairs is proportional to the distance separating them,
with the upshot of exponential separation on average, asympto-
tically in time11,18; in Supplementary Note 1 we sketch how the
asymptotic exponential pair separation prediction comes about.

The experimental study of pair separation dynamics in elastic
turbulence, taking place inside a tiny tube, has been limited thus
far as it poses technical challenges: first, the positions of tracers
are needed to be resolved over long times and distances, in
particular when the tracers get nearby to each other, whereas the
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Fig. 1 Pair dynamics example. The trajectories of two tracers are plotted in the left panels. The right panel shows a sub-sample of pair separation distances in
the course of time. The figure outlines the analysis forming the ensembles of pairs, as well as demonstrates the chaotic nature of the flow as manifested
by pairs; to develop the intuition and contrast with laminar flow, the reader is referred to, e.g., (Figs. 21–22 of ref. 9); several features of the mean flow
in our case are manifested in the Eulerian representation in Supplementary Fig. 2, particularly the striking differences from Poiseuille-like laminar flows.
a A projection on to the plane of the camera, which is imaging the channel from the bottom side (gravity pointing out of the panel towards the reader),
overlaid on a bright field image of the observation window (further technical details are provided in Supplementary Fig. 1 and in the Methods section).
b A side projection; the vertical axis is aligned with that of gravity, as well as the channel depth, 0 μm marking the channel bottom plane; as the width
of this panel spans a spatial range which is nearly six times longer than its height, for the sake of visualisation the vertical axis is stretched by 3/2; the colour
code in the plot denotes time, which spans 4 s in this case. All pairs of tracers which were detected at some instant at a prescribed separation distance, R0
= 10± 0.5 μm in this particular example, are collected to form one ensemble. The event at which the pair separation was nearest to R0, marked by the red
circles in the plot, is recorded as t0 for the specific pair for later analysis. Each R0 bin is 1 μm wide and centred at 6 through 50 μm, with sample sizes ranging
from nearly 104 to over 106 pairs, respectively; sample size data are presented in Supplementary Fig. 6. c A sub-sample of pair separation distances R(δt)
for 49 pairs belonging to the R0= 10 μm ensemble, presented on a semi-logarithmic scale; for each pair, δt= t − t0 is the time elapsed since t0. The colour
code denotes time, scaled separately for each curve
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flow is chaotic and 3D; second, the scales at which the dynamics
takes place require the use of a microscope, where 3D imaging is
non-trivial; third, the flow fluctuations in time dictate a high
temporal resolution; and finally, the statistical nature of the
problem demands a large sample of trajectories, which in turn
requires long acquisition times and reliable automation.

To overcome these, we have implemented a novel method,
which has been tested and presented in ref. 23. In a nutshell, the
3D positions of the fluorescent particles are determined from a
single camera two-dimensional (2D) imaging, by measuring the
diffraction rings generated by the out-of-focus particle; this way
the particle localisation problem turns into a ring detection
problem, which is addressed accurately and efficiently in ref. 23.
By means of this direct Lagrangian particle tracking technique,
we have established an experimental database24 of about 107

trajectories derived from passive tracers in elastic turbulence,
generated in a curvilinear microfluidic tube; for further details see
the Methods section.

In this letter, we report the results of pair dispersion due to the
chaotic flow. Our data reveals that the memory of the initial
relative velocity prevails the average dynamics, leading to a
quadratic growth in time of the relative pair separation—the
so-called ‘Ballistic dispersion’—and shows no signature of the
asymptotic exponential growth. In addition, we found that
the relative velocity deviates from linear dependence on the
separation distance already at about 8% of the tube width,
indicating that the linear velocity assumption is violated for the
most part of the motion, in contrast to the conceptual framework
broadly used for the study of elastic turbulence.

Results
Establishing a statistically stationary elastic turbulence. Let us
consider a pair of passive tracers separated by the vector R; one
realisation of such a pair is shown in Fig. 1a, b. The construction
of the ensembles for the analysis to follow is outlined in Fig. 1,
as well as in the Methods section.

As our intuition builds upon the common day-to-day
experience with high Reynolds (Re> 1) flows, which are typically
mixing, the chaotic nature of the trajectories presented in Fig. 1
may escape many readers. However, at the absence of polymers,
the flow at low Reynolds (Re< 1) is laminar and regular, and
tracers maintain their distance from the channel boundaries,
exhibiting no crossing of trajectories; (Figs. 21–22 of ref. 9)
present the striking contrast between the laminar case of the pure
solvent and the mixing elastic turbulence in the presence of
polymers, both at low Reynolds.

Spatial features of the mean flow in our system, elastic
turbulence in curvilinear microfluidic, can be revealed by
transforming to the Eulerian frame of reference, as presented in
Supplementary Fig. 2, and highlighted in its caption. These are in
accordance with 2D Eulerian studies of statistically stationary
fully developed elastic turbulence5,25. Despite some differences in
the details of the experiments, this accordance should come as no
surprise since the numbers characterising our flow, a Reynolds
number smaller than 10−4 and a global Weissenberg number
larger than 250 (see the Methods section), indeed, indicate that
the results presented here were obtained in a regime lying well
beyond the critical values for its statistical scaling properties to
be Weissenberg and Reynolds dependent5,25; that is, in our
experiment the Reynolds number is small enough to exclude any
nonlinear effects due to inertia, and the Weissenberg number is
large enough to achieve the elastic turbulence flow state which is
both random in time and statistically time-independent.

A comparison of the local fluctuation intensities over time, as
measured by the standard deviation fields, to the magnitude of
mean velocity components, supports the notion of temporal

randomness of our flow: this is most evident in the case of the
non-stream-wise velocity components which fluctuate over time
to a degree which exceeds that of the mean value in several
regions across the pipe cross-sections, and comparable even to
the stream-wise velocity component; Supplementary Fig. 2,
specifically compare the values in sub-figures e to c and f to d.
Realisations of velocity fluctuations in time, highlighting the
randomness of the velocity field even at lower values of the
Weissenberg number (Wi), have been shown in previous reports;
see ref. 5, (Fig. 2) and Figs. 16–17 of ref. 25 (when comparing, note
that our flow parameters should lead to a similar Wi to the one in
ref. 5, and are close to the Wi= 679 in ref. 25; see the Methods
section for clarification).

Pursuing the asymptotic exponential pair dispersion. Above we
have recalled that random linear flows have been shown theo-
retically to result in an asymptotic exponential pair dispersion
R2ðδtÞh i ¼ R2

0 exp 2ξ δt½ � (Supplementary Equation 3 in Supple-
mentary Note 1), where the exponential rate ξ is independent of
the initial separation R0; Supplementary Note 1 and references
therein11,18. It is worth noting that 2ξ, which can be identified
with the second order generalised Lyapunov exponent, is not
trivially related to the ordinary maximal Lyapunov exponent in
the generic case; see (ref. 26, §3.2.1), (ref. 27, §5.3)18, and others.
The evaluation of the asymptotic exponential rate ξ has drawn
much attention in the literature; references to theoretical and
numerical surveys can be found towards the end of
Supplementary Note 1, while Supplementary Note 3 reviews
the literature which follows from previous experimental
studies. Our experimental data for R2ðδtÞh iR0

=R2
0 is presented in

Fig. 2 on a semi-logarithmic scale; here, and in all that follows,
h¼ iR0

denotes ensemble averages differing by their initial
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Fig. 2 Pair dispersion normalised by the initial separation. The plot shows
the average squared pair separation distance, normalised by the initial
separation, h RðδtÞ=R0ð Þ2iR0 for various R0 between 6 and 50 μm;
curves satisfying the asymptotic exponential pair dispersion
R2ðδtÞ� � ¼ R20 exp 2ξ δt½ �, Supplementary Equation 3, would show-up on this
semi-logarithmic presentation as straight lines, all sharing the same slope
and, when extrapolated, hitting the origin, i.e., they should all collapse on a
single linear relation. The insets present a zoom-in on the initial and
intermediate temporal sub-intervals where the full range plot may seem to
contain linear segments. Nevertheless, there is no unique slope which can
be identified. Moreover, an exponential pair dispersion should extrapolate
to the origin on this plot, which is clearly not the case here, and the curves
do not merge asymptotically. The data show no supporting evidence for the
exponential time dependence which follows Supplementary Equation 3. The
un-normalised data R2ðδtÞ� �

R0
can be found in Supplementary Fig. 5
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separations R0. As discussed in the figure caption, our data show
no supporting evidence for the exponential growth of 〈R2(δt)〉.

Failure of the linear flow assumption. This raises questions
regarding the extent to which elastic turbulence can be regarded
as globally smooth, particularly in the presence of boundaries and
mean flow. A velocity field consistent with linear flow behaviour
would exhibit u2l

� �
R / R2 for the second order structure function

of the longitudinal velocity u2l
� �

R0;t0
, where u denotes the relative

velocity and ul= u⋅R/R; e.g., numerical simulations (Figs. 1 and 6
of ref. 28). In our flow, clear deviations from linearity are evident
already at separations beyond 12 μm, less than 10% of the width
and depth of the microfluidic channel, as can be learnt from
Fig. 3; a comparison to previous experimental results is drawn in
Supplementary Note 2. The inset of Fig. 3 presents the mean
squared relative velocities without rescaling; we shall return to
these profiles soon.

Relative pair dispersion. Having not observed the exponential
pair dispersion of long time asymptotics, and noting that the pairs
of tracers we study explore also regimes where the linear flow
assumption does not hold, we were still left with the puzzle of the
nature of the qualitative similarity among the curves in Fig. 2 and
its origin. Using a different data-derived quantity we have found
that, for a significant fraction of the observation time, the mean
relative pair dispersion evolves quadratically in time to leading
order RðδtÞ � R0k k2� � / δt2; this observation is evident in the
insets of Fig. 4. To better understand the source for this scaling let

us write the Taylor expansion around δt= 0

RðδtÞ ¼ R0 þ u0δt þ 1
2
_u0δt

2 þO δt3
� �

: ð1Þ

Substituting this in the expression for the relative pair dispersion
and considering the ensemble average over pairs of the same
initial separation

RðδtÞ � R0k k2� �
R0

¼ u2
� �

R0;t0
δt2 þ _u � uh iR0;t0δt

3 þO δt4
� �

;

ð2Þ
we find that the leading order term at short times is indeed
quadratic in δt—the so-called ‘ballistic’ regime.

Establishing the case for the short-time statistics. To test this
further, we rescale the relative pair dispersion by the pre-factor,
the mean initial squared relative velocity u2h iR0;t0 . Unlike the case
of inertial turbulence, for elastic turbulence there are no exact
results nor scaling arguments to derive the coefficients appearing
in Eq. (2). Therefore we extract them from the experimental data;
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the separation velocity u2l
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; (green right-triangle), where ul= u⋅R/R, are
plotted in the inset (right axis values are half the left ones) as function of the
initial separation distance R0; both ensemble averages are taken at the
initial time t0, when the pairs separation distance is closest to R0. Rescaling
these data by the squared initial separation R20 reveals the deviation from
the commonly applied assumption of linear velocity field, as presented on a
logarithmic scale in the main plot (right axis values are one order of
magnitude smaller than the left ones). Had 〈u2〉R ∝ R2 held, the rescaled
curves would have remained constant; this is clearly not the case. Indeed,
the u2l

� �
R0 ;t0

=R2
0; data level off as R0 approaches the smaller distances,

providing supporting evidence for the linearity of ul with R at scales smaller
than 12 μm. However, this does not hold beyond a tenth of the channel
depth. A linear flow regime is not supported by the rescaled relative
velocity data u2h iR0 ;t0R

2

0
, which values keep increasing even for the smallest

R0 values explored here. Further note that u2
� �

R0 ;t0
and u2l

� �
R0;t0

(inset) are
empirical estimators for the second order structure functions of the velocity
and the longitudinal velocity, correspondingly; the former is the coefficient
of the quadratic term in Eq. (2). The error bars in the inset (smaller than the
marker) indicate the margin of error based on a 95% confidence interval
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Fig. 4 Relative pair dispersion forward and backwards-in-time evolutions.
a Forward-in-time h RðδtÞ � R0k k2iR0 for various initial separations (inset)
between 6 and 50 μm, collapse initially on a single curve which follows a
power-law δt2, once rescaled by the average squared relative velocity at the
initial time, hu2iR0 ;t0 . A significant deviation from δt2 is noticed after 2–3 s,
indicating the time beyond which higher order terms should be considered.
b Backwards-in-time relative pair dispersion h Rð�δtÞ � R0k k2iR0 for the
same initial separations (inset), showing the same initial scaling collapse as
the forward in time
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see inset of Fig. 3. Indeed, we find that our data admits a scaling
collapse with no fitting parameters, providing a convincing
experimental evidence that these observations are well-described
by the short-time expansion of the relative pair dispersion,
exhibiting a significant deviation from δt2 only after 2–3 s (Fig. 4).

Before discussing this timescale, we would like to first expose
the sub-leading contributions to the initial relative pair disper-
sion. To this end, we subtract the backwards-in-time dynamics
from the forward one. This way the time-symmetric terms, even
powers of δt, are eliminated. The result, the time asymmetric

contributions presented in Fig. 5a, shows that indeed initially the
next-to-leading order correction follows δt3 and that the curves
do collapse onto a single one when rescaled by _u � uh i, the
appropriate coefficient in Eq. (2). The values of _u � uh iR0;t0 were,
once again, extracted from the experimental data (Supplementary
Fig. 3).

However, the deviations from this scaling are noticeable earlier
than half a second, much earlier than those from the ballistic
behaviour discussed above. This hints that the later deviation
observed in Fig. 4 is in fact due to higher order terms, potentially
an indication of a transition to another regime. The observation
that this transition takes place at an earlier time for the larger
initial separations indicates the potential effects of the vessel size
and its geometry. It may also be attributed to the limited range of
the linear flow approximation, consistent with the data presented
in Fig. 3.

Exploring how far the short-time statistics apply. Finally, let us
consider the limitations of the relative pair dispersion short-time
statistics description and its temporal range of application. The
ratio of the first two coefficients in Eq. (2) constitute a timescale,

δt�R0
¼ u2h iR0;t0= _u � uh iR0;t0

���
���, which puts an upper bound for the

ballistic approximation to be relevant. Rescaling Eq. (2) by

u2h iR0;t0 δt�R0

� �2
, the equation attains a dimensionless form, and

one finds that the first two terms cancel each other as δt/δt*

approaches unity due to the negative sign of _u � uh iR0;t0 , giving
place to higher order terms to prevail the dynamics. Moreover,
at that point, the expansion about the initial time is expected to
fail altogether. The corresponding rescaled empirical data are
presented in Fig. 5b; the empirical R0 profile of δt�R0

is provided in
Supplementary Fig. 4.

Discussion
On the one hand, our observations are consistent with the
timescale δt*, as sub-ballistic deviations from the δt2 scaling
are noticeable about δt≈ 0.1δt*, as expected; see the zoom-in
provided as the inset of Fig. 5, particularly for R0≳ 23 μm, and to
be compared with numerical simulations of inertial turbulence
(ref. 29, Fig. 1). On the other hand, the data indicate that the
relative pair dispersion remains near the δt2 scaling even when
δt≈ δt*, which is remarkable and puzzling.

A question that may naturally come to mind is whether
one could match the two limits, the short-time statistics and the
long-time exponential prediction. Before making any further
observations, one has to recall that the two are fundamentally
different as the former is achieved by expanding about the initial
time while the latter is attained as time approaches infinity,
so attempting to match the two does not apply. Moreover,
to demonstrate an exponential pair dispersion of the form of
Supplementary Equation 3, it is necessary to show that the pair
separation distance normalised by the initial separation,
RðδtÞ=R0ð Þ2� �

R0
, follows exp [2ξδt] which is R0 independent.

Going back to Fig. 2, had our data supported the asymptotic
exponential dispersion, the curves should have appeared as
straight lines in this presentation, all having the same slope and,
when extrapolated, hit the origin, collapsing all on a single linear
relation. Our results clearly rule out the exponential dispersion
regime in this case.

Before closing we must note that the short-time statistics,
leading to ballistic dispersion, is a universal property which does
not require any assumptions on the character of the flow. Thus
far experimental30 and numerical29,31 results have been limited to
the inertial subrange of high Reynolds number turbulence.
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Fig. 5 Relative pair dispersion time asymmetric terms and dimensionless
form. a Taking the difference between the data sets plotted in the insets of
Fig. 4, 1

2 h RðδtÞ � R0k k2 � Rð�δtÞ � R0k k2iR0 , exposes the contribution of
the time asymmetric terms, odd powers in δt, presented here in the inset
(sign inverted). Rescaling by the empirical estimator for _u � uh iR0 ;t0 , these
data collapse on δt3 initially; the data sets of R0≤ 10 μm (grey in the legend)
are omitted from the main figure due to the scatter of the estimator;
Supplementary Fig. 3. The plot shows a deviation from δt3 at times shorter
than 300 ms, indicating the dominance of higher order (odd) terms at early
times and that the δt3 term alone does not trivially explain the deviation
from δt2, observed in Fig. 4 after more than 2 s. b Rescaling the relative pair
dispersion data (inset of Fig. 4a) by hu2iR0 ;t0 ðδt�R0 Þ2 (see Eq. (2)), results in
a dimensionless form, plotted here against dimensionless time, δt rescaled
by δt�R0 ¼ jhu2iR0 ;t0= _u � uh iR0 ;t0 j; the empirical estimators of δt�R0 can be
found in Supplementary Fig. 4. The data sets indeed collapse onto a single
curve ðδt=δt�R0 Þ2 � ðδt=δt�R0 Þ3; (dashed black line) for δt=δt�R0 ≲ 0.2. The
zoom-in (inset) emphasises the behaviour as δt=δt�R0 ; approaches unity and
the first two terms cancel out each other
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Beneath the dissipative scale a sign of this behaviour has been
observed in simulations of inertial turbulence (ref. 31, Fig. 5).

And yet, to our knowledge the ballistic dispersion regime has
not been discussed experimentally in the context of small scales
chaotic flows, nor has it been confronted with the exponential
pair dispersion prediction Supplementary Equation 3. On the
contrary, reading recent publications on the subject, namely refs.
11,32,33, one may come to believe that the exponential dispersion
has already been observed experimentally, while a closer exam-
ination reveals that this is not the case; further elaboration can be
found in the Supplementary Note 3 and the conclusions therein.

We have demonstrated the predictive power of the ballistic
dispersion in microfluidics elastic turbulence, a model system for
a broader class of bounded chaotic flows at small scales.

Methods
Methods summary. The work presented here relies on constructing a database of
trajectories in an elastic turbulence flow24. Elastic turbulence is essentially a low
Reynolds number and a high Weissenberg number phenomenon. The former
means the inertial nonlinearity of the flow is over-damped by the viscous
dissipation. The latter estimates how dominant is the nonlinear coupling of the
elastic stresses to the spatial gradients of the velocity field compared with the
dissipation of these stresses via relaxation. This is the leading consideration in the
design of the flow cell.

The Lagrangian trajectories are inferred from passive tracers seeded in the fluid.
In order to study the dynamics of pairs, the 3D positions of the tracers are needed
to be resolved, even when tracers get nearby to each other. The requirement of
large sample statistics dictates the long duration of the experiment, which lasts over
days. The fluctuations due to the chaotic nature of the flow set the temporal
resolution at milliseconds. This leads to a data generation rate of about 180 GB h−1.
Hence both the acquisition and the analysis processes are required to be steady and
fully automated. The 3D positions of the fluorescent particles are determined using
2D single camera imaging, by measuring the diffraction rings generated by the out-
of-focus particle. This way the particle localisation problem turns into a ring
detection problem. To this end a new algorithm has been developed and tested23;
the source is freely available online (https://github.com/eldad-a/ridge-directed-
ring-detector).

Microfluidic apparatus. The experiments were conducted in a microfluidic device,
implemented in polydimethylsiloxane elastomer by soft lithography, consisting of a
curvilinear tube having a rectangular cross-section. The depth is measured to be
135 μm, the width is ~185 μm (Supplementary Fig. 1). The geometry consists of a
concatenation of 33 co-centric pairs of half circles.

The working fluid consists of polyacrylamide (MW= 1.8 × 107 Da at mass
fraction of 80 parts per million) in aqueous sugar syrup (1:2 sucrose to d-sorbitol
ratio; mass fraction of 78%), seeded with fluorescent particles (1 micron
Fluoresbrite YG carboxylate particles, PolySciences Inc.) at number density of
about 50 tracers in the observation volume.

The flow is gravity driven.

Physical considerations for the flow and passive tracers. The viscosity of the
Newtonian solvent, without the polymers, is estimated to be 1100 times larger
than water viscosity at 22 °C. This leads to a polymer longest relaxation time of
τp≃100 s34, which is the longest timescale characterising the relaxation of elastic
stresses in the solution. The ratio of the fluorescent particles mass density to that
the working solution is about 0.75; Yet, the high viscosity of the working fluid and
the small radius of the particles qualify them as passive tracers—the effects of
buoyancy and inertia are essentially negligible as the terminal velocity is of the
order of a tenth of a nanometre per second, and the inertia relaxation time is
shorter than the tenth of a nanosecond. Additionally, for all practical purposes, we
are allowed to neglect altogether contributions from Brownian motion to the
dynamics of the fluorescent particles on the time scales over which they are
observed—their diffusion coefficient leads to a variance increase of about a micron-
squared in an hour.

Local velocity averaged over time in the Eulerian frame of reference showed a
maximum over space of about maxx vðx; tÞ ’ 250 μm s−1, for v(x, t) denoting
instantaneous local fluid velocity, here inferred from single particle trajectories, and
time-averaging denoted by the bar. This results in a Reynolds number Re≲ 10−4

and a global Weissenberg number Wi ¼ τp
maxxvðx;tÞ
width=2 ≳ 250. To interpret these

values in the light of ref. 25, one has to first match the manner by which Wi is
estimated. Plugging in the values provided in that report, using the maximal
stream-wise velocity in (Fig. 10 of ref. 25), in the definition we use above, one finds
that the maximal Wi used in ref. 25 would correspond to 447 in our case; using
(Fig. 4 of ref. 25), we can infer that the onset of developed elastic turbulence

corresponds to Wi≃ 165, placing the parameters of our experiment in the regime
of statistically stationary fully developed elastic turbulence.

Imaging system. The imaging system consists of an inverted fluorescence
microscope (IMT-2, Olympus), mounted with a Plan-Apochromat 20× /0.8NA
objective (Carl Zeiss) and a fluorescence filter cube; a Royal-Blue LED (Luxeonstar)
served for the fluorophore excitation. A CCD (GX1920, Allied Vision Technolo-
gies) was mounted via zoom and 0.1× c-mount adaptors (Vario-Orthomate
543513 and 543431, Leitz), sampling at 70 Hz, 968 × 728 px, covering
810 × 610 μm laterally and the full depth of the tube. The camera control was based
on a modification of the Motmot Python camera interface package35, expanded
with a home-made plug-in, to allow real-time image analysis in the RAM23,
recording only the time-lapse positions of the tracers to the hard drive.

Lagrangian particle tracking. To construct trajectories, the particle localisation
procedure, introduced in ref. 23, has to be complemented by a linking algorithm.
Here, we implemented a kinematic model, in which future positions are inferred
from the already linked past positions. We used the code accompanying ref. 36

as a starting point. The algorithm was rewritten in Python (primarily using SciPy
http://www.scipy.org/37), generalised to n-dimensions, the kinematic model mod-
ified to account for accelerations as well, a memory feature was added to account
for the occasional loss of tracers, and it was optimised for better performance. The
procedure accounts for the physical process of particles advected by a smooth
chaotic flow and for the uncertainties. These arise from the chaotic in time nature
of the flow (‘physical noise’) as well as from localisation and past linking errors
(‘experimental noise’). Finally, natural smoothing cubic splines are applied to
smooth-out the experimental noise and estimate the velocities and accelera-
tions38,39. The smoothing parameter is chosen automatically, where Vapnik’s
measure takes the role of the usual generalised cross-validation, adapted from the
Octave splines package40. Links to the corresponding open-source Python code are
provided below, under Data availability.

Pairs analysis. Within the trajectories database, we have identified pairs of tracers
which were found at some instant at a separation distance close to a prescribed
initial separation R0= 6,7, …, 50 μm, to within δR0=±0.5 μm. The initial time t0
for a trajectory was set by the instant at which the separation distance was closest to
R0. This way, each pair separation trajectory R(δt) can contribute to an R0 pairs
ensemble at most once. See Fig. 1. The number of pairs considered in each R0
ensemble is plotted in Supplementary Fig. 6 as function of δt.

Examining the ensemble averages of the relative separation velocity at the initial
time ulh iR0 ;t0

, we do not find an indication that our sampling method introduces a
bias for converging or diverging trajectories, at least for R0≲ 22 μm.

Our data support the linear flow approximation assumption at small enough
scales, as indicated by the ensemble averages of the initial relative separation
velocity; see Fig. 3 where u2l

� �
R0 ;t0

=R2
0; (green right-triangles) levels-off at R0≲ 12

μm. The same regime is not reached for the relative velocity, yet the u2h iR0 ;t0
=R2

0

data in Fig. 3 (blue left-triangles) does not rule out this possibility for smaller scales.

Data availability. The data sets generated and analysed during the current study
are available in the figshare repository, 10.6084/m9.figshare.5112991 24.

All programming and computer aided analysis in this work relies on open-
source projects; all based on tools from the SciPy ecosystem41, primarily using
IPython42 as an interactive computational environment, Pandas43 for data
structures, and Matplotlib44 for plotting.

Much of the source code developed in the course of this study is available as
open-source at: https://github.com/eldad-a/ridge-directed-ring-detector; https://
github.com/eldad-a/particle-tracking; https://github.com/eldad-a/natural-cubic-
smoothing-splines
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