### CORRESPONDENCE

# Check for updates

# Downregulation of ACE2 induces overstimulation of the renin–angiotensin system in COVID-19: should we block the renin–angiotensin system?

François Silhol<sup>1</sup> · Gabrielle Sarlon<sup>1</sup> · Jean-Claude Deharo<sup>1</sup> · Bernard Vaïsse<sup>1</sup>

Received: 4 April 2020 / Revised: 6 April 2020 / Accepted: 6 April 2020 / Published online: 22 May 2020  $^{\odot}$  The Japanese Society of Hypertension 2020

Severe acute respiratory syndrome coronavirus 2 is the cause of the ongoing coronavirus disease-19 (COVID-19) pandemic. Mortality is mainly due to acute respiratory distress syndrome (ARDS) [1].

High blood pressure appeared to be an independent factor for severity in patients with COVID-19 [2, 3].

The renin–angiotensin system (RAS) is a hemodynamic and biological system that regulates blood pressure, plasma potassium, and the stability of pulmonary epithelial membranes (Fig. 1) [4]. In this system, two antagonistic pathways are balanced. The first is the angiotensinogen pathway that transforms angiotensinogen into angiotensin I (by renin), and then converts it into angiotensin II by angiotensin converting enzyme (ACE). Angiotensin II attaches to angiotensin II type 1 receptor (AT1R) and activates the system to induce vasoconstriction, aldosterone secretion stimulation, hypokalemia, and pulmonary epithelium degradation [5].

The second way in which the angiotensin system is balanced involves a second angiotensin converting enzyme (ACE2) [6, 7]. This pathway transforms a part of angiotensin I [1–10] and angiotensin II [1–8] before it attaches to its AT1R receptor. The angiotensin I and II phosphorylation products are angiotensin 1–9 and angiotensin 1–7. They attach to the angiotensin II type 2 receptor receiver, inducing antagonist effects compared with AT1R [8].

In the infection phase (Fig. 2), COVID-19 virus uses the enzymatic receptor of ACE2 to penetrate the host cell [9, 10]. Coronavirus binding with ACE2 has been shown to lead to a downregulation of ACE2 [11], contributing to an increase in

François Silhol francois.silhol@ap-hm.fr angiotensin 2 through ACE, as the decrease in ACE2 results in a lower conversion of angiotensin to angiotensin 1-7vasodilator [12]. The lower the level of ACE2, the lesser angiotensin I [1-10] and angiotensin II [1-8] will be degraded; thus, their plasmatic concentration gradually increases. A US intensive care unit team demonstrated that an increase in angiotensin 1–10 and a decrease in angiotensin 1–9 (its ACE2 processing product) were correlated with a poor prognosis in ARDS [1].

Thus, elevations in angiotensin II concentrations and stimulation of AT1R lead to a decrease in the stability of the pulmonary endothelium and an aggravation of respiratory distress [13, 14]. The other effects are an increased secretion of aldosterone, hypokalemia induced by kaliuresis, and increased sodium reabsorption and inflammation [15].

Hypokalemia is frequently found in patients with COVID-19. A Chinese team recently reported that hypokalemia was associated with a poor outcome (Wuhan's experience) [16].

Conversely, RAS blockers can increase ACE2 and potentially promote virus loading into the cell [17].

We believe that major imbalance in RAS induced by the downregulation of ACE2 is an essential element of unfavorable evolution in patients with COVID-19. The biological marker of this imbalance appears to be hypokalemia.

Several studies in influenza and Ebola lung infections have shown the beneficial role of AT1R blockers on lung damage, with a decrease in inflammation and cytokines [18–21]. In two animal studies, losartan demonstrated an increase in ACE2 expression [22, 23].

Losartan was also the molecule chosen in two trials recently started in the United States by the University of Minnesota to treat patients with COVID-19 (clinical trials. gov NCT04311177 and NCT 104312009). We began a preliminary study to document the kinetics of RAS in COVID+ patients (SAR-COV) before therapeutic evaluation (ISRA-COV).

<sup>&</sup>lt;sup>1</sup> Cardiology Department, HTA and Vascular Medicine University Hospital Timone, Marseille, France



Clarification is needed to determine whether blockers of the angiotensin system have a protective or harmful effect in these patients [24]. In particular, we strongly need to evaluate how blocking the overactivation of the RAS by an AT1R blocker (such as losartan) in patients with COVID-19 could decrease respiratory decompensation and hemodynamic disorders and thus limit the number of patients with poor prognosis.

## Compliance with ethical standards

**Conflict of interest** The authors declare that they have no conflict of interest.

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

# References

1. Reddy R, Asante I, Liu S, Parikh P, Liebler J, Borok Z, et al. Circulating angiotensin peptides levels in acute respiratory distress syndrome correlate with clinical outcomes: a pilot study. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0213096.

- Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
- World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19. World Health Organization; 2020. https://www.who.int/dg/speeches/detail/whodirector-general-s-opening-remarks-at-the-media-briefing-oncovid-19–11-march-2020.
- Bullock GR, Steyaert I, Bilbe G, Carey RM, Kips J, De Paepe B, et al. Distribution of type-1 and type-2 angiotensin receptors in the normal human lung and in lungs from patients with chronic obstructive pulmonary disease. Histochem Cell Biol. 2001;115: 117–24.
- Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. Human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275:33238–43. https://doi.org/10.1074/jbc. M002615200.
- Batlle D, Wysocki J, Soler MJ, Ranganath K. Angiotensinconverting enzyme 2: enhancing the degradation of angiotensin II as a potential therapy for diabetic nephropathy. Kidney Int. 2012;81:520–8. https://doi.org/10.1038/ki.2011.381.

- Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, Van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–7. https://doi.org/10.1002/path.1570.
- Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI. Counterregulatory actions of angiotensin-(1-7). Hypertension. 1997;30:535–41. https://doi.org/10.1161/01.hyp.30.3.535.
- Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020. https://doi.org/10.1016/S0140-6736(20)30251-8.
- Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition on by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94. pii: e00127-20. https://doi.org/10.1128/JVI.00127-20.
- Yumiko I, Kuba K, Penninger Josef M. The discovery of ACE2 role in acute lung injury in mice. Exp Physiol. 2008;93:543–8.
- 12. Ohshima K, Mogi M, Nakaoka H, Iwanami J, Min LJ, Kanno H, et al. Possible role of angiotensin-converting enzyme 2 and activation of angiotensin II type 2 receptor by angiotensin-(1-7) in improvement of vascular remodeling by angiotensin II type 1 receptor blockade. Hypertension. 2014;63:e53–9.
- Imai Y, Kuba K, Rao S, Huan Y, Guo F, Leong-Poi H. Angiotensinconverting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–6. https://doi.org/10.1038/nature03712.
- Kuba K, Imai Y, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875–9.
- Lijnen P, Petrov V, Fagard R. Induction of cardiac fibrosis by angiotensin II. Methods Find Exp Clin Pharmacol. 2000;22:709–24. https://doi.org/10.1358/mf.2000.22.10.
- D Chen, X Zhang. Hypokalemia and clinical implications in patients with coronavirus disease 2019 (COVID-19). Preprint at https://doi.org/10.1101/2020.02.27.20028530.

- Diaz JH. Hypothesis: angiotensine converting enzyme inhibitor and angiotensine receptor blocker may increase the risk of severe Covid19. J Travel Med. 2020; pii: taaa041. https://doi.org/10. 1093/jtm/taaa041.
- Hagiwara S, Iwasaka H, Hidaka S, Hasegawa A, Koga H, Noguchi T. Antagonist of the type-1 ANG II receptor prevents against LPS-induced septic shock in rats. Intensive Care Med. 2009; 35:1471–8.
- Iwai M, Nakaoka H, Senba I, Kanno H, Moritani T, Horiuchi M. Possible involvement of angiotensin-converting enzyme 2 and Mas activation in inhibitory effects of angiotensin II Type 1 receptor blockade on vascular remodeling. Hypertension. 2012;60:137–44.
- Wong MH, Chapin OC, Johnson MD. LPS-stimulated cytokine production in type I cells is modulated by the renin-angiotensin system. Am J Respir Cell Mol Biol. 2012;46:641–50.
- Clancy P, Koblar SA, Golledge J. Angiotensin receptor 1 blockade reduces secretion of inflammation associated cytokines from cultured human carotid atheroma and vascular cells in association with reduced extracellular signal regulated kinase expression and activation. Atherosclerosis. 2014;236:108–15.
- Ishiyama Y, Gallagher PE, Averill DB, Tallant EA, Brosnihan KB, Ferrario CM. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension. 2004;43:970–6.
- 23. Klimas J, Olvedy M, Ochodnicka-Mackovicova K, Kruzliak P, Cacanyiova S, Kristek F, et al. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats. J Cell Mol Med. 2015;19:1965–74. https://doi.org/10.1111/jcmm.12573.
- Danser AHJ, Epstein M, Batlle D. Renin-Angiotensin system blockers and the COVID-19 pandemic at present there is no evidence to abandon Renin-Angiotensin system blockers. Hypertension. Preprint at https://www.ahajournals.org/journal/hyp https://doi. org/10.1161/HYPERTENSIONAHA.120.15082 (2020).