Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of mineralocorticoid receptor blockade with direct renin inhibition in angiotensin II-dependent hypertensive mice

Abstract

It has been suggested that aldosterone breakthrough during treatment with a type 1 angiotensin II receptor (AT1R) blocker (ARB) may be an important risk factor for the progression of renal and cardiovascular disease. We examined whether the direct renin inhibitor, aliskiren caused aldosterone breakthrough in angiotensin II (Ang II)-dependent hypertensive mice. The effect of combination therapy with aliskiren and eplerenone was compared with that of therapy using renin–angiotensin system (RAS) blockade. Tsukuba hypertensive mice were treated for 12 weeks with aliskiren (30 mg/kg/day, i.p), candesartan (5 mg/kg/day, p.o), eplerenone (100 mg/kg/day, p.o) aliskiren and candesartan, aliskiren and eplerenone or candesartan and eplerenone. Blood pressure, urinary aldosterone and angiotensinogen (AGTN) excretion; plasma endothelin-1 concentration; kidney weight; urinary albumin excretion (UAE); glomerular injury; and renal messenger RNA (mRNA) levels for transforming growth factor (TGF)-β1, plasminogen activator inhibitor (PAI)-1, angiotensin-converting enzyme (ACE) and AT1R were measured. Combination therapy with aliskiren and candesartan caused a further decrease in blood pressure (p < 0.05) compared with either agent alone. Urinary aldosterone excretion was decreased significantly by 4 weeks of treatment with aliskiren or candesartan (p < 0.05). However, it was increased again by treatment with candesartan or aliskiren for 12 weeks. Combination therapy with aliskiren and eplerenone significantly decreased UAE, the glomerulosclerosis index, and PAI-1 and TGF-β1 mRNA levels compared with all other therapies (p < 0.05). Treatment with aliskiren decreased urinary aldosterone excretion at 4 weeks and increased it at 12 weeks. Combination therapy with a direct renin inhibitor and a mineralocorticoid receptor blocker may be effective for the prevention of renal injury in Ang II-dependent hypertension.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nishimoto M, Ohtsu H, Marumo T, Kawarazaki W, Ayuzawa N, Ueda K, et al. Mineralocorticoid receptor blockade suppresses dietary salt-induced ACEI/ARB-resistant albuminuria in non-diabetic hypertension: a sub-analysis of evaluate study. Hypertens Res. 2019;42:514–21.

    CAS  PubMed  Google Scholar 

  2. Yoneda T, Takeda Y, Usukura M, Oda N, Takata H, Yamamoto Y et al. Aldosterone breakthrough during angiotensin II receptor blockade in hypertensive patients with diabetes mellitus. Am J Hypertens. 2007;20:1329–33.

    CAS  PubMed  Google Scholar 

  3. Shibata S, Ishizawa K, Uchida S. Mineralocorticoid receptor as a therapeutic target in chronic kidney disease and hypertension. Hypertens Res. 2017;40:221–5.

    CAS  PubMed  Google Scholar 

  4. Nishiyama A. Pathophysiological mechanisms of mineralocorticoid receptor-dependent cardiovascular and chronic kidney disease. Hypertens Res. 2019;42:293–300.

    CAS  PubMed  Google Scholar 

  5. Zhu A, Yoneda T, Demura M, Karashima S, Usukura M, Yamagishi M, et al. Effect of mineralocorticoid receptor blockade on the renal renin-angiotensin system in Dahl salt-sensitive hypertensive rats. J Hypertens. 2009;27:800–5.

    CAS  PubMed  Google Scholar 

  6. Takeda Y. Effects of eplerenone, a selective mineralocorticoid receptor antagonist, on clinical and experimental salt-sensitive hypertension. Hypertens Res. 2009;32:321–4.

    CAS  PubMed  Google Scholar 

  7. Ruiz-Hurtado G, Ruilope LM. Cardiorenal protection during chronic renin-angiotensin-aldosterone system suppression: evidences and caveats. Eur Heart J Cardiovasc Pharmacother. 2015;1:126–31.

    CAS  PubMed  Google Scholar 

  8. Sato A, Fukuda S. Effect of aldosterone breakthrough on albuminuria during treatment with a direct renin inhibitor and combined effect with a mineralocorticoid receptor antagonist. Hypertens Res. 2013;36:879–84.

    CAS  PubMed  Google Scholar 

  9. Fukamizu A, Sugimura K, Takimoto E, Sugiyama F, Seo MS, Takahashi S, et al. Chimeric renin-angiotensin system demonstrates sustained increase in blood pressure of transgenic mice carrying both human renin and human angiotensinogen genes. J Biol Chem. 1993;268:11617–21.

    CAS  PubMed  Google Scholar 

  10. Kai T, Sugimura K, Shimada S, Kurooka A, Ishikawa K. Renin-angiotensin system stimulates cardiac and renal disorders in Tsukuba hypertensive mice. Clin Exp Pharm Physiol. 1999;26:206–11.

    CAS  Google Scholar 

  11. Takeda Y, Zhu A, Yoneda T, Usukura M, Takata H, Yamagishi M. Effects of aldosterone and angiotensin II receptor blockade on cardiac angiotensinogen and angiotensin-converting enzyme 2 expression in Dahl salt-sensitive hypertensive rats. Am J Hypertens. 2007;20:1119–24.

    CAS  PubMed  Google Scholar 

  12. Takeda Y, Yoneda T, Demura M, Furukawa K, Usukura M, Mabuchi H. 19-Noraldosterone in pregnancy-induced hypertension. Steroids. 2002;67:605–10.

    CAS  PubMed  Google Scholar 

  13. Takeda Y, Inaba S, Furukawa K, Fujimura A, Miyamori I, Mabuchi H. Effects of chronic neutral endopeptidase inhibition in rats with cyclosporine-induced hypertension. J Hypertens. 2000;18:927–33.

    CAS  PubMed  Google Scholar 

  14. Higashi K, Oda T, Kushiyama T, Hyodo T, Yamada M, Suzuki S, et al. Additive antifibrotic effects of pioglitazone and candesartan on experimental renal fibrosis in mice. Nephrology. 2010;15:327–35.

    CAS  PubMed  Google Scholar 

  15. Reinhold SW, Krüger B, Barner C, Zoicas F, Kammerl MC, Hoffmann U, et al. Nephron-specific expression of components of the renin-angiotensin-aldosterone system in the mouse kidney. J Renin Angiotensin Aldosterone Syst. 2012;13:46–55.

    CAS  PubMed  Google Scholar 

  16. Nagase M, Shibata S, Yoshida S, Nagase T, Gotoda T, Fujita T. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension. 2006;47:1084–93.

    CAS  PubMed  Google Scholar 

  17. Endemann DH, Touyz RM, Iglarz M, Savoia C, Sciffrin EL. Eplerenone prevents salt-induced vascular remodeling and cardiac fibrosis in stroke-prone spontaneously hypertensive rats. Hypertension. 2004;43:1252–7.

    CAS  PubMed  Google Scholar 

  18. Sakurabayashi-Kitade S, Aoka Y, Nagashima H, Kasanuki H, Hagiwara N, Kawana M. Aldosterone blockade by Spironolactone improves the hypertensive vascular hypertrophy and remodeling in angiotensin II overproducing transgenic mice. Atherosclerosis. 2009;206:54–60.

    CAS  PubMed  Google Scholar 

  19. Takeda Y, Yoneda T, Demura M, Miyamori I, Mabuchi H. Cardiac aldosterone production in genetically hypertensive rats. Hypertension. 2000;36:495–500.

    CAS  PubMed  Google Scholar 

  20. Yoshimura M, Nakamura S, Ito T, Nakayama M, Harada E, Mizuno Y, et al. Expression of aldosterone synthase gene in failing human heart: quantitative analysis using modified real-time polymerase chain reaction. J Clin Endocrinol Metab. 2002;87:3936–40.

    CAS  PubMed  Google Scholar 

  21. Pitt B, Zannad F, Remme W, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on motbility and mortality in patients with severe heart failure. N. Engl J Med. 1999;341:709–17.

    CAS  PubMed  Google Scholar 

  22. Naruse M, Tanabe A, Sato A, Takagi S, Tsuchiya K, Imaki T, et al. Aldosterone breakthrough during angiotensin II receptor antagonist therapy in stroke-prone spontaneously hypertensive rats. Hypertension. 2002;40:28–33.

    CAS  PubMed  Google Scholar 

  23. Bomback AS, Rekhtman Y, Klemmer PJ, Canetta PA, Radhakrishnan J, Appel GB. Aldosterone breakthrough during aliskiren, valsartan, and combination (aliskiren + valsartan) therapy. J Am Soc Hypertens. 2012;6:338–45.

    CAS  PubMed  Google Scholar 

  24. Rossi GP, Albertin G, Neri G, Andreis PG, Hofmann S, Pessina AC et al. Endothelin-1 stimulates steroid secretion of human adrenocortical cells ex vivo via both ETA and ETB receptor subtypes. J Clin Endocrinol Metab. 1997;82:3445–9.

    CAS  PubMed  Google Scholar 

  25. Miura SI, Suematsu Y, Matsuo Y, Tomita S, Nakayama A, Goto M, et al. The angiotensin II type 1 receptor – nephrilysin inhibitor LCZ696 blocked aldosterone synthesis in a human adrenocortical cell line. Hypertens Res. 2016;39:758–63.

    CAS  PubMed  Google Scholar 

  26. Connor KL, Denby L. Urinary angiotensinogen as a biomarker for acute to chronic kidney injury transition - prognostic and mechanistic implications. Clin Sci. 2018;132:2383–5.

    CAS  Google Scholar 

  27. Emdin CA, Rahimi K, Neal B, Callender T, Perkovic V, Patel A. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2015;13:603–15.

    Google Scholar 

  28. Yoshida S, Ishizawa K, Ayuzawa N, Ueda K, Takeuchi M, Kawarazaki W, et al. Renin inhibition ameliorates renal damage through prominent suppression of both angiotensin I and II in human renin angiotensinogen transgenic mice with high salt loading. Clin Exp Nephrol. 2014;18:593–9.

    CAS  PubMed  Google Scholar 

  29. Uzu T, Araki SI, Kashiwagi A, Haneda M, Koya D, Yokoyama H, et al. Comparative effects of direct renin inhibitor and angiotensin receptor blocker on albuminuria in hypertensive patients with type 2 diabetes. A randomized controlled trial. PLoS ONE. 2016;29:e0164936. 11(12).

    Google Scholar 

  30. Kawarazaki W, Nagase M, Yoshida S, Takeuchi M, Ishizawa K, Ayuzawa N, et al. Angiotensin II- and salt-induced kidney injury through Rac1-mediated mineralocorticoid receptor activation. J Am Soc Nephrol. 2012;23:997–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nagase M, Matsui H, Shibata S, Gotoda T, Fujita T. Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension. 2007;50:877–83.

    CAS  PubMed  Google Scholar 

  32. Kiyomoto H, Rafiq K, Mostofa M, Nishiyama A. Possible underlying mechanisms responsible for aldosterone and mineralocorticoid receptor-dependent renal injury. J Pharm Sci. 2008;108:399–405.

    CAS  Google Scholar 

  33. De Mello WC. Spironolactone enhances the beneficial effect of aliskiren on cardiac structural and electrical remodeling in TGR(mRen2)27 rats. J Renin Angiotensin Aldosterone Syst. 2015;16:488–94.

    PubMed  Google Scholar 

  34. Weinberger MH, White WB, Ruilope LM, MacDonald TM, Davidson RC, Roniker B, et al. Effects of eplerenone versus losartan in patients with low-renin hypertension. Am Heart J. 2005;150:426–33.

    CAS  PubMed  Google Scholar 

  35. Li L, Guan Y, Kobori H, Morishita A, Kobara H, Masaki T, et al. Effects of the novel nonsteroidal mineralocorticoid receptor blocker, esaxerenone (CS-3150), on blood pressure and urinary angiotensinogen in low-renin Dahl salt-sensitive hypertensive rats. Hypertens Res. 2019;42:769–78.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Ms Cheng Wu for assistance with the animal experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyu Takeda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, A., Takeda, Y., Karashima, S. et al. Impact of mineralocorticoid receptor blockade with direct renin inhibition in angiotensin II-dependent hypertensive mice. Hypertens Res 43, 1099–1104 (2020). https://doi.org/10.1038/s41440-020-0458-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-0458-5

Keywords

This article is cited by

Search

Quick links