Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of complement 3 in the pathogenesis of hypertension

Abstract

The complement system has recently been reported to contribute to the development and pathogenesis of hypertension, several cardiovascular and renal diseases, and cardiometabolic disorders accompanied by inflammation and tissue remodeling. We have demonstrated that complement 3 (C3) is highly expressed in mesenchymal tissues in spontaneously hypertensive rats (SHRs) and induces the synthetic phenotype and exaggerated growth of mesenchymal cells by maintenance effect on dedifferentiated cells. To verify the role of C3 in the pathogenesis of hypertension, we targeted the C3 gene from SHRs by zinc-finger nuclease gene-editing technology and demonstrated that the increased expression of C3 induces salt-sensitive hypertension with activation of the renal renin-angiotensin system in SHRs. We recently found that increased expression of C3 is associated with the suppression of miR145 and induces Krüppel-like factor 5 and the synthetic phenotype of mesenchymal cells in SHRs. We also demonstrated that C3 is involved in the epithelial-to-mesenchymal transition and dedifferentiation of epithelial cells in kidneys subjected to unilateral ureteral obstruction with elevation of blood pressure. Thus, C3 is an essential factor in the pathogenesis of hypertension due to its maintenance effect on undifferentiated mesenchymal cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. de Bruijn MH, Fey GH. Human complement component C3. cDNA coding sequence and derived primary structure. Proc Natl Acad Sci USA. 1985;82:708–12.

    PubMed  Google Scholar 

  2. Legoedec J, Gasque P, Jeanne JF, Fontaine M. Expression of the complement alternative pathway by human myoblasts in vitro: biosynthesis of C3, factor B, factor H and factor I. Eur J Immunol. 1995;25:3460–6.

    CAS  PubMed  Google Scholar 

  3. Lévi-Strauss M, Mallat M. Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation. J Immunol. 1987;139:2361–6.

    PubMed  Google Scholar 

  4. Schumacher WA, Fantone JC, Kunkel SE, Webb RC, Lucchesi BR. The anaphylatoxins C3a and C5a are vasodilators in the canine coronary vasculature in vitro and in vivo. Agents Actions. 1991;34:345–9.

    CAS  PubMed  Google Scholar 

  5. Schraufstatter IU, Trieu K, Sikora L, Sriramarao P, DiScipio R. Complement c3a and c5a induce different signal transduction cascades in endothelial cells. J Immunol. 2002;169:2102–10.

    CAS  PubMed  Google Scholar 

  6. Usami M, Mitsunaga K, Miyajima A, Sunouchi M, Doi O. Complement component C3 functions as an embryotrophic factor in early postimplantation rat embryos. Int J Dev Biol. 2010;54:1277–85.

    CAS  PubMed  Google Scholar 

  7. Schraufstatter IU, Discipio RG, Zhao M, Khaldoyanidi SK. C3a and C5a are chemotactic factors for human mesenchymal stem cells, which cause prolonged ERK1/2 phosphorylation. J Immunol. 2009;182:3827–36.

    CAS  PubMed  Google Scholar 

  8. Sarafidis PA, Georgianos P, Bakris GL. Resistant hypertension—its identification and epidemiology. Nat Rev Nephrol. 2013;9:51–58.

    PubMed  Google Scholar 

  9. Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, et al. Hypertension: physiology and pathophysiology. Compr Physiol. 2012;2:2393–442.

    PubMed  Google Scholar 

  10. Harrison DG, Gongora MC. Oxidative stress and hypertension. Med Clin North Am. 2009;93:621–35.

    CAS  PubMed  Google Scholar 

  11. Cuhlmann S, Van der Heiden K, Saliba D, Tremoleda JL, Khalil M, Zakkar M, et al. Disturbed blood flow induces RelA expression via c-Jun N-terminal kinase 1: a novel mode of NF-kappaB regulation that promotes arterial inflammation. Circ Res. 2011;108:950–9.

    CAS  PubMed  Google Scholar 

  12. Harrison DG, Widder J, Grumbach I, Chen W, Weber M, Searles C. Endothelial mechanotransduction, nitric oxide and vascular inflammation. J Intern Med. 2006;259:351–63.

    CAS  PubMed  Google Scholar 

  13. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Investig. 2007;117:568–75.

    CAS  PubMed  Google Scholar 

  14. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545–56.

    CAS  PubMed  Google Scholar 

  15. Franco M, Tapia E, Santamaría J, Zafra I, García-Torres R, Gordon KL, et al. Renal cortical vasoconstriction contributes to development of salt-sensitive hypertension after angiotensin II exposure. J Am Soc Nephrol. 2001;12:2263–71.

    CAS  PubMed  Google Scholar 

  16. Sánchez-Lozada LG, Tapia E, Johnson RJ, Rodríguez-Iturbe B, Herrera-Acosta J. Glomerular hemodynamic changes associated with arteriolar lesions and tubulointerstitial inflammation. Kidney Int. 2003;64:S9–S14.

    Google Scholar 

  17. Sumida T, Naito AT, Nomura S, Nakagawa A, Higo T, Hashimoto A, et al. Complement C1q-induced activation of β-catenin signalling causes hypertensive arterial remodelling. Nat Commun. 2015;6:6241.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cove-Smith A, Hendry BM. The regulation of mesangial cell proliferation. Nephron Exp Nephrol. 2008;108:e74–9.

    PubMed  Google Scholar 

  19. Abboud HE. Mesangial cell biology. Exp Cell Res. 2012;318:979–85.

    CAS  PubMed  Google Scholar 

  20. Qian Y, Feldman E, Pennathur S, Kretzler M, Brosius FC 3rd. From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes. 2008;57:1439–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson RJ, Raines EW, Floege J, Yoshimura A, Pritzl P, Alpers C, et al. Inhibition of mesangial cell proliferation and matrix expansion in glomerulonephritis in the rat by antibody to platelet-derived growth factor. J Exp Med. 1992;175:1413–6.

    CAS  PubMed  Google Scholar 

  22. Okuda T, Grollman A. Passive transfer of autoimmune induced hypertension in the rat by lymph node cells. Tex Rep. Biol Med. 1967;25:257–64.

    CAS  PubMed  Google Scholar 

  23. Svendsen UG. Influence of neonatal thymectomy on blood pressure and hypertensive vascular disease in rats with renal hypertension. Acta Pathol Microbiol Scand A. 1975;83:199–205.

    CAS  PubMed  Google Scholar 

  24. Olsen F. Transfer of arterial hypertension by splenic cells from DOCA-salt hypertensive and renal hypertensive rats to normotensive recipients. Acta Pathol Microbiol Scand C. 1980;88:1–5.

    CAS  PubMed  Google Scholar 

  25. Vinh A, Chen W, Blinder Y, Weiss D, Taylor WR, Goronzy JJ, et al. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation. 2010;122:2529–37.

    PubMed  PubMed Central  Google Scholar 

  26. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204:2449–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Trott DW, Harrison DG. The immune system in hypertension. Adv Physiol Educ. 2014;38:20–24.

    PubMed  PubMed Central  Google Scholar 

  28. Rudemiller NP, Crowley SD. Interactions between the immune and the renin-angiotensin systems in hypertension. Hypertension. 2016;68:289–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Laufer J, Katz Y, Paswell J. Extrahepatic synthesis of complement proteins in inflammation. Mol Immunol. 2001;38:221–9.

    CAS  PubMed  Google Scholar 

  30. Phieler J, Garcia-Martin R, Lambris JD, Chavakis T. The role of the complement system in metabolic organs and metabolic diseases. Semin Immunol. 2013;25:47–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hertle E, Stehouwer CD, van Greevenbroek MM. The complement system in human cardiometabolic disease. Mol Immunol. 2014;61:135–48.

    CAS  PubMed  Google Scholar 

  32. Li W, Tada T, Miwa T, Okada N, Ito J, Okada H, et al. mRNA expression of complement components and regulators in rat arterial smooth muscle cells. Microbiol Immunol. 1999;43:585–93.

    CAS  PubMed  Google Scholar 

  33. Sahu A, Lambris JD. Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol Rev. 2001;180:35–48.

    CAS  PubMed  Google Scholar 

  34. Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD. Complement component C3–the “Swiss Army Knife” of innate immunity and host defense. Immunol Rev. 2016;274:33–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Oksjoki R, Kovanen PT, Pentikäinen MO. Role of complement activation in atherosclerosis. Curr Opin Lipido. 2003;14:477–82.

    CAS  Google Scholar 

  36. Shagdarsuren E, Wellner M, Braesen JH, Park JK, Fiebeler A, Henke N, et al. Complement activation in angiotensin II-induced organ damage. Circ Res. 2005;97:716–24.

    CAS  PubMed  Google Scholar 

  37. Welch TR. The complement system in renal diseases. Nephron. 2001;88:199–204.

    CAS  PubMed  Google Scholar 

  38. Onat A, Can G, Rezvani R, Cianflone K. Complement C3 and cleavage products in cardiometabolic risk. Clin Chim Acta. 2011;412:1171–9.

    CAS  PubMed  Google Scholar 

  39. Zhang C, Li Y, Wang C, Wu Y, Cui W, Miwa T, et al. Complement 5a receptor mediates angiotensin II-induced cardiac inflammation and remodeling. Arterioscler Thromb Vasc Biol. 2014;34:1240–8.

    PubMed  Google Scholar 

  40. Bao X, Meng G, Zhang Q, Liu L, Wu H, Du H, et al. Elevated serum complement C3 levels are associated with prehypertension in an adult population. Clin Exp Hypertens. 2017;39:42–49.

    CAS  PubMed  Google Scholar 

  41. Engström G, Hedblad B, Berglund G, Janzon L, Lindgärde F. Plasma levels of complement C3 is associated with development of hypertension: a longitudinal cohort study. J Hum Hypertens. 2007;21:276–82.

    PubMed  Google Scholar 

  42. Seifert PS, Hugo F, Hansson GK, Bhakdi S. Prelesional complement activation in experimental atherosclerosis. Terminal C5b-9 complement deposition coincides with cholesterol accumulation in the aortic intima of hypercholesterolemic rabbits. Lab Investig. 1989;60:747–54.

    CAS  PubMed  Google Scholar 

  43. Buono C, Come CE, Witztum JL, Maguire GF, Connelly PW, Carroll M, et al. Influence of C3 deficiency on atherosclerosis. Circulation. 2002;105:3025–31.

    CAS  PubMed  Google Scholar 

  44. Hsu SI, Couser WG. Chronic progression of tubulointerstitial damage in proteinuric renal disease is mediated by complement activation: a therapeutic role for complement inhibitors? J Am Soc Nephrol. 2003;14:S186–S191.

    CAS  PubMed  Google Scholar 

  45. Sen S, Tarazi RC, Khairallah PA, Bumpus FM. Cardiac hypertrophy in spontaneously hypertensive rats. Circ Res. 1974;35:775–81.

    CAS  PubMed  Google Scholar 

  46. Walter SV, Hamet P. Enhanced DNA synthesis in heart and kidney of newborn spontaneously hypertensive rats. Hypertension. 1986;8:520–5.

    CAS  PubMed  Google Scholar 

  47. Hu WY, Fukuda N, Kanmatsuse K. Growth characteristics, angiotensin II-generation, and microarray-determined gene expression in vascular smooth muscle cells from young spontaneously hypertensive rats. J Hypertens. 2002;20:1323–33.

    CAS  PubMed  Google Scholar 

  48. Fukuda N, Satoh C, Hu WY, Soma M, Kubo A, Kishioka H, et al. Production of angiotensin II by homogeneous cultures of vascular smooth muscle cells from spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol. 1999;19:1210–7.

    CAS  PubMed  Google Scholar 

  49. Fukuda N, Hu WY, Satoh C, Nakayama M, Kishioka H, Kubo A, et al. Contribution of synthetic phenotype on the enhanced angiotensin II-generating system in vascular smooth muscle cells from spontaneously hypertensive rats. J Hypertens. 1999;17:1099–107.

    CAS  PubMed  Google Scholar 

  50. Hu WY, Fukuda N, Satoh C, Jian T, Kubo A, Nakayama M, et al. Phenotypic modulation by fibronectin enhances the angiotensin II-generating system in cultured vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2000;20:1500–5.

    CAS  PubMed  Google Scholar 

  51. Lin ZH, Fukuda N, Jin XQ, Yao EH, Ueno T, Endo M, et al. Complement 3 is involved in the synthetic phenotype and exaggerated growth of vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension. 2004;44:42–47.

    CAS  PubMed  Google Scholar 

  52. Ikeda K, Fukuda N, Ueno T, Endo M, Kobayashi N, Soma M, et al. Role of complement 3a in the growth of mesangial cells from stroke-prone spontaneously hypertensive rats. Clin Exp Hypertens. 2014;36:58–63.

    CAS  PubMed  Google Scholar 

  53. Negishi E, Fukuda N, Otsuki T, Katakawa M, Komatsu K, Chen L, et al. Involvement of complement 3 in the salt-sensitive hypertension by activation of renal renin-angiotensin system in spontaneously hypertensive rats. Am J Physiol Ren Physiol. 2018;315:F1747–F1758.

    CAS  Google Scholar 

  54. Chen L, Fukuda N, Otsuki T, Tanaka S, Nakamura Y, Kobayashi H, et al. Increased complement 3 with suppression of miR-145 induces the synthetic phenotype in vascular smooth muscle cells from spontaneously hypertensive rats. J Am Heart Assoc. 2019;8:e012327.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wan JX, Fukuda N, Endo M, Tahira Y, Yao EH, Matsuda H, et al. Complement 3 is involved in changing the phenotype of human glomerular mesangial cells. J Cell Physiol. 2007;213:495–501.

    CAS  PubMed  Google Scholar 

  56. Yao EH, Fukuda N, Ueno T, Tsunemi A, Endo M, Matsumoto K. Complement 3 activates KLF5 gene in vascular smooth muscle cells. Biochem Biophys Res Commun. 2008;367:468–73.

    CAS  PubMed  Google Scholar 

  57. Han Y, Fukuda N, Ueno T, Endo M, Ikeda K, Xueli Z, et al. Role of complement 3a in the synthetic phenotype and angiotensin II-production in vascular smooth muscle cells from spontaneously hypertensive rats. Am J Hypertens. 2012;25:284–9.

    CAS  PubMed  Google Scholar 

  58. Cho MS, Rupaimoole R, Coi HJ, Noh K, Chen J, Hu Q, et al. Complement component 3 (C3) is regulated by TWIST1 and mediates epithelial-mesenchymal transition (EMT). J Immunol. 2016;196:1412–8.

    CAS  PubMed  Google Scholar 

  59. Hao H, Gabbiani G, Bochaton-Piallat ML. Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol. 2003;23:1510–20.

    CAS  PubMed  Google Scholar 

  60. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84:767–801.

    CAS  PubMed  Google Scholar 

  61. Gomez D, Owens GK. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc Res. 2012;95:156–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lacolley P, Regnault V, Segers P, Laurent S. Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol Rev. 2017;97:1555–617.

    CAS  PubMed  Google Scholar 

  63. Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J. 2007;15:100–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res. 2012;95:194–204.

    CAS  PubMed  Google Scholar 

  65. Tsaousi A, Williams H, Lyon CA, Taylor V, Swain A, Johnson JL, et al. Wnt4/beta-catenin signaling induces VSMC proliferation and is associated with intimal thickening. Circ Res. 2011;108:427–436.

    CAS  PubMed  Google Scholar 

  66. Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 2009;105:158–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Verdeguer F, Castro C, Kubicek M, Pla D, Vila-Caballer M, Vinué A, et al. Complement regulation in murine and human hypercholesterolemia and role in the control of macrophage and smooth muscle cell proliferation. Cardiovasc Res. 2007;76:340–50.

    CAS  PubMed  Google Scholar 

  68. Chen L, Fukuda N, Shimizu S, Kobayashi H, Tanaka H, Nakamura Y, et al. Role of complement 3 in renin generation during the differentiation of mesenchymal stem cells to smooth muscle cells (under submission).

  69. Ruan CC, Zhu DL, Chen QZ, Chen J, Guo SJ, Li XD, et al. Perivascular adipose tissue-derived complement 3 is required for adventitial fibroblast functions and adventitial remodeling in deoxycorticosterone. Arterioscler Thromb Vasc Biol. 2010;30:2568–74.

    CAS  PubMed  Google Scholar 

  70. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Muller GA, et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int. 2002;61:1714–28.

    CAS  PubMed  Google Scholar 

  72. Lu J, Landerholm TE, Wei JS, Dong XR, Wu SP, Liu X, et al. Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity. Dev Biol. 2001;240:404–18.

    CAS  PubMed  Google Scholar 

  73. Zeisberg M, Bonner G, Maeshima Y, Colorado P, Muller GA, Strutz F, et al. Renal fibrosis: collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation. Am J Pathol. 2001;159:1313–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rastaldi MP, Ferrario F, Giardino L, Dell'Antonio G, Grillo C, Grillo P, et al. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int. 2002;62:137–46.

    PubMed  Google Scholar 

  75. Skromne I, Stern CD. Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo. Development. 2001;128:2915–27.

    CAS  PubMed  Google Scholar 

  76. Feng Q, Di R, Tao F, Chang Z, Lu S, Fan W, et al. PDK1 regulates vascular remodeling and promotes epithelial-mesenchymal transition in cardiac development. Mol Cell Biol. 2010;30:3711–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Banerjee I, Zhang J, Moore-Morris T, Lange S, Shen T, Dalton ND, et al. Thymosin Beta 4 is dispensable for murine cardiac development and function. Circ Res. 2012;110:456–64.

    CAS  PubMed  Google Scholar 

  78. Wan J, Zhou X, Cui J, Zou Z, Xu Y, You D. Role of complement 3 in TNF-α-induced mesenchymal transition of renal tubular epithelial cells in vitro. Mol Biotechnol. 2013;54:92–100.

    CAS  PubMed  Google Scholar 

  79. Suetsugu-Maki R, Maki N, Fox TP, Nakamura K, Cowper Solari R, Tomlinson CR, et al. A complement receptor C5a antagonist regulates epithelial to mesenchymal transition and crystallin expression after lens cataract surgery in mice. Mol Vis. 2011;17:949–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu F, Gou R, Huang J, Fu P, Chen F, Fan WX, et al. Effect of anaphylatoxin C3a, C5a on the tubular epithelial-myofibroblast transdifferentiation in vitro. Chin Med J. 2011;124:4039–45.

    CAS  PubMed  Google Scholar 

  81. Tang Z, Bao L, Hatch E, Sacks SH, Sheerin NS. C3a mediates epithelial-to-mesenchymal transition in proteinuric nephropathy. J Am Soc Nephrol. 2009;20:593–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou X, Fukuda N, Matsuda H, Endo M, Wang X, Saito K, et al. Complement 3 activates the renal renin-angiotensin system by induction of epithelial-to-mesenchymal transition of the nephrotubulus in mice. Am J Physiol Ren Physiol. 2013;305:F957–F967.

    CAS  Google Scholar 

  83. Norman JT, Fine LG. Progressive renal disease: fibroblasts, extracellular matrix, and integrins. Exp Nephrol. 1999;7:167–77.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Noboru Fukuda or Masanori Abe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Fukuda, N., Matsumoto, T. et al. Role of complement 3 in the pathogenesis of hypertension. Hypertens Res 43, 255–262 (2020). https://doi.org/10.1038/s41440-019-0371-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-019-0371-y

Keywords

This article is cited by

Search

Quick links