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Abstract
The association of histamine with adverse cardiac remodeling in chronic pressure overload has not received much attention.
A pilot study in spontaneously hypertensive rats (SHRs) indicated a reduction of left ventricular hypertrophy (LVH) with a
histamine-2-receptor (H2R) antagonist (famotidine). This finding prompted a detailed investigation of temporal variation in
myocardial histamine and H2R expression and the cardiovascular response to H2R antagonism compared with that of the
conventional beta-blocker metoprolol. Reduction of LVH is known to reduce the risk of adverse cardiovascular events.
The myocardial histamine content and H2R expression increased with age in SHRs but not in normotensive Wistar rats. The
cardiovascular response to famotidine (30 mg kg−1) was compared with that of metoprolol (50 mg kg−1) in 6-month-old
male SHRs treated for 60 days. The decrease in diastolic blood pressure and improvement in cardiac function induced by
famotidine and metoprolol were comparable. Both treatments caused the regression of LVH as assessed from the
hypertrophy index, histomorphometry, B type natriuretic peptide (BNP), pro-collagen 1, and hydroxyproline levels.
Calcineurin-A expression (marker of pathological remodeling) decreased, and Peroxiredoxin-3 expression (mitochondrial
antioxidant) increased in response to the treatments. The myocardial histamine levels decreased with the treatments. The age-
dependent increase in myocardial histamine and H2R in the SHRs signifies their association with progressive cardiac
remodeling. The regression of LVH and improvement in cardiac function by famotidine further demonstrates the role of
histamine in cardiac remodeling. Hypertrophy of cultured cardiac cells upon exposure to histamine and the H2R agonist
amthamine substantiates the role of histamine in cardiac remodeling. The cardiovascular response to famotidine is
comparable to that of metoprolol, suggesting repurposing of H2R antagonists for the management of hypertensive heart
disease.
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Introduction

Left ventricular hypertrophy (LVH) is an adaptive outcome
of uncontrolled hypertension. Nevertheless, LVH is an
independent risk factor for cardiac failure [1] and sudden
cardiac death [2]. Regression of LVH decreases the pro-
pensity for cardiac failure and adverse cardiovascular events
[3], highlighting the need for identification of treatment
strategies that mediate regression of hypertrophy together
with a reduction of blood pressure. In cases of uncontrolled
hypertension, activated sympathetic and renin-angiotensin-
aldosterone systems are recognized as the major con-
tributors to cardiac hypertrophy. Observations from a multi-
ethnic study indicated that H2R blockers reduced the risk
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for incidental heart failure, testifying to their importance in
disease pathology [4]. Additionally, higher mast cell counts
in the hearts of patients with cardiac hypertrophy [5],
dilated cardiomyopathy and myocardial infarction [6] and
increased circulating histamine levels in heart failure sub-
jects substantiate the role of mast cells in cardiovascular
pathophysiology [7]. Histamine-2-receptors (H2R), which
are widely distributed in the myocardium, are known to
mediate the cardiovascular effects of histamine [8]. In a
rodent model, disruption of H2R inhibits the cardiac fibrosis
and apoptosis precluding cardiac failure [9]. Under patho-
physiological conditions, release of histamine by cardiac
mast cells can activate H2R. However, the role of histamine
in LVH and the use of H2R antagonists in regression of
hypertrophy have not received much attention. In a genetic
model of chronic pressure overload, we observed a decrease
in the LV mass and wall thickness in response to H2R
antagonism [10]. This preliminary observation prompted a
detailed investigation of the temporal variation in myo-
cardial histamine levels and H2R expression with the pro-
gression of hypertensive heart disease and the functional
consequences of H2R antagonism. H2Rs share a unique
structural homology with beta adrenoceptors [8]. Beta-
blockers have cardio-protective effects and are widely used
in the treatment of hypertension [11]. A comparison of H2R
antagonism with that of the conventional β-blocker will help
establish the effectiveness of the former in the management
of hypertensive heart disease. Characterization of the car-
diovascular consequence of H2R antagonism gains impor-
tance in view of the realization of the cardio-protective
effects of this class of drug, because regression of hyper-
trophy can prevent progressive cardiac remodeling. Other
than our own preliminary investigation, no reports have
investigated the use of H2R antagonists for regression of
hypertrophy. The above facts underscore the importance of
a detailed inquiry into the structural, functional, and mole-
cular changes in the heart consequent to treatment with H2R
antagonists in comparison with a standard cardio-protective
anti-hypertensive.

This study was designed with the objective of addressing
the lacuna in the available information regarding the asso-
ciation of histamine and H2Rs with cardiac remodeling in
hypertension and the role of H2R antagonism in the pre-
vention of LVH. The spontaneously hypertensive rat (SHR)
was selected as the experimental model, because it mimics
the cardiovascular changes associated with chronic human
hypertension [12]. To examine whether the histamine levels
and H2R expression increased with progressive cardiac
remodeling, age-associated changes in the myocardial
histamine levels were examined in 1-month, 6-month,
and 12-month-old SHRs. The functional consequence
of treatment with a H2R blocker (famotidine) was studied in
6-month-old SHRs because they represent the stable and

adaptive phase of hypertrophy [13]. The cardiovascular
response to H2R antagonism was compared with that of a
conventionally used beta-blocker (metoprolol tartrate) based
on assessment of structural, functional and molecular char-
acteristics associated with maladaptive cardiac remodeling.

Identification of a positive cardiovascular response to
H2R antagonism is expected to provide a complimentary
approach for the management of hypertension and cardiac
hypertrophy.

Methods

Animals and chemicals

All animal care and experimental procedures for this study
were approved by the Institutional Animal Ethics Com-
mittee based on the Guidelines of the Committee for the
Purpose of Control and Supervision of Experiments on
Animals (CPCSEA). Male SHR and Wistar (WST) rats
were used for the experiments. The animals were housed at
22 °C, maintained on a 12 h light-dark cycle, fed regular Rat
Chow and had free access to drinking water. All chemicals
used for the study were purchased from Sigma-Aldrich,
India.

Study design

Temporal variation in the myocardial histamine content and
H2R expression was examined in 1-month, 6-month, and
12-month-old SHRs and WST rats. Six animals were stu-
died per group. The ages correspond to the initial phase
of hypertrophy, the stable phase of hypertrophy and
the phase prior to failure [13]. To examine the cardiovas-
cular response to the H2R antagonist famotidine, eighteen
6-month-old male SHRs were randomly assigned into three
groups of six animals each. Famotidine was received as a
gift from Intas Pharma Pvt. Ltd., India. Untreated SHRs
served as a hypertensive control. One group received a daily
oral dose of 30 mg kg−1 day−1 of famotidine for 60 days,
and the positive control group was treated in parallel with a
daily oral dose of 50 mg kg−1 day−1 of metoprolol tartrate,
which is a known cardio-protective β-blocker. Metoprolol
tartrate was purchased from Sigma-Aldrich (India). Six
male WST rats served as the normo-tensive control. The
metoprolol and famotidine doses were selected from pre-
viously published reports [14, 15, 16].

Non-invasive blood pressure measurement and
echocardiography

The blood pressure of the animals was recorded by warming
them to 37 °C and placing the cuff at the base of the tail.
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Three BP readings were recorded at 2-min intervals and
averaged.

Transthoracic echocardiography was performed to
evaluate the left ventricular function following a standard
protocol [17, 18]. After anaesthetizing with ketamine [Ketalar-
Parke Davis, India] (80mg kg−1) and xylazine [Brilliant Bio
Pharmaceuticals, India] (20mg kg−1), the animals were placed
in the left lateral decubitus position, and the echocardiographic
measurements were performed using M mode, 2D, and Dop-
pler imaging with the GE Vivid i with a 10-MHz linear
transducer. Anesthetized animals were allowed to breathe
spontaneously with oxygen supplementation through a nose
cone. The ultrasound transducer probe was placed to obtain
short-axis, long-axis, four-chamber, and apical cardiac views.
The left ventricular end-diastolic diameter (LVEDD), left
ventricular end-systolic diameter (LVESD), posterior wall
thickness (PW) and septal wall thickness (IVS) during diastole
were measured using M mode following the American Society
of Echocardiography guidelines [19]. The LV mass (LVM),
fractional shortening (FS), and relative wall thickness were
calculated following standard protocols. The left ventricular
end-systolic and end-diastolic areas were traced in a single-
plane apical 4-chamber view, and the ejection fraction was
calculated with the use of inbuilt software using the modified
single-plane method (Simpson’s rule). The mitral flow was
recorded at the tip of the mitral valve from an apical view using
Doppler imaging. Maximal velocities of the E and A waves
were recorded, and the E/A ratio calculated. The isovolumic
relaxation time (IVRT) was measured as the interval between
the aortic closure click and the start of the mitral flow. The Tei
index was calculated on the same apical view.

Dissection of the heart and preparation of sera and
tissue lysates

Blood was collected from the lateral tail vein, and sera were
separated by centrifugation and stored at −80° C prior to
experimentation. The hearts were excised immediately and
rinsed in ice-cold normal saline. Excess fluids were gently
removed from the hearts using tissue paper, and then the
hearts were weighed. The hearts were sampled for sub-
sequent investigations. Mid-ventricular sections for histo-
morphometry were fixed in 10% neutral buffered formalin.
Tissue samples for western blotting analysis were snap-
frozen in liquid nitrogen and preserved at −80 °C prior to
experimentation.

Tissue lysates were prepared by homogenization with
radioimmunoprecipitation assay (RIPA) buffer (1:10
ratio). The homogenate was placed on ice for 30 min and
centrifuged at 5000×g for 10 min at 4 °C, and the
supernatant was collected. The protein concentrations of
the tissue lysates were estimated using the Bradford
method.

Myocardial histamine content

The myocardial histamine content was assessed as per the
modified Shores method [20]. Briefly, the tissue lysates
were extracted with n-butanol and alkalinized with
perchloric acid, followed by condensation with o-
phthalaldehyde (OPT). Then, the fluorescence was mea-
sured in a spectrofluorometer (excitation 360 nm, emission
450 nm). The histamine levels were quantified and nor-
malized to the protein concentration.

Enzyme-linked immunosorbent assay

An enzyme-linked immunosorbent assay (ELISA) was
performed to estimate the B type natrineuritic peptide
(BNP) and Pro-collagen I N-terminal peptide (PINP) levels
in the sera and cardiac tissue lysates using commercially
available kits.

Myocardial hydroxyproline content

The myocardial hydroxyproline concentration was assessed
according to the method of Reddy et al. with minor mod-
ifications [21]. A myocardial lysate from a pre-weighed
tissue was hydrolyzed in HCl (6 M) for 4 h at 110 °C
and oxidized with chloramine T in acetate-citrate buffer
(pH 6.0). Then, the mixture was incubated for 20 min at
room temperature, and 20 volumes of Ehrlich’s reagent was
added. The samples were incubated at 65 °C for 15 min, and
the absorbance was measured spectrophotometrically at
550 nm. The results are expressed as mg g of wet tissue
weight−1.

Expression of proteins associated with maladaptive
cardiac remodeling

Myocardial protein expression was assessed by the western
blotting. Total Akt (1:1000), phospho Akt at Ser 473
(1:1000), H2R (1:300), peroxiredoxin-3 (PRX3) (1:500),
calcineurin-A (1:2000), and beta-actin (1:5000) were mea-
sured. The anti-H2R antibody was procured from Alomone
Labs, Israel, and the remaining antibodies were procured
from Abcam, India.

Histomorphometry

Formalin-fixed mid-ventricular sections were dehydrated and
embedded in paraffin. Tissue sections with a 5-µm thicknesses
was cut, deparaffinized, dehydrated, and stained with hema-
toxylin and eosin for general histomorphology or with picro-
sirius red for measurement of collagen deposition. The
microscopic photographs were analyzed using the ImageJ
software.
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Delineation of the mechanism of action of
histamine-mediated cardiomyocyte hypertrophy

Rat-derived H9c2 cardiocytes were procured from the
National Center for Cell Science, Pune, India, and main-
tained in DMEM high-glucose medium supplemented with
10% fetal bovine serum. Cells were subjected to total serum
deprivation for 24 h prior to experimentation and then
exposed to either the H2R-specific agonist amthamine
(5 µM and 10 µM) or histamine (10 µM) for 48 h. To probe
the rate of ERK phosphorylation, the cells were exposed for
12 h and collected after a thorough PBS washing step.
Cellular proteins were isolated and used for the evaluation
experiments. The protein content in the cell lysates was
assessed with the Bradford method.

Adenylate cyclase activity assay

Adenylate cyclase activity in the cell lysates was measured by
quantifying the cyclic AMP concentrations [22]. Briefly, the
total protein concentration of the cell lysates was adjusted to
2 µg of protein µl−1 in 10mM Tris-HCl buffer (pH 7.4). ATP
(final concentration 1mM) was added to 250 µl of the reac-
tion mixture [100 µl of cell lysate, 1 mM IBMX, 10mM
MgCl2, 0.4 mM EGTA, 10mM creatine phosphate and 25 U
of creatine kinase in 10mM Tris-HCl (pH 7.4) preincubated
at 30 °C for 15min] and incubated for 10 min. The reaction
was terminated by boiling for 5 min. The tubes were cooled
and centrifuged at 12,000×g for 5 min. The cAMP con-
centrations in the supernatants were measured using a

commercially available kit (Enzo Life Sciences, India) and
expressed as nmoles of cAMP.mg protein−1 min−1.

Calcineurin activity assay

Calcineurin activity was assayed in the cell lysates using a
commercially available kit based on the classic malachite
green–inorganic phosphate assay (Enzo Life Sciences,
India). The activity was calculated as nmol mg−1 min−1.

Statistical analysis

Values are expressed as the mean ± SD. Variation between
groups was determined using one-way analysis of
variance (ANOVA) followed by comparisons between the
treated and control groups using Bonferroni’s post hoc test.
P < 0.05 was considered statistically significant.

Results

Temporal variation in the myocardial histamine
content and H2R expression in SHRs

At 1 month of age, the myocardial histamine levels in the
SHRs and WST rats were comparable (Fig. 1). An
age-dependent increase in the myocardial histamine levels
was observed in the SHRs; whereas, the histamine
level remained unaltered in the WST rats. The levels in the
6-month-old animals were increased by 1.5-fold (p < 0.01)

Fig. 1 Temporal variation in the myocardial histamine content and
H2R expression. a Representative photograph of an immunoblot
showing H2R expression in SHRs and WST rats of different ages
(1, 6, and 12 months) b. Graphical representation of temporal variation
in the myocardial histamine content expressed as ng/mg protein c.
Graphical representation of temporal variation in H2R expression as

arb.units. The data are presented as the mean ± SD. ‘M’ denotes
months. Variation was analyzed by one-way ANOVA followed by
the Bonferroni post hoc test. *p < 0.05 vs age-matched WST rats, †p <
0.01 vs age-matched WST rats, #p < 0.01 vs 1-month-old SHRs and
@p < 0.001 vs 1-month-old SHRs. ANOVA p < 0.01 (n= 6/group)
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and those in the 12-month-old animals were increased by
twofold (p < 0.001) compared to the levels in the 1-month-
old animals. Compared to those of the age-matched Wistar
rats, significantly higher myocardial histamine levels were
observed in the SHRs at 6 and 12 months of age (p < 0.05
and p < 0.001, respectively). Correspondingly, H2R
expression as assessed by immunoblotting showed an age-
dependent increase in the SHRs but remained unaltered in
the WST rats. The expression levels were higher in the
SHRs than those in the WST rats at all ages (p < 0.01)
(Fig. 1).

Effect of famotidine and metoprolol on blood
pressure and cardiac function

Blood pressure increased as a function of age in the SHRs
and was significantly higher compared to that of the WST
rats (SBP—p < 0.01, DBP—p < 0.01) (Fig. 2a, b). Nor-
malization of DBP was observed after famotidine and
metoprolol treatment (Fig. 2c). A decrease in SBP was
observed only with metoprolol (p < 0.01 compared to the

untreated control). The decrease in DBP induced by meto-
prolol was relatively greater than that of famotidine. With a
comparable heart rate (Table 1), the LV mass in the SHRs
was higher than that in the WST rats (p < 0.01) (Fig. 3b),
which was normalized upon treatment with famotidine (p <
0.01) and metoprolol (p < 0.01). The LVDD in the SHRs
was significantly lower than that in the WST rats (p < 0.05)
and improved with the treatments (p < 0.05) (Table 1). The
LVSD in the SHRs and WST rats was comparable and
unaltered upon treatment (Table 1). The RWT in the SHRs
was higher than that in the WST rats (p < 0.01). The
famotidine (p < 0.05) and metoprolol (p < 0.05) treatments
reduced the RWT to the same extent (Table 1).

The LVESV in the SHRs was comparable to that of the
WST rats and was unaffected by the treatments (Table 1).
The LVEDV in the SHRs was lower than that of the WST
rats (p < 0.01) and improved significantly by the famotidine
and metoprolol treatments (p < 0.01) (Table 1). The ejection
fraction (EF) in the SHRs was comparable to that of the
WST rats and remained unaltered with the treatments
(Fig. 3c). The FS in the SHRs was lower than that in the

Fig. 2 Temporal variation in the
blood pressure of SHRs and the
response to treatment. a
Temporal variation in systolic
blood pressure of 6-, 9-, and 12-
month-old SHRs compared with
that of age- and sex-matched
WST rats expressed as mmHg.
b Temporal variation in diastolic
blood pressure of 6-, 9-, and 12-
month-old SHRs compared with
that of age- and sex-matched
WST rats expressed as mmHg.
c Effect of famotidine on the
systolic, diastolic, and mean
blood pressures compared to the
baseline blood pressure at
initiation of treatment. The
metoprolol-treated group served
as a positive control. The data
are presented as the mean ± SD.
‘M’ denotes months. Variation
was analyzed by one-way
ANOVA followed by the
Bonferroni post hoc test. *p <
0.05 vs WST rats, #p < 0.01 vs
WST rats, ‡p < 0.01 vs SHRs, $
$p < 0.01 vs 6-month-old SHRs.
ANOVA: Fig. 2a: p < 0.01,
Fig. 2b: p < 0.01 and Fig. 2c:
p= 0.01
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WST rats (p < 0.01) and remained unaffected by the treat-
ments (Table 1).

Cardiac performance was evaluated by pulsed-wave
Doppler assessment of mitral flow (Fig. 3a). A significant
decrease in the E wave was observed in SHRs compared to
that of the WST rats (p < 0.01), which was unaltered by the
treatments. (Table 1). In the SHRs, the A wave was sig-
nificantly increased compared to that of the WST rats (p <
0.01) and decreased significantly by the treatments (p <
0.01) (Table 1). The ratio between the E and A waves was
significantly lower in the SHRs compared to that of the
WST rats (p < 0.01) and increased in response to the treat-
ments (p < 0.05) (Fig. 3d).

Compromised global function in the SHRs is apparent
from the delayed IVRT and increased Tei index. In the
metoprolol- and famotidine-treated animals, the IVRT (p <
0.01) (Table 1) and Tei index (p < 0.01) (Fig. 3e) were lower
than those of the SHRs. The magnitudes of the changes in
the SHR-Fam and SHR-Met groups were comparable.

Effect of famotidine and metoprolol on hypertrophy
indicators

The serum and cardiac tissue lysate BNP levels were higher
in the SHRs than in the WST rats (serum—p < 0.01 and
cardiac tissue lysate—p < 0.01). The treatments sig-
nificantly decreased the BNP levels (Fig. 4b).

The myocyte cross-sectional area was higher in the SHRs
than in the WST rats (p < 0.01) and was reduced identically
by the treatments (p < 0.01) (Fig. 4a, C).

The cardiac hypertrophy index, which was measured as
the ratio of ventricular weight (mg) to body weight (g), was

higher in the SHRs than in the WST rats (p < 0.01)
(Fig. 4d). The decreases in the hypertrophy index induced
by famotidine (p < 0.01) and metoprolol were comparable.

Effect of famotidine and metoprolol on cardiac
fibrosis

Interstitial fibrosis was significantly higher in the SHRs than
in the WST rats (p < 0.01) (Fig. 5a, b). A significant
reduction in the stained area was found after famotidine
treatment (p < 0.01) and was comparable to that of the
metoprolol-treated group. Perivascular fibrosis, which was
expressed as a function of the vessel lumen, was high in the
SHRs compared to that in the WST rats (p < 0.01) (Fig. 5a,
c). A decrease in perivascular fibrosis was observed in
response to the treatments (p < 0.01).

The hydroxyproline content was higher in the SHRs
than in the WST rats (Fig. 5d). The famotidine and
metoprolol interventions significantly reduced the hydro-
xyproline content (p < 0.05). The serum and cardiac tissue
lysate PINP levels were higher in the SHRs than in the
WST rats (serum—p < 0.05, cardiac tissue lysate—p <
0.01) (Fig. 5e). Famotidine treatment significantly
reduced both the serum and cardiac tissue PINP levels
(serum—p < 0.05, cardiac tissue lysate—p < 0.01) com-
parable to the metoprolol-treated group.

Effects of famotidine and metoprolol on the
histamine levels

The histamine levels were higher in the SHRs than in the
WST rats (p < 0.01) (Fig. 6). Famotidine treatment

Table 1 Effect of famotidine
treatment on cardiac function as
evaluated by 2D-
echocardiography

Variable WST SHR SHR-Fam SHR-Met ANOVA p-value

Heart rate (beats/min) 345.8 ± 10.8 344.7 ± 14 350 ± 10 354 ± 7.3 0.4

LVDD (cm) 0.616 ± 0.03 0.545 ± 0.025* 0.591 ± 0.01# 0.590 ± 0.021# 0.01

LVSD (cm) 0.367 ± 0.02 0.283 ± 0.02* 0.285 ± 0.01 0.289 ± 0.009 0.001

FS (%) 40.5 ± 0.9 47.9 ± 3.3‡ 49.6 ± 3.6 49.4 ± 2.7 0.08

RWT 0.75 ± 0.002 0.84 ± 0.04‡ 0.77 ± 0.013* 0.76 ± 0.005* 0.001

LVEDV (ml) 0.81 ± 0.07 0.63 ± 0.025‡ 0.71 ± 0.017* 0.713 ± 0.02* 0.001

LVESV (ml) 0.040 ± 0.01 0.036 ± 0.01 0.0358 ± 0.009 0.0358 ± 0.006 0.808

E wave 63.8 ± 2.9 56.8 ± 3.2‡ 56.3 ± 1.7 56.3 ± 1.9 0.09

A wave 24.5 ± 2.2 33.7 ± 1.9‡ 28.8 ± 2.26* 28.9 ± 1.74* 0.001

IVRT 19.2 ± 1.829 22.7 ± 1‡ 19.9 ± 1.9* 18.7 ± 1* 0.001

The data are represented as mean ± SD. Variation between groups was analysed by one-way ANOVA
followed by Bonferroni post hoc test

A wave peak trans mitral atrial filling velocity during late diastole, E wave peak early trans mitral filling
velocity during early diastole, FS fractional shortening, IVRT iso volumetric relaxation time, LVESV left
ventricular end-systolic volume, LVEDV left ventricular end-diastolic volume, LVDD left ventricular
diameter during diastole, LVSD left ventricular diameter during systole

*p < 0.01 vs WST, #p < 0.01 vs SHR, and ‡p < 0.05 vs WST
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significantly attenuated the histamine levels compared to
those of the SHRs (p < 0.01). The histamine levels were also
reduced to a comparable extent in the metoprolol-treated
group.

Effects of famotidine and metoprolol on expression
of proteins associated with maladaptive
hypertrophy

The phosphorylated to total Akt ratio was higher in the
SHRs than in the WST rats (p < 0.01) (Fig. 7a). This ratio
decreased after famotidine and metoprolol treatment (p <
0.01). The Calcineurin-A levels were significantly higher in
the SHRs than in the WST rats (p < 0.01). Both famotidine
and metoprolol treatment decreased the calcineurin-A
levels (p < 0.05), with no significant difference between
treatments (Fig. 7b). The peroxiredoxin (PRX3) levels,
which represent the mitochondrial antioxidant status, were
lower in the SHRs than in the WST rats (p < 0.01)
(Fig. 7b). Famotidine and metaprolol enhanced the PRX3
levels compared to those of the untreated SHRs (p < 0.01),
and no significant difference was found between the
treatments.

Effect of histamine-2-receptor stimulation on
cellular hypertrophy and delineation of the
mechanism of action

Stimulation of H9c2 cells with histamine and the H2R
agonist amthamine induced a significant dose-dependent
increase in the expression and activity of the hypertrophic
marker calcineurin. (Fig. 8a, d) The activity and expression
of calcineurin after stimulation with the endogenous ligand
histamine and the H2R agonist amthamine were compar-
able. Adenylate cyclase activity and the Akt and Erk
phosphorylation statuses were also enhanced by both his-
tamine and amthamine (Fig. 8b, c, e), indicating a role for
adenylate cyclase-mediated Akt stimulation and Erk acti-
vation in mediating the hypertrophic response.

Discussion

Left ventricular hypertrophy consequent to persistent
hypertension is considered an independent risk factor for
adverse cardiovascular events. Identification of novel
mediators of hypertrophy can aid in the development of

Fig. 3 Cardiac performance in
response to famotidine, with the
metoprolol-treated group serving
as the positive control.
a Representative picture of
pulsed wave Doppler assessment
of the mitral blood flow. b
Graphical representation of the
LV mass expressed in
milligrams. c Graphical
representation of the ejection
fraction (EF) expressed as a
percentage. d Graphical
representation of the E/A ratio.
e Graphical representation of the
Tei index. The data are
presented as the mean ± SD.
Variation was analyzed by one-
way ANOVA followed by the
Bonferroni post hoc test. *p <
0.05 vs WST rats, #p < 0.01 vs
WST rats, †p < 0.05 vs SHRs
and ‡p < 0.01 vs SHRs and
ANOVA: Fig. 3b: p < 0.01,
Fig. 3c: p= 0.89, Fig. 3d: p <
0.01 and Fig. 3e: p < 0.05 (n= 6
per group)
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newer drugs to prevent progressive cardiac remodeling. The
present study aimed to investigate the association of hista-
mine and H2R with LVH progression and to prevent pro-
gressive cardiac remodeling by pharmacological inhibition
of H2Rs in SHRs. The study highlights the association
between histamine and LVH and the efficacy of H2R
antagonism for modulation of cardiac structure and
function.

Previous studies have reported the cardio-protective
effects of H2R antagonists [4, 10], but an association of
histamine and the H2R with hypertrophy has not been
reported. This study showed that the myocardial histamine
levels and degree of H2R expression increased with age in
the SHRs but not in the normotensive Wistar rats (Fig. 1).
The age-dependent increase in histamine and H2R expres-
sion supports the association of the variables with pro-
gressive cardiac remodeling. We observed a decrease in
diastolic blood pressure in the SHRs treated with famotidine
[9, 10]. No other reports have investigated the effect of H2R
antagonists on blood pressure. In this study, we observed
that the decrease in DBP induced by famotidine was not

significantly different than that of metoprolol; although, the
decrease was not to the same extent as that induced by the
β-blocker (Fig. 2). Administration of famotidine to the
SHRs reduced myocardial fibrosis (Fig. 5) and improved
diastolic function as assessed by pulsed wave Doppler
(Table 1). Reductions in DBP are strongly influenced by
ventricular diastole, and compliance can be the contributing
factor in the regression of left ventricular hypertrophy,
which makes these variables interdependent [23]. No sig-
nificant change in SBP was seen with famotidine, whereas a
decrease was observed with metoprolol. The regression of
LVH by famotidine was comparable to that of metoprolol,
as evident from the decrease in the LV mass and RWT
(Fig. 3b and Table 1) and the hypertrophy index (Fig. 4d)
and myocyte cross-sectional area (Fig. 4c). The increases in
LVEDD and LVEDV correlated with the decrease in the
LV mass (Table 1). The systolic function was comparable
between the SHRs and WST rats and was unaffected by the
treatments (Fig. 3c and Table 1).

Left ventricular diastolic function was assessed by
echocardiography based on the early and late (E and A,

Fig. 4 Effect of famotidine on the cardiac hypertrophy index, myocyte
cross-sectional area and serum and myocardial BNP levels. The
metoprolol-treated group served as the positive control. a Repre-
sentative photomicrograph of histological sections of the myocardium
stained with hematoxylin and eosin for calculation of the myocyte
cross-sectional area. b Graphical representation of the serum and
cardiac tissue lysate BNP levels expressed as pg/mL. c Graphical
representation of the myocyte cross-sectional area expressed as µM2.

d Graphical representation of the cardiac hypertrophy index (ven-
tricular wt.mg/body wt.g). The data are presented as the mean ± SD.
Variation was analyzed by one-way ANOVA followed by the
Bonferroni post hoc test. #p < 0.01 vs WSTs, ‡p < 0.01 vs SHRs and
†p < 0.05 vs SHRs. ANOVA: Fig. 4b: serum: p < 0.01 and cardiac
tissue lysate: p < 0.001, Fig. 4c: p < 0.05 and Fig. 4d: p < 0.05 (n= 6
per group)
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respectively) mitral inflow velocities. Significant differences
were observed in the E and A velocities and the E/A ratios
in the SHR-C compared to those of the WST rats, sug-
gesting the presence of diastolic dysfunction (Fig. 3d and
Table 1). Although, the E velocity values were comparable,

the decrease in the A velocity and increase in the E/A ratio
in response to metoprolol and famotidine indicate
improvement of diastolic function, which is further sup-
ported by the normalized IVRT values (Table 1). The
reduction in the Tei index in the treated animals suggest the
possibility of reduced stiffness and improved relaxation and
global myocardial performance (Fig. 3e).

Cardiac fibrosis is an integral feature of hypertrophy that
is characterized by excessive deposition of collagen by
fibroblasts (Fig. 5). The collagen content was assessed by
measurement of the serum and myocardial hydroxyproline
levels (Fig. 5d), the pro-collagen type 1 fiber levels
(Fig. 5e), and histologically by picrosirius red staining
(Fig. 5b, c). When compared to those of the WST rats, the
markers of fibrosis in the SHRs were significantly higher,
but attenuation of cardiac fibrosis was apparent in response
to the treatments. Despite discrepant reports regarding the
ability of metoprolol to reduce cardiac fibrosis, chronic
metoprolol administration to the SHRs was associated with
decreased cardiac fibrosis [16, 24]. The plasma and myo-
cardial levels of natriuretic peptides are higher in concentric
hypertrophy and correlate with its geometry and progression

Fig. 5 Effect of famotidine on cardiac fibrosis, with the metoprolol-
treated group serving as the positive control. a Representative photo-
graph of interstitial fibrosis and perivascular fibrosis. b Graphical
representation of interstitial fibrosis. c Graphical representation of
perivascular fibrosis expressed as a function of the vessel lumen.
d Graphical representation of the hydroxyproline content. e Graphical

representation of the myocardial pro-collagen type 1 pro fiber levels.
The data are presented as the mean ± SD. Variation was analyzed by
one-way ANOVA followed by the Bonferroni post hoc test. #p < 0.01
vs WST rats and ‡p < 0.01 vs SHRs. ANOVA: Fig. 5b: p < 0.01,
Fig. 5c: p < 0.001, Fig. 5d: p < 0.01 and Fig. 5e: serum: p < 0.01 and
cardiac tissue lysate: p < 0.001

Fig. 6 Effect of famotidine on the myocardial histamine levels (ng/mg
protein), with the metoprolol-treated group serving as the positive
control. The data are presented as the mean ± SD. Variation was
analyzed by one-way ANOVA followed by the Bonferroni post hoc
test. #p < 0.01 vs WST rats and ‡p < 0.01 vs SHRs. ANOVA p < 0.01
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into failure [25]. The results from this study also indicate
that the treatment induced a decrease in the morphological
indices of LVH, including BNP activity (Fig. 4b). The
magnitude of the reduction of these indices by famotidine
was comparable with that of metoprolol.

Peroxiredoxin is a thioredoxin-based antioxidant protein
that is abundant in the myocardium. PRX3 is mitochondria-
specific, and studies with transgenic mice overexpressing
perxoredoxin3 have shown a lower risk of LV remodeling
and progression into failure [26]. The PRX3 level in SHRs
has been reported to be lower than that of Wistar rats and
has been found to be involved in enhancing oxidative stress
[27]. In accordance with this finding, we also found a sig-
nificant reduction in the PRX3 level in the SHRs, which
was restored upon treatment with metoprolol and famoti-
dine (Fig. 7b). This positive cardiac response to both
treatments is possibly the consequence of a reduction in
oxidative stress in the hypertrophied myocardium and may
be the key determinant for its pharmacological action.

The phosphatidylinositol 3-kinase (PI3K)/Akt (PKB)
pathway is one prominent pathway by which hypertrophic
mediators induce adverse cardiac remodeling. Upon acti-
vation, the phosphatidylinositol 3-kinase (PI3K)/Akt path-
way leads to cardiac hypertrophy and increased collagen
deposition [28]. Activation of the Akt signaling pathway
imparts resistance against apoptosis and myocyte death.
However, sustained activation of the Akt pathway leads to
maladaptive hypertrophy and failure [28, 29]. Elevated Akt
phosphorylation levels have been reported to be associated
with adverse outcomes in several models of experimental
and genetic hypertension [28]. Akt prevents the phosphor-
ylation of glycogen synthase kinase-3 beta and attenuate its
action [30, 31]. Reactivation of GSK-3 by various phar-
macological compounds is known to prevent left ventricular
remodeling [32]. In a hypertrophied heart, myocytes

experience beta adrenergic receptor-mediated activation of
calcineurin, which is a key mediator of cardiac hypertrophy
[33, 34]. This study showed elevated Akt phosphorylation
and Calcineurin levels in the SHRs, as anticipated based on
the pathological cardiac hypertrophy (Fig. 7a, b). The pro-
portion of phosphorylated Akt and the calcineurin levels
were significantly attenuated by metoprolol and famotidine,
suggesting the possible involvement of the phosphatidyli-
nositol 3-kinase (PI3K)/Akt and calcineurin-mediated
pathways in the mediation of cardiac changes. In a mouse
model of hypertrophy induced by transverse aortic con-
striction (TAC), studies inferred that myocardial H2R
activation acted as an auxiliary regulator in the induction of
calcineurin after TAC; a number of other stimuli, such as
activation of the angiotensin and sympathetic systems, also
contribute to the induction of calcineurin [9].

Targeting H2R and reducing histamine to prevent cardiac
remodeling in chronic pressure overload are unexplored
areas. Our earlier study suffered from the lacuna that the
positive response to famotidine was not substantiated with
the myocardial histamine levels and comparison with a
known cardio-protective anti-hypertensive. This study
showed that restoration of structural and functional effi-
ciency by the H2R antagonist famotidine was comparable to
that of the β-blocker metoprolol. A significant observation
of the study is enhanced expression of the H2R and higher
myocardial histamine levels in the SHRs than in the nor-
motensive Wistar rats. The decrease in histamine in
response to the treatments was associated with reverse
remodeling, highlighting the role of histamine with chronic
pressure overload hypertrophy. Beta-adrenergic receptors
are expressed on mast cell membranes. Competition studies
using [3 H]dihydroalprenolol ([3 H]DHA) revealed that
~84% of adrenergic receptors were the beta-2 subtype,
whereas the remaining 16% were beta-1 adrenergic

Fig. 7 Immunoblotting and
densitometry analyses of
molecular mediators of
hypertrophy in the famotidine-
and metoprolol-treated groups.
a Densitometric analysis of the
Akt phosphorylation levels with
representative photographs of
immunoblots. b Densitometric
analysis of the calcineurin-A and
PRX3 levels with representative
photographs. The data are
presented as the mean ± SD.
Variance was analyzed by one-
way ANOVA followed by
the Bonferroni post hoc test. #p
< 0.01 vs WST rats and
‡p < 0.01 vs SHRs. ANOVA:
Fig. 7A: p < 0.01 and Fig. 7B:
PRX3—p < 0.001, Calcineurin
—p < 0.05
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receptors [35]. Although, the exact role of the beta-1
adrenergic receptor in modulating mast cell degranulation is
not well understood, reports have suggested that stimulation
of beta-2 adrenergic receptors cause mast cell stabilization
and partially contribute to the anti-asthmatic effect of sal-
butamol and its analogues [36]. Hence, blocking the beta-1
adrenergic receptors can expose the remnant and abundant
beta-2 adrenergic receptors to interact with elevated

catecholamines, resulting in mast cell stabilization. This
effect may have contributed to the decrease in histamine
levels by metoprolol treatment in the present study. Meto-
prolol is reported to have a minimal effect on mast cell
degranulation when used in isolation compared to that of
the ACE inhibitor combination [37].

After release from mast cells, histamine exerts auto-
crine effects that regulate the mast cell degranulation
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mediated by the H2 receptor [38]. Histamine is also
known to increase the chemotaxis of mast cells, thereby
promoting their tissue density [39]. This proposition is
supported by studies using roxatidine in the human mast
cell line-1 (HMC-1) activated by compound 48/80 to
induce degranulation. H2 blockers inhibit the NFκB and
P38 MAPK pathways, thereby preventing degranulation
[40]. In light of these findings, famotidine may block the
autocrine effects of histamine on mast cells, thereby pre-
venting their degranulation.

Additionally, when cultured H9c2 cardiac cells were
used to examine the role of histamine in mediating the
hypertrophic response, we observed that supplementation
with histamine and stimulation of H2Rs with their specific
agonist amthamine induced dose-dependent activation of
various mediators of cardiac hypertrophy, such as calci-
neurin-A, pAkt, and pERK (Fig. 8). These findings further
support the contention that histamine can induce H2R-
mediated cardiac remodeling. In conclusion, the study
provides impetus for a novel approach in the management
of cardiac hypertrophy and associated cardiovascular
ailments.
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