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Abstract
Hypertension has strong adverse effects on cardiovascular diseases, and increased blood pressure (BP) variability (BPV) is
closely associated with the development of hypertensive organ injuries and the occurrence of cardiovascular diseases.
Similar to other forms of BPV, short-term beat-to-beat BPV has also been established as a risk factor for cardiovascular
diseases. Baroreflex failure is the major mechanism involved in the pathophysiology of short-term beat-to-beat BPV.
Previous clinical and animal studies have demonstrated that baroreflex failure disrupted beat-to-beat BPV and hypertensive
organ damage. Moreover, short-term beat-to-beat BPV was an independent determinant of vascular elasticity. Although, the
clinical measurement tools and therapeutics for beat-to-beat BPV are not sufficient, we should consider that large beat-to-
beat BPV is an important risk factor for cardiovascular diseases in patients with hypertension.

Introduction

Hypertension has strong adverse effects on cardiovascular
diseases. Moreover, increased blood pressure (BP) variation
(BPV) is closely associated with the development of
hypertensive organ injuries and the occurrence of cardio-
vascular diseases [1–3]. There are several types of BPV,
which are classified according to the cycle length [4]. The
longest BPV is the seasonal variation. BP is generally
highest in the winter and lowest in the summer. The BPV
with most abundant information is diurnal changes eval-
uated by 24-h ambulatory monitoring or home BP. Masked
hypertension, including morning surge and non-dipper,
cause cardiovascular organ injuries and events [4]. Inter-
estingly, BPV is modified by various factors, such as aging,
external stress, diet, cardiovascular disease, or hypertension.
To assess BPV, the standard deviation (SD) and the coef-
ficient of variation (CV) of the systolic, diastolic, or mean
BP have been used traditionally [5].

The SD of the BP measurements is commonly used as
the clinical evaluation of short-term BPV [1]. However, we
should realize that SD has limitations in estimating BPV

because SD only reflects the global fluctuation of the BP
values around the mean level and does not take into account
the order of BP measurements [6–8]. To overcome these
limitations of SD, average real variability (ARV), residual
standard deviation (RSD) and variation independent of the
mean (VIM) have been used [5]. ARV takes into account
the sequence of BP measurements [5, 6]. RSD indicates the
underlying trend between BP values and time [5, 7, 8]. VIM
can exclude the impact of mean BP levels [5, 7].

Regarding the pathophysiological mechanisms of short-
term BPV, previous studies have suggested the importance
of baroreflex control [5, 9–11]. Considering this back-
ground, I have reviewed the clinical aspects of short-term
beat-to-beat BPV, especially the association with
baroreflex.

Beat-to-beat BPV as a risk factor for hypertension

Elevated BP is an important risk factor for target-organ
damage [12]. Among the types of BPV, short-term (24-h
and beat-to-beat) BPV has been established as a risk factor
for cardiovascular diseases [4, 13–15]. Previously, several
studies have demonstrated that 24-h BPV is significantly
associated with vascular damage [12, 15–17]. Although
beat-to-beat BPV is considered more precise than 24-h BPV
to evaluate short-term BPV [15, 18], the association
between beat-to-beat BPV and vascular damage is not sig-
nificant [15]. Short-term beat-to-beat BPV evaluated by
tonometry has also demonstrated a significant relationship
with left ventricular mass index, urinary albumin excretion,
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cerebral white matter lesions, and carotid artery intima-
media thickness in patients with hypertension [15, 19–21].
In addition, increased beat-to-beat BPV is associated with
cardiovascular death in patients with stroke [22].

It is necessary to consider that BPV exhibits a close
interaction with intrinsic cardiovascular-regulatory mechan-
isms and external environmental stimuli. Beat-to-beat BPV
is mainly mediated by sympathetic nerve activity, arterial, or
cardiopulmonary reflex, humoral factors, behavior, emo-
tional factors, activity, and sleep [4]. The severity of
hypertensive organ damage was augmented with increased
mean BP and beat-to-beat BPV in 108 untreated hyperten-
sive subjects [18]. The urinary albumin-to-creatinine ratio
was significantly associated with beat-to-beat diastolic BPV
[19]. However, systolic and diastolic BPV were not corre-
lated with left ventricular mass index in 33 untreated
hypertensive subjects [19], and a weak positive correlation
was noted between short-term BPV and left ventricular mass
index [23]. Left ventricular mass index is used to evaluate
cardiac organ damage, and the urinary albumin-to-creatinine
ratio was also used as a surrogate marker for renal organ
damage. In the above controversial studies, Parati et al. [18]
only used SD of BP values to evaluate the BPV, and the
clinical study of Veerman et al. [19] included a small
number of patients. Furthermore, in 256 untreated hyper-
tensive subjects, Wei et al. [15] demonstrated that left ven-
tricular mass index increased with the three indices of
systolic BPV, and the urinary albumin-to-creatinine ratio
only increased with differences between maximum and
minimum systolic BP. None of the three indices of systolic
BPV was significantly associated with pulse wave velocity.
It has been demonstrated that all four indices of systolic
BPV were associated with vascular elasticity and that SD,
RSD, and VIM of diastolic BP were also correlated with
total arterial compliance. In multivariate linear regression
analysis, only VIM of systolic BP was associated with total
arterial compliance independent of systolic and diastolic BP,
age, and body mass index in a hypertensive population.
However, BPV was controversially used to predict the risk
of cardiovascular diseases [12, 15, 18, 19, 24–26]. When the
relationship between BP and time was approximately linear,
RSD was more suitable than SD to estimate the extent of
variability. VIM is a transformation of SD that was defined
to be uncorrelated with mean levels for all individuals in the
cohort [8], and VIM could eliminate the confounding
interference of the mean BP values [5]. Only one pro-
spective study addressed the incidence of cardiovascular
complications in relation to BP levels as assessed by home
invasive intra-arterial 24-h ambulatory recordings in patients
with hypertension. However, this study did not present the
assessment of BPV [27, 28]. Based on the findings from the
Northwick Park Heart Study [15, 29], one might hypothesize
that the ability of beat-to-beat recordings to demonstrate

associations with target organ damage might depend on the
recording technique (intra-arterial vs. finger plethysmo-
graphy) and the duration of the recordings (10 min vs. 24 h)
[5].

In an animal study, rats with sinoaortic denervation were
used as the established model of increased beat-to-beat BPV
[30–32]. Sinoaortic denervation augments beat-to-beat BPV
with the impairment of baroreflex sensitivity in the rats. It
has been reported that sinoaortic denervation facilitates the
development of hypertensive organ injuries in the heart,
kidney, and small arteries of hypertensive rats without
affecting the 24-h mean BP level [31]. In normotensive rats,
sinoaortic denervation impaired left ventricular diastolic
function and caused left ventricular wall thickening with
cardiac fibrosis. We also demonstrated that sinoaortic
denervation destabilized BP in conscious rats with normal
left ventricular function and that salt loading combined with
the loss-of-baroreflex increases the BPV irrespective of left
ventricular function [32]. Regarding the mechanism of the
effects of sinoaortic denervation on the cardiovascular sys-
tem, tissue concentrations of angiotensin II increased in the
heart and the kidney of rats after long-term sinoaortic
denervation; however, plasma concentrations of angiotensin
II were not altered [30]. It has been also reported that the
mineral corticoid receptor is activated in arterial medial cells
and cardiomyocytes in rats with sinoaortic denervation [33].
These results potentially suggested that short-term beat-to-
beat BPV enhances the renin-angiotensin system in cardio-
vascular tissues. Regarding therapeutics, selective β1
blockers inhibit renin secretion and attenuated short-term
BPV with the alleviation of cardiovascular tissue and organ
injuries in rats with sinoaortic denervation [34].

Another pathophysiological mechanism associated with
beat-to-beat BPV is vascular elastcity [35]. Abnormal vas-
cular elasticity indicates alterations in the structural and
functional vascular properties, and beat-to-beat BPV is
exacerbated by structural and functional vascular properties
in a hypertensive population.

Baroreflex control of blood pressure

Baroreflex is the fastest negative feedback system to stabi-
lize BP [10, 11, 36–38]. Arterial baroreceptors are stretch
receptors located within the arterial wall of elastic vessels,
such as the aortic arch and carotid sinuses. Baroreflex
senses BP, and activated afferent nerves relay the pressure
signal to the vasomotor center. The vasomotor center
changes the mechanical properties of the ventricle and
vascular system to stabilize BP through modulating the
autonomic nervous system [39–44]. Moreover, we demon-
strated that baroreflex failure markedly impairs the volume
load tolerance and predisposes individuals to pulmonary
edema in rats without left ventricular dysfunction [45].
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Arterial baroreflex failure is associated with heart failure
with preserved but reduced left ventricular ejection fraction
[46], and left ventricular diastolic dysfunction is induced by
arterial baroreflex failure [47]. Numerous studies have
revealed that major risk factors of heart failure with pre-
served left ventricular ejection fraction, such as aging,
hypertension, diabetes, renal insufficiency, and athero-
sclerosis, are closely associated with arterial baroreflex
failure [48–53]. Interestingly, baroreflex failure caused by
prenatal hypoxia might be partially associated with the
development of hypertension in adulthood [54].

Baroreflex and short-term beat-to-beat BPV

We sought to assess whether arterial baroreflex failure alone
could strikingly disrupt BPV in the context of normal car-
diac function [32, 45]. We isolated the vasculature of
bilateral carotid sinuses from the systemic circulation and
controlled carotid sinus pressure using a servo-controlled
piston pump. Bilateral vagal nerves were sectioned at the
middle of the neck to eliminate reflexes from the cardio-
pulmonary region and prevent efferent conduction. Bilateral
aortic depressor nerves were sectioned to eliminate reflexes
from the aortic arch. Using this preparation, we mimicked
normal arterial baroreflex by matching carotid sinus pres-
sure to instantaneous BP and arterial baroreflex failure by
maintaining carotid sinus pressure at a constant value
regardless of BP perturbations. In the context of normal
arterial baroreflex function, volume loading increased BP,
but the changes were relatively small. However, in the
mimicked conditions of arterial baroreflex failure, the con-
siderably smaller volume loading increased BP markedly.

As described above, we demonstrated that sinoaortic
denervation destabilized BP in conscious rats with normal
left ventricular function and that salt loading combined with
loss-of-baroreflex increases BPV irrespective of left ven-
tricular function [32]. Recently, we demonstrated that
baroreflex-induced dynamic BP changes can be accurately
predicted by the transfer function from carotid sinus pres-
sure to mechanical properties and that changes in vascular
properties, not the ventricular properties, predominantly
determine baroreflex-induced BP regulation [55]. Major
variables that contribute to BP changes include vascular
properties, such as arterial resistance and stressed blood
volume. In contrast, the impact of the changes in ventricular
properties on BP regulation is remarkably small. We con-
cluded that the vascular system, not the ventricular system,
is the dominant actuator in baroreflex regulation of BP at
least in the setting of normal cardiac function [55]. We
reported that incorporating an artificial bionic baroreflex
system in rats with baroreflex failure restored the disrupted
BPV to a similar extent as the native baroreflex in acute
experiments [45].

Therapies for beat-to-beat BPV

In the clinic, angiotensin-converting enzyme inhibitors
improved baroreflex sensitivity and reduced short-term
BPV [56]. In animal study, beta-blockers, which inhibit
renin secretion via the beta1 adrenoreceptor, attenuate short-
term BPV and are expected to alleviate cardiovascular tis-
sue and organ injuries in the context of sinoaortic dener-
vation [34]. Aliskiren and L-arginine treatments restored
depressed baroreflex sensitivity in renovascular hyperten-
sive rats [57]. Interestingly, a sodium-glucose co-transporter
2 inhibitor at a non-depressor dose ameliorated BP lability
associated with sympathoinhibition during the active period
and improved baroreflex sensitivity in streptozotocin-
induced diabetes mellitus rats [58]. Regarding non-
pharmacological treatments, vagal afferent nerve activa-
tion improved baroreflex function and is expected to reverse
the impaired beat-to-beat BPV [59].

Baroreflex activation therapy

Baroreflex activation therapy is a novel technique for treat-
ing patients with resistant hypertension. The DEBuT-HT
study (Device-Based Therapy of Hypertension) demon-
strated a substantial and sustained reduction in blood pres-
sure over a 3-month period in treatment-resistant
hypertensive patients [60]. Subsequently, the Rheos Pivotal
Trial evaluated the effect of baroreflex activation therapy in
a double-blind, randomized, prospective, sham-controlled
trial in which patients were randomized to receive baroreflex
activation therapy either immediately or 6 months after
implantation of the Rheos device [61]. A second-generation
Rheos implantable baroreflex activation therapy device also
reduced office BP at 6 months in a single-arm, open-label
study (Barostim neo trial) [62]. Baroreflex activation therapy
recently demonstrated a sustained effect on blood pressure
after 6 years of follow-up [63].

Our novel bionic baroreceptor senses BP and translates
BP into neuro-stimulation [64]. The physiological volume
intolerance described above was fully reversed in a model
with baroreflex failure [10, 45]. Our bionic arterial system
fully reversed short-term BPV and the physiologic volume
intolerance in mimicked arterial baroreflex failure. The
potential for this artificial bionic baroreflex system to be
used as a novel therapeutic tool for disrupted BPV and heart
failure should be considered in the near future [45].

Conclusions

Short-term beat-to-beat BPV is one of the important clinical
features of hypertension and is associated with baroreflex
failure and vascular stiffening. Although, the clinical
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measurement tools and therapeutics for beat-to-beat BPV
are insufficient, we should consider that large beat-to-beat
BPV is a risk for cardiovascular diseases (Fig. 1).
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