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Abstract
LMNA-associated congenital muscular dystrophy (L-CMD) is a severe form of muscle laminopathy. LMNA encodes
lamin A, which an intermediate filament protein that attaches to the inner membrane of the nuclear envelope. We
performed sequence analysis based on our original targeted gene panel system for muscle diseases to obtain a
molecular diagnosis in a Japanese girl with L-CMD. A novel heterozygous missense mutation, c.115A>C (p.Asn39His),
in LMNA is reported.

Laminopathies are a heterogeneous group of disorders
caused by pathogenic variants in the lamin A genes
(LMNAs)1,2. More than 13 different hereditary disorders
have been recognized3. Among these, three are LMNA-
related muscular dystrophies, including autosomal
dominant Emery-Dreifuss muscular dystrophy4, limb-
girdle muscular dystrophy type 1B, and LMNA-
associated congenital muscular dystrophy (L-CMD). In
L-CMD, the initial symptom is usually decreased fetal or
newborn movements followed by a significant delay in
motor development5. Muscle weakness is initially pre-
dominant in the cervical-axial muscles of the proximal
muscles. A drooping head or poor head control due to
neck muscle weakness is characteristically observed in
some patients6. Cardiac involvement and joint con-
tracture can also be seen in some patients. Pathologically,
there may be marked inflammatory changes, such as
perivascular cuffing and endomysial/perimysial lympho-
cyte infiltration7. L-CMD is due to de novo genetic

variations in exon 1 and exon 6 of LMNA, which encode
its coil 1A and coil 2 domains, respectively5. Interestingly,
four types of amino acid substitutions at Asn39 in the coil
1A domain have been reported in L-CMD patients5–9. In
this study, we report a Japanese girl with L-CMD who
harbored the novel heterozygous missense mutation
c.115A>C (p.Asn39His) in LMNA.
The National Center of Neurology and Psychiatry (NCNP)

is a referral center for neuromuscular diseases in Japan.
Since 1978, we have made pathological diagnoses based on
more than 18,000 muscle biopsies. For cases with undiag-
nosed hereditary muscle disease, we now perform mutation
screening using an Ion PGM sequencer (Thermo Fisher
Scientific, MA, USA) in combination with our recently
developed targeted gene panels, which cover 187 genes
known to cause hereditary muscle diseases. We developed
four such panels: muscular dystrophy (MD panel), con-
genital myopathy, metabolic myopathy, and myopathy with
protein aggregations/rimmed vacuoles, respectively10.
The patient was a girl aged 3 years and 6 months old at

the time of muscle biopsy. She had no family history of
neuromuscular disease. She was born to healthy parents
without asphyxia by normal delivery at 35 weeks of
gestation. Her height, weight, and head circumference at
birth were 44 cm, 2150 g, and 31.0 cm, respectively. She
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could hold her head up at 4 months, could take a sitting
position at 1 year, and could walk independently at
18 months, indicating a motor developmental delay. There
was no delay in intellectual development. When she was 3
years old, a kindergarten teacher noted that she was a slow
runner and fell easily. She was referred to our hospital
because of motor developmental delay. At presentation, her
height and weight were 89.2 cm (−1.6 SD) and 11.8 kg (−1.4
SD), respectively. Ankle contracture was evident. She used
the Gowers’maneuver to stand up and used the railing to go
upstairs. Blood tests revealed high levels of the following
serum enzymes: AST, 60U/L; ALT, 63U/L; CK, 1673 U/L;
and aldolase, 21.5 U/L (2.1–6.1). There were no abnormal-
ities in nerve conduction studies, but electromyography
disclosed discharge at rest, suggesting a myogenic disease,
including muscular dystrophy. Hematoxylin eosin staining of
muscle biopsy specimens obtained from the biceps brachii

showed scattered necrotic and regenerating fibers as well as
marked variations in fiber size and marked endomysial
fibrosis, suggesting chronic necrotic and regenerating pro-
cesses compatible with muscular dystrophy (Fig. 1a). There
was no lymphocyte infiltration. Immunohistochemical
staining showed that muscle fibers were positive for MHC
class I (Fig. 1b). Type 2C fibers accounted for 28%. No
biological samples were available from the parents.
Clinical information and materials were obtained from

the patient for diagnostic purposes, and they were
approved for scientific use via written informed consent.
All experiments in this study were approved by the Ethical
Committee of NCNP.
To evaluate the possibility of the patient being a dys-

trophinopathy carrier, a multiplex ligation-dependent
probe amplification assay for DMD was performed but
found to be negative. We then ran an Ion PGM sequencer

Fig. 1 A novel missense mutation in LMNA causes LMNA-associated congenital muscular dystrophy. a Muscle biopsy tissue sections from patients
showing the histological features of muscular dystrophy. Bar: 50 µm. b Immunostaining for MHC class I in patient muscle sections. The sarcolemma
and cytoplasm of non-necrotic muscle fibers are shown stained. Bar: 50 µm. c Sanger sequencing analysis of the patient. A novel missense
heterozygous mutation was identified: c.115A>C (p.Asn39His) in exon 1 of LMNA. d Schematic of LMNA exons and corresponding protein domains.
The location of the mutation identified in this study is indicated by a black arrow. e Alignment of the lamin A amino acid sequence in different
species. The open red box indicates identical amino acids among all species. The blue box indicates acidic patches. The arrowhead indicates the
position of the p.Asn39His mutation
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in combination with the MD targeted gene panel. A total
of 204Mb sequences were obtained and mapped to the
human RefSeq (GRchg37/hg19). At least 97.6% of
the target gene loci were covered at a depth of 20 reads.
A novel heterozygous missense mutation, c.115A>C
(p.Asn39His), was detected in LMNA (Fig. 1c). We con-
firmed this mutation by direct sequencing of PCR pro-
ducts obtained from the DNA of the patient. The
mutation was located within the 1A domain of the central
rod domain, which has been implicated in dimerization in
lamins (Fig. 1d). The asparagine caused by the mutation is
highly conserved among species (Fig. 1e). The mutation
was not deposited in any databases, including dbSNP,
1000 genomes, the Human Gene Mutation Database, the
Exome Aggregation Consortium, the Human Genetic
Variation Database, the Integrated Japanese Genome
Variation Database or ClinVar (as of the end of February,
2018). Three mutation-prediction tools were also used to
check the functional effects of this substitution. SIFT,
PolyPhen-2 and Mutation Taster predicted that it would
be “deleterious” with a score of 0.001, “probably dama-
ging” with a score of 0.999 and “disease-causing” with a
score of 1, respectively.
In this study, we identified the p.Asn39His mutation in a

Japanese girl with L-CMD. As mentioned above, four types
of missense mutations at the same site, Asn39Ser,
Asn39Asp, Asn39Tyr, and Asn39Lys, have previously been
reported in L-CMD patients5–9, even though Asn39Ser
variants are also associated with EDMD9. Quijano-Roy
et al. classified L-CMD patients into two groups: the first
have a severe congenital muscular dystrophy phenotype,
and the second have a dropped-head syndrome pheno-
type5. When we compared the clinical features of our
patient (Asn39His) to those reported in patients with
Asn39Ser, Asn39Asp, Asn39Tyr, or Asn39Lys mutations,
some similarities and differences in phenotypes emerged
among the patients (Table 1). There was a muscle weak-
ness pattern in which the axial and proximal muscles were
predominantly affected in patients with all mutations;
dropped head was observed in the patients with Asn39Ser,
Asn39Tyr, and Asn39Lys but not in those with Asn39Asp
and Asn39His; serum CK level, moderate to high increase
in all mutations; joint contractures were positive in all
mutations; cardiac involvement was positive in Asn39Asp,
Asn39Lys and 1 case of Asn39Ser but negative in
Asn39Tyr, Asn39His and 2 cases of Asn39Ser; and
inflammation in muscle pathology was positive in
Asn39Asp and Asn39His but negative in the other muta-
tions. Although these differences may be affected by the
age of the patient or the disease duration, substitutions at
different amino acids in the same site may influence the
structure as well as the function of the nuclear lamin A
matrix. Various types of amino acid substitutions observed
at the same site must be explored as they provide precious

information that increases our understanding of the rather
complicated phenotype-genotype correlations observed in
LMNA-related myopathies.
Asn at 39, which is located at the 8th residue from the

N-terminus in the coil 1A domain, is highly conserved
during evolution (Fig. 1e). This residue is also conserved
at more than 98% among various intermediate filament
members (type I–V), in which lamin A belongs to type V.
Comprehensive sequence comparisons of the coil 1A
segment among all types of intermediate filaments and
the crystal structure of vimentin have suggested that
segment coil 1A has unique features that distinguish it
from the other major coiled-coil segments11. Special
structural roles of coil 1A have been predicted because it
can form a rigid coiled-coil structure at its hydrophobic
C-terminal region and an open structure at its hydrophilic
N-terminal region, and these function to unwind the
molecules into separate a-helix strands (monomers) and
to then reassemble them into a coiled-coil rope (dimes)
under appropriate conditions12. This Asn residue may
provide the N-terminal region with hydrophilic properties
that regulate these structural changes.
More interestingly, the region including Asn at 39 in

coil 1A was predicted to function in potential head-to-tail
association interactions in nuclear lamins12. The coil 1A
and coil 2 dimers each have one pronounced patch of
negative electrostatic potential: EDLQELND (residue
33–40, net charge −4 in coil 1A) and DEYQELLD (resi-
due 357–364, net charge −4 in coil 2), respectively. These
acidic patches in coil 1A and coil 2 may be electro-
statically attracted by the positively charged arginine
clusters in the Tail and Head domains, respectively. Thus,
changes at the His and Lys at 39 in L-CMD will give a
positive charge to N-terminal acidic patch, resulting in an
increased net charge of −3, which weakens the head-to-
tail association of lamin A dimers and leads to unstable
network formation. In contrast, the change to Asn at 39
(resulting in a decreased net charge of −5) will have the
opposite effect. The pathogenic variant p.Glu358Lys in
coil 2 in L-CMD may support this idea. Further analyses
of the structural changes in and functional roles of the
mutated LMNA proteins will be required to determine
their effects on the pathogenesis of L-CMD.

HGV database
The relevant data from this Data Report are hosted at the Human Genome
Variation Database at https://doi.org/10.6084/m9.figshare.hgv.2342.
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