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Myelodysplastic syndrome in an infant with
constitutional pure duplication 1q41-qter
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Abstract
We report on a Japanese female infant as the fourth patient with the constitutional pure duplication 1q41-qter
confirmed by chromosomal microarray and as the first who developed myelodysplastic syndrome (MDS) among those
with the constitutional 1q duplication. Common clinical features of the constitutional pure duplication 1q41-qter
include developmental delay, craniofacial characteristics, foot malformation, hypertrichosis, and respiratory
insufficiency. The association between MDS and the duplication of the genes in the 1q41-qter region remains
unknown.

The constitutional pure duplication 1q41-qter is a
condition with an excess of the 1q41-qter region but
without imbalances of other chromosomal regions, asso-
ciated with chromosomal rearrangements1–3. In only
three among eight non-mosaic cases of pure duplication
1q41-qter published to date, imbalances of other chro-
mosomal regions were excluded through molecular
cytogenetic techniques, including chromosomal micro-
array (Table 1)2, 3. We report the fourth case of con-
stitutional pure duplication 1q41-qter confirmed by
chromosomal microarray and the first patient with a
constitutional 1q duplication who developed myelodys-
plastic syndrome (MDS).
The proband was a girl, born as the first child of healthy

nonconsanguineous Japanese parents. She was delivered
by cesarean section at 37 weeks and 0 days of gestation
after an uneventful pregnancy. Her birth weight was 2444
g (−0.3 SD), length 46.0 cm (−0.6 SD), and occipitofrontal
circumference 34.5 cm (+1.4 SD). Apgar scores were 4 at
1 min and 7 at 5 min. She developed respiratory distress

and received mechanical ventilation for 2 days, followed
by oxygen supplementation for 3 months. Her physical
findings at age 1 month included craniofacial features
(macrocephaly, a large and prominent forehead, epi-
canthic folds, hypertelorism, a depressed nasal bridge, a
high and narrow palate, retro/micrognathia), hyper-
trichosis, widely spaced nipples, a right single palmar
crease, and syndactyly of the first to third toes of both feet.
Brain, cardiac, and abdominal ultrasonography showed no
abnormalities.
At age 1 month, her white blood cell count was

11.2 × 103/µL with leukemic blasts of 6.0% (Fig. 1a). The
hemoglobin level was 7.1 g/dL, and the platelet count
was 55 × 103/µL. She was transferred to our hospital.
The initial bone marrow aspiration was performed at
age 6 weeks. The smear showed blast cells (Fig. 1b).
The clot section showed age-appropriate hypercellular
marrow (Fig. 1c). Megakaryocytes were increased in
number, and many of them displayed dysplasia, such as
abnormally separated nuclear lobes (Fig. 1c, d). Erythro-
blasts exhibited diffuse distribution, and no apparent
erythroblastic islands were found (Fig. 1d). Immunohis-
tochemical examination revealed CD41-positive micro-
megakaryocytes and small megakaryocytes (Fig. 1e). The
follow-up bone marrow aspiration was performed at the
age of 3 months. The clot histology showed a mild
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Table 1 Patients diagnosed with pure duplication 1q41-qter with chromosome microarray

Reference Shin et al. [2] Watanabe et al. [3] Present patient

Case 1 Case 2

Age at examination/sex 6 mo/M 1 y 14 y 1 y 7 mo/F

Cytogenetic analysis G-band, FISH, CMA G-band, CMA G-band, CMA G-band, FISH, CMA

G-banded karyotype 46,XY,der(11)t(1;11) (q41;

p15.5)

46,XY,der(15)t(1;15) (q41;

p?)

46,XY,der(15)t(1;15) (q41;p11.2) 46,XX,der(7)t(1;7)(q41;p22.3)

Duplication size (Mb) 26.8 32.6 26.7

Origin Mat De novo

Birth information

Gestational weeks 39 37

Weight (g) 2820 2444

OFC (cm) 34.5

Postnatal growth impairment + −

Developmental delay + + + +

Intellectual disability + + +

Craniofacial features

Macrocephaly + + − +

Large fontanels − − − +

Prominent forehead + + + +

Widely spaced sutures +

Epicanthic folds +

Hypertelorism + − +

Triangle face + − + +

Downslanting palpebral fissures + − + +

Broad nasal bridge + + + +

High palate − − +

Micro/retrognathia + + + +

Low-set ears + + + +

Short neck + + +

Widely spaced nipples +

Hand/foot malformation − + (Overlapping toes) + (Syndactyly)

Hypertrichosis + − +

CNS abnormalities − + (Ventriculer dilatation) −

Cardiac malformations − − − −

Urogenital anormalies − + −

Respiratory insufficency − + (Recurrent infection) +

Gastrointestinal abnormalities − − −

Others MDS

CMA chromosomal microarray, CNS central nervous system, F female, M male, Mat maternal, MDS myelodysplastic syndrome, mo month(s), OFC occipitofrontal
circumference, y year(s)
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increase in blast cells in addition to the findings in the
initial examination (data not shown). Immunohis-
tochemistry showed scattered p53-positive cells and
slightly increased CD34-positive blasts. There was fetal
hemoglobin expression in some erythroblasts and an
increase in CD42b-positive megakaryocytes, which were
small and mononuclear (data not shown).
G-banded karyotyping of the bone marrow cells to

detect the chromosomal abnormalities responsible for
hematological malignancy showed 46,XX,add(7)(p22) at
age 6 weeks. This chromosomal aberration was thought to
be constitutional. G-banding of phytohemagglutinin-
stimulated peripheral blood was performed at age
2 months when the peripheral blood blasts decreased to
2.0%, and the karyotype showed the same abnormalities
on chromosome 7 (Fig. 1f). Parental karyotypes were
normal. The follow-up G-banding of the bone marrow
cells at age 9 months showed trisomy 8 as an additional
chromosomal aberration in 5/22 (22.7%) cells with 2.0%
blasts.
The peripheral blood showed a persistently low level of

monocytes (>1 × 109/L was not maintained), hemoglobin
(<10 g/dL), and platelet (<10 × 104 /µL). Leukemic blasts
were detected in 2–4% of the bone marrow cells and in
3–9% (1–2 months of age) and ~4% (~3 months of age) of
the peripheral blood cells. Auer rods were not found in
the peripheral blood smear or bone marrow smear. In
view of all these hematological findings as well as the
exclusion of infectious diseases, metabolic disorders, or
other causes of cytopenia or dysplasia, she was diagnosed
with refractory anemia with excess blasts-1 (RAEB-1)
according to the 2008 revision of the World Health
Organization (WHO) classification4 and with MDS with
excess blasts-1 (MDS-EB-1) according to the 2016 revi-
sion of the WHO classification5.
At age 9 months, her hemoglobin level and platelet

count increased to 12 g/dL and 70 × 103/µL, respectively,
with no change in the peripheral blood blast percentage.
However, her platelet count gradually decreased to
approximately 10 × 103 /µL at age 1 year and 4 months,
requiring platelet transfusions every 2 weeks thereafter.
Her hemoglobin level also gradually decreased to 6 g/dL
at age 1 year and 6 months. She underwent bone marrow
transplantation from her HLA-matched mother at age 1
year and 7 months and achieved complete hematological
remission with complete donor chimerism.
For the determination of the detailed architecture of the

constitutional derivative chromosome 7, we performed
chromosomal microarray and metaphase fluorescent
in situ hybridization (FISH) analysis6. Genomic DNA and
metaphases were obtained from her peripheral blood at
age 2 months after obtaining written informed consent
from her parents. All procedures were reviewed and
approved by the institutional review board of Shinshu

University School of Medicine and were in accordance
with the ethical standards of the Declaration of Helsinki.
We used a whole-genome oligonucleotide based-array
platform consisting of 180K oligonucleotides
(CGXTMSNP v1.1; PerkinElmer Inc., Waltham, MA). The
data were analyzed with Genoglyphix software (Perki-
nElmer Inc.) according to the human genome assembly
Feb 2009 (GRCh 37/hg19). A 26.74Mb gain was shown in
the 1q41-qter region (Fig. 1f), with an average log2 ratio of
0.527, compatible with the full trisomy state in this region.
No copy number loss was detected in the 7p22.3-pter
region with microarray using our platform (Fig. 1f). Sig-
nals of the 7p subtelomeric probe through metaphase
FISH analysis were detected not only on the normal
chromosome 7pter but also on the derivative chromo-
some 7p (Fig. 1g). She was concluded to have pure
duplication 1q41-qter, derived from an unbalanced
translocation between 1q41 and 7p22.3. The final kar-
yotype was described as 46,XX,der(7)(1qter->1q41::7pter-
>7qter).
Reviewing four cases with constitutional pure duplica-

tion 1q41-qter2, 3 including the proband, common clinical
findings observed in two or more cases included devel-
opmental delay with intellectual disability, craniofacial
features (macrocephaly, prominent forehead, hypertelor-
ism, triangle face, downslanting palpebral fissures, broad
nasal bridge, micro/retrognathia, low-set ears, short neck),
foot malformation, hypertrichosis, and respiratory insuf-
ficiency (Table 1), which could represent a recognizable
clinical entity.
Clonal chromosomal abnormalities are detected in

approximately 50% of patients of primary MDS7. The
most frequent abnormalities are interstitial deletions of
the long arm of chromosome 5 (del(5q) or 5q−) with or
without additional karyotypic abnormalities, recognized
as a distinct entity named 5q− syndrome according to the
WHO classification4, 5. A large database from Austria, in
which 1080 among 2072 patients with MDS (52%) were
found to have clonal chromosomal abnormalities, identi-
fied deletions of 5q (30% of the 1080 patients), −7/del(7q)
(21%), +8 (16%), −18/18q− (7%), 20q− (7%), −5 (6%),
−Y (5%), −17/17p− (including isochromosome (17q))
(5%), +Mar (5%), +21 (4%), inv/t(3q) (4%), −13/13q−
(4%), +1/1q+(3%), −21 (3%), +11 (3%), 12p−(2%), t(5q)
(2%), 11q− (2%), and t(7q) (2%)7. Interestingly, a multi-
center study from Korea, in which 92 among 205 patients
(45%) were found to have clonal chromosomal abnorm-
alities, identified trisomy 1q as the second most frequent
chromosomal abnormality (15%), with trisomy 8 as the
most frequent (20%)8. The pathogenesis of MDS asso-
ciated with clonal trisomy 1q remains unknown. It is
usually present with additional common abnormalities
such as trisomy 8, monosomy 5, or monosomy 7, sug-
gesting that 1q abnormalities are mostly secondary events
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Fig. 1 (See legend on next page.)
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representing clonal evolution9. Contrarily, the involve-
ment of 1q heterochromatin associated with unbalanced
centromeric translocation was found as the primary clonal
abnormality in several patients with MDS, which sug-
gested the importance of 1q heterochromatin in the
development of MDS9, 10.
A 26.74-Mb gain in the 1q41-qter region shown in the

proband included 95 genes listed in Online Mendelian
Inheritance in Man® (Supplementary Table 1). Among the
95 genes, PARP1, AKT3, and TP53BP2 are known as
oncogenes, though they have not been reported to be
associated with the development of MDS11, 12. The
abnormal expression of these genes related to oncogenesis
has been reported in various human tumors, including
hematopoietic malignancies13–16. However, there have
been no reports of patients with constitutional 1q dupli-
cation who developed MDS or other hematological
malignancies. Therefore, MDS in the proband might be a
coincidental event and may be associated with other
genetic and/or environmental factor(s).
In conclusion, we describe the detailed hematological

and molecular cytogenetic findings of the fourth patient
with the constitutional pure duplication 1q41-qter and
the first who developed MDS among those with the
constitutional 1q duplication. Common clinical features
in constitutional pure duplication 1q41-qter include
developmental delay, craniofacial characteristics, foot
malformation, hypertrichosis, and respiratory insuffi-
ciency. The association between MDS and duplicated
genes in the 1q41-qter region in the proband remains
unknown.
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Fig. 1 Hematological and molecular cytogenetic findings. a A blast cell in the peripheral blood smear at age 1 month. b: A blast cell in the bone
marrow smear at age 6 weeks. c, d Histopathology and immunohistochemistry for CD41 of the clot section of bone marrow aspirate. c Age-
appropriate hypercellular marrow is shown. Megakaryocytes are increased in number and display dysplasia with abnormally separated nuclear lobes
(inset) (hematoxylin and eosin staining, original magnification, x400; scale bar, 100 μm, inset; original magnification, x1000). d Erythroblasts are
distributed diffusely, and no erythroblastic islands are present (hematoxylin and eosin staining, original magnification, x1000; scale bar, 50 μm). e
CD41-positive micromegakaryocytes and small megakaryocytes (arrows) are observed (immunostaining for CD41; original magnification, ×1000; scale
bar, 50 μm). f, g The results of conventional and molecular cytogenetic analyses using peripheral blood at age 2 months. f Partial G-banded karyotype
and chromosome microarray analysis of chromosomes 1 and 7. The 7pter breakpoint of derivative chromosome 7 is indicated by arrows. A 26.74-Mb
duplicated region of 1q41-qter (chr1:222,472,360–249,208,146) is indicated as a pink shaded background in the microarray plot and as the brackets.
No apparent copy number loss was observed at 7p22.3-pter by microarray. g Result of metaphase FISH using three kinds of probes: red: RP11-139E20
(1q41, chr1:223,035,115–223,191,269), aqua: RP11-68D10 (1q42.3, chr1:236,274,313–236,474,743), and green: RP11-90P13 (7p22.3, chr7: 23,874–203,581
*including the region of the most distal probe of chromosome 7 (chr7: 41,243–41,291) on our microarray). Green signals for the subtelomere 7p
probe (RP11-90P13) are retained on the der(7) as well as on the normal chromosome 7
(see figure on previous page)
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