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One key research goal of evolutionary biology is to understand the origin and maintenance of genetic variation. In the Cerrado, the
South American savanna located primarily in the Central Brazilian Plateau, many hypotheses have been proposed to explain how
landscape features (e.g., geographic distance, river barriers, topographic compartmentalization, and historical climatic fluctuations)
have promoted genetic structure by mediating gene flow. Here, we asked whether these landscape features have influenced the
genetic structure and differentiation in the lizard species Norops brasiliensis (Squamata: Dactyloidae). To achieve our goal, we used a
genetic clustering analysis and estimate an effective migration surface to assess genetic structure in the focal species. Optimized
isolation-by-resistance models and a simulation-based approach combined with machine learning (convolutional neural network;
CNN) were then used to infer current and historical effects on population genetic structure through 12 unique landscape models.
We recovered five geographically distributed populations that are separated by regions of lower-than-expected gene flow. The
results of the CNN showed that geographic distance is the sole predictor of genetic variation in N. brasiliensis, and that slope, rivers,
and historical climate had no discernible influence on gene flow. Our novel CNN approach was accurate (89.5%) in differentiating
each landscape model. CNN and other machine learning approaches are still largely unexplored in landscape genetics studies,
representing promising avenues for future research with increasingly accessible genomic datasets.

Heredity; https://doi.org/10.1038/s41437-024-00682-5

INTRODUCTION
Disentangling the processes and mechanisms that influence
genetic variation is critical to understanding biodiversity. Despite
significant recent advances, the Northern Hemisphere remains the
primary focal region for most phylogeographic and landscape
genetic research (Beheregaray 2008; Storfer et al. 2010). Investiga-
tions on the origins of genetic, functional, and phylogenetic
diversity in many taxonomic groups in the Southern Hemisphere
are still wanting. This is unfortunate because the historical and
ecological processes that operate in higher latitudes may differ
from those in lower latitudes given the higher diversification rates,
older ages, and more complex biotic interactions in the latter
(Brown 2014; Jablonski et al. 2006; Rangel et al. 2018). New
investigations offer the opportunity to test the generality of
previous findings and may expand the view of the historical
processes that have operated over time.
Landscape genetics is a discipline that seeks to understand how

spatial and temporal variation in landscape features has shaped
genetic variation by influencing biological processes such as
dispersal and mating. One of the most well-documented patterns
in population genetics is the decrease of genetic similarity among
populations as the geographic distance between them increases
(isolation by distance – IBD; Wright 1943). While IBD reflects

spatially assortative mating due to limited dispersal in a
homogeneous landscape, most natural landscapes are a mosaic
of suitable habitats surrounded by an unsuitable habitat matrix
that may constrain dispersal among local populations in a non-
linear manner. For example, valleys can shape genetic differentia-
tion in high-elevation species by constraining gene flow among
mountain chains. Thus, landscape composition and configuration
typically modulate the movement of individuals across space,
leading to patterns of genetic differentiation that not only track
the effect of geographic separation but also reflect the potential
impact of habitat suitability on dispersal (isolation by resistance –
IBR; McRae 2006). Therefore, the complex interaction between IBD
and IBR can affect microevolutionary processes, such as gene flow,
and influence the distribution of genetic variation at different
temporal and spatial scales (Manel et al. 2003; Manel and
Holderegger 2013).
The Cerrado, a world biodiversity hotspots (Myers et al. 2000), is

a habitat located primarily in the Central Brazilian Plateau that
covers about 22% of the Brazilian territory (Oliveira and Marquis
2002). It is composed of a complex landscape of older plateaus
and younger depressions and dominated by sclerophyllous, fire-
adapted vegetation, abundant grasses, and short, thick-barked,
and twisting trees. Within the Cerrado, previous investigations
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have shown how rivers, environmental conditions, historical
climate, fragmentation, and habitat loss explain genetic differ-
entiation in disparate taxa (Telles et al. 2014; Vasconcellos et al.
2019; Fonseca et al. 2021). One of the main hypothesized
biogeographical barriers is the topographic compartmentalization
of the landscape into plateaus and valleys (Silva 1995; Werneck
2011). Plateaus are older features and are dominated by savanna-
like vegetation, while valleys are much younger and characterized
by more heterogeneous vegetation, including forests. The
environmental transition between plateaus and valleys is steep;
therefore, valleys presumably prevent gene flow between
populations inhabiting plateaus and vice-versa. Another well-
known effective barrier to gene flow is rivers—riverine barrier
hypothesis (RBH; Wallace 1852). The RBH explain patterns of
geographic distribution and genetic variation of several taxa
worldwide (Gehring et al. 2012; Bartáková et al. 2015; Satler and
Carstens 2016; Lanna et al. 2020). In addition to plateaus and
rivers, areas characterized by climate-induced habitat instability
likely limited gene flow between areas with greater habitat
stability (Vitorino et al. 2018; Vasconcellos et al. 2019; Ledo et al.
2020). Hence, the combination of physical barriers and historical
habitat instability may be expected to influence connectivity
among populations, driving genetic differentiation through IBR.
Lastly, considering the sheer area of the Cerrado (ca.
2,000,000 km2) and the limited dispersal capabilities of many taxa,
IBD is also expected to be one of the most substantial factors
affecting genetic variation in this region.
Here we investigate the role of landscape features on genetic

structure and differentiation in an anole lizard species (Norops
brasiliensis: Squamata: Dactyloidae) distributed throughout the
Cerrado. To accomplish this objective, we use genetic clustering

analysis, spatial analyses to estimate levels of gene flow across the
landscape, and AMOVAs to assess genetic structure. We also
calculate genetic summary statistics to describe overall genetic
diversity in the focal species. Finally, we use optimized isolation-
by-resistance models via maximum likelihood and a novel
machine learning approach to test the effect of five landscape
and environmental features on genetic differentiation: (i) geo-
graphic distance; (ii) geomorphological compartmentalization; (iii)
rivers; (iv) vegetational shifts due to climatic oscillations, and (v)
environmental niche suitability since the last glacial maximum.

MATERIAL AND METHODS
Norops brasiliensis is a trunk-ground lizard species found in forested areas
in the Cerrado, in enclaves of Cerrado within Amazonia, and in transitional
areas between them (Fig. 1; Avila-Pires 1995).

Sampling and data collection
We previously obtained 52 tissue samples from 9 localities (mean ± sd: 5.7
individuals per locality, range 1–18) of N. brasiliensis in the Cerrado and
peripheral Cerrado enclaves in Amazonia as described by Fonseca et al.
(2021). Sampling localities were drawn from across the range of the species
but were limited by the availability of specimens. Genomic data were
generated using a modified version of the Genotyping-by-Sequencing
protocol described in Elshire et al. (2011). Briefly, this protocol sequences
single nucleotide polymorphisms from throughout the genome that are
adjacent to the Sbf1 restriction site. As described in Fonseca, Colli, et al.
(2021), ipyrad v 0.9.52 (Eaton and Overcast 2020) was used to conduct all
bioinformatic processing. We used the same configuration as described in
Fonseca et al. (2021). First, we demultiplexed raw data using individual
barcode adapters. Next, we filtered the data for adapters using the stricter
option. We set the maximum low-quality base calls in the read to five and

Fig. 1 Map showing the geographic distribution of Norops brasiliensis. Localities with genetic data are shown in purple and museum
records are shown in cyan.
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we only allowed reads longer than 35 bp. We clustered reads within each
sample if their similarity was higher than 85%. We set maximum cluster
depth within samples to 10,000 reads and used a minimum depth for
statistical base calling of six reads. The Ohio Supercomputer Center
provided the computational resources for processing all steps. Addition-
ally, to supplement sample collection localities, we obtained 30
independent geographic distribution records from the literature and the
Herpetological Collection, University of Brasília (CHUNB) used in the
simulations (below).

Genetic structure and genetic diversity
We reassessed the genetic structure in N. brasiliensis using the model-
based clustering method sNMF implemented in the R package LEA (Frichot
et al. 2014; Frichot and François 2015). sNMF is accurate likelihood
algorithm that estimates genetic ancestry components for each sample
using sparse non-negative matrix factorization and least-squares optimiza-
tion. We performed fifteen independent runs, evaluating K-values ranging
from 1 to 10. We selected the number of populations that minimized the
cross-entropy criterion. Since clustering methods are likely to be sensitive
to isolation by distance, we explored a range of clustering levels.
We calculated mean expected (He) and observed (Ho) heterozygosity

within the SNP data based on the populations recovered by sNMF using
the R package hierstat (Goudet 2005). We used an analysis of molecular
variance (AMOVA) to assess the level of population structure among
individual demes and the populations identified by sNMF using the R
package poppr (Kamvar et al. 2014) We calculated pairwise FST s between
demes using BEDASSLE (Bradburd et al. 2013) and, to test isolation by
distance, performed a Mantel test using the R package adegenet (Jombart
2008).

Estimated effective migration surface
We used Estimated Effective Migration Surface (EEMS; Petkova et al. 2015)
to visualize population structure and spatially estimate areas of higher or
lower than average gene flow across the landscape. EEMS models
migration across the landscape by inferring migration rates among demes
and represents these rates visually to offer insight into areas of low
migration. We calculated the matrix of genetic dissimilarities between
spatial locations with bed2diff pipeline. We used the Google Maps API v.3
tool (available at http://www.birdtheme.org/useful/v3tool.html) to draw a
polygon encompassing our sampled localities. We performed eight
independent chains of 10 million MCMC iterations with a burn-in of
200,000 MCMC iterations. Each independent chain was run with 400
demes and a thinning of 9999. Using the rEEMSplots tools, we did not find
evidence for the lack of chain convergence (Fig. S1). Results over
independent chains were summarized using the rEEMSplots pipeline.

Generating spatial predictors of gene flow
We selected five landscape predictors that have been hypothesized to
influence genetic variation in the Cerrado: (i) geographic distance; (ii) slope
as a proxy of geomorphological compartmentalization; (iii) major rivers
and their tributaries; (iv) vegetational shifts due to climatic oscillations over
the last 21 kyr, and (v) environmental niche suitability over the last 21 kyr.
The landscape layers were created using the following approaches: (i) the
geographic distance raster depicted a homogeneous layer where all the
pixels were equal to one. This layer represents the null model of isolation
by geographic distance, where the landscape does not differ in its effect
on individual dispersal. (ii) To create the slope layer, we first downloaded
an elevational raster from the WorldClim database (Hijmans et al. 2005)
and then created a slope raster by using the function terrain implemented
in the R package raster (Hijmans and van Etten 2012). We hypothesized
that higher values of slope represented regions of reduced gene flow. (iii)
For rivers and their main tributaries, we downloaded hydrography
shapefiles from HydroSHEDS (available at https://hydrosheds.org). Speci-
fically, we sought to account for river heterogeneity by using a raster based
on flow accumulation, which describe the amount of upstream area
draining into a downstream cell. The hydrography raster comprised major
rivers across the study area and their main tributaries. (iv) For vegetational
shifts, we used the vegetation dynamics model over the last 30,000 years
proposed by Costa et al. (2018). Using random forest classification of major
South America biomes coupled with palaeomodeling to infer biome
stability, they predicted how major vegetation types in South America
changed every 1000 years (resulting in 21 climate layers—from 21 kyr to
1 kyr). Because N. brasiliensis occurs in a savanna-like vegetation, we

classified open areas as enhancers of gene flow and the other vegetations
representing areas of reduced gene flow. The last environmental predictor
(i.e., environmental niche suitability over the last glacial maximum) is
described in detail in the next section.

Environmental niche modeling
We used environmental niche modeling (ENM) to predict areas of
suitability for N. brasilensis (fifth landscape predictor). Occurrence data
were comprised of localities with genomic data (9 localities) and additional
record points without genomic information. For the latter, we obtained 30
independent geographic distribution records from the literature and the
Herpetological Collection, University of Brasília (CHUNB). We used the R
package spThin (Aiello-Lammens et al. 2015) to filter geographic
occurrences at a geographic distance of 30 km to avoid sampling bias.
To create ENMs, we downloaded environmental predictors from the

WorldClim database (available at http://www.wordclim.org) at a spatial
resolution of 2.5 arc-minutes (Hijmans et al. 2005). They comprised 19
environmental variables that are related to patterns of precipitation and
temperature. Next, we used the variance inflation factor to detect
multicollinearity among environmental variables and kept only non-
correlated variables. After this analysis the following variables were
retained: mean diurnal range (BIO2), isothermality (BIO3), temperature
seasonality (BIO4), mean temperature of wettest quarter (BIO8), mean
temperature of warmest quarter (BIO10), precipitation of wettest month
(BIO13), precipitation of driest month (BIO14), precipitation seasonality
(BIO15), precipitation of warmest quarter (BIO18), precipitation of coldest
quarter (BIO19).
ENMs were created using the maximum entropy algorithm MaxEnt

(Phillips et al. 2006). To tune and evaluate ENMs models, we first selected
10,000 random background points and then chose one of the six feature
classes combinations (L, H, LQ, LQH, LQHP, and LQHPT; L = linear, H =
hinge; Q = quadratic, P = product; T = threshold) based on AIC values
using the functions randomPoints and ENMevaluate, respectively, imple-
mented in the R package ENMeval (Muscarella et al. 2014). The area under
the curve was used to assess model performance. After constructing ENMs,
we used the best fit model to project habitat suitability to seven time slices
through the last 21 kyr: last glacial maximum (ca. 21 kyr), Heinrich Stadial 1
(17.0–14.7 kyr), Bølling-Allerød (14.7–12.9 kyr), Younger Dryas Stadial
(12.9–11.7 kyr), early-Holocene, Greenlandian (11.7–8.326 kyr), mid-Holo-
cene, Northgrippian (8.326–4.2 kyr), and late-Holocene, Meghalayan
(4.2–0.3 kyr). All these historical environmental layers were downloaded
from PaleoClim (available at http://www.paleoclim.org; Brown et al. 2018).

Inferring landscape effects via optimized IBR models
We inferred the role of landscape features on gene flow using the recently
developed R package Radish (Peterman and Pope 2021; https://
github.com/nspope/radish). Radish approximates the likelihood of the
genotype data conditional on an IBR model through regression of genetic
distances onto resistance distances, with a correlation structure designed
to account for the dyadic nature of pairwise measurements (Clarke et al.
2002). Radish optimizes resistance distance as a parameterized function of
spatial covariates (in raster form): in particular, geographic distance, rivers,
slope, habitat shifts, and environmental niche suitability. It then finds the
maximum likelihood estimates of the weights associated with each spatial
covariate, by profiling out nuisance parameters associated with the
measurement model (i.e., the dyadic regression). We used our empirical
dataset to calculate a genetic distance metric (FST) among all demes using
the R package BEDASSLE (Bradburd et al. 2013). Next, we used Radish to
perform model selection and select the best model based on the lowest
Akaike Information Criterion (AIC) for the same set of twelve models
described above. MLPE was used rather than NMLPE because genetic
dissimilarity was measured between populations, rather than between
individuals nested within populations. For habitat shifts and environmental
niche suitability, we used a single raster that represented the overall
stability over the last 21 kyr. We used such a map because time slices do
not represent independent hypotheses.

Exploring machine learning in landscape genetics
Recently, Schrider and Kern (2018) promoted the incorporation of
supervised machine learning (SML) techniques into evolutionary genetics.
SML is a subfield of artificial intelligence concerned with training a
predictive model from a pre-classified dataset (i.e., a dataset where the true
label is known for all records). Similar to other spatial disciplines such as
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biogeography or phylogeography, landscape genetics is a historical
discipline in the sense that the inferences that the researcher seeks to
make are derived from analyses that cannot be experimentally replicated.
Theory predicts that the interaction of molecular processes (e.g.,
Mendelian segregation, recombination, and point mutation) with demo-
graphic (e.g., population size change) and evolutionary (e.g., gene flow,
selection) processes generate complex patterns of contemporary genetic
polymorphism. Since these processes can be modeled effectively (Hudson
2002), simulation is a feasible means to circumvent the lack of
experimental replication, allowing researchers to create realistically labeled
datasets using robust and flexible simulation routines (e.g., Haller and
Messer 2019; Landguth and Cushman 2010).
Simulation based approaches such as approximate Bayesian computa-

tion (ABC) have long been used in evolutionary genetics. The standard
approach to ABC simulates a prior distribution under a specified model of
demographic history, calculates summary statistics from each simulated
dataset, and retains the small portion of the prior that closely match the
summary statistics from the empirical data. This posterior distribution can
be used to estimate parameters (e.g., Pritchard et al. 1999) or, if prior
distributions are simulated under multiple demographic models, to
calculate the posterior probability of a given model (e.g., Fagundes et al.
2007). Similarly, preclassified datasets can be created for SML using
coalescent simulations under different landscape models. Rather than
relying on statistics such as FST that summarize the data, an algorithm (e.g.,
random forest, support vector machine, artificial neural network) is used to
train a predictive model by learning important features from the simulated
datasets. Finally, the predictive model is used to calculate the relative
probability of the set of the simulated models given the empirical dataset.
SML has some potential advantages over ABC, for example it may be less
prone to the curse of dimensionality (but see Pudlo et al. 2016) and may
require fewer simulations because it does not include a rejection step
(Schrider and Kern 2018).
Among the various SML analytical techniques, convolutional neural

networks (CNNs) have been recently applied to several biological
questions, ranging from detecting natural selection (Flagel et al. 2019;
Torada et al. 2019) and reconstructing phylogenetic and phylogeographic
history (Suvorov et al. 2020; Fonseca et al. 2021) to song annotation and
individual recognition (Ferreira et al. 2020). CNNs are a class of artificial
neural networks widely used to analyze visual images. Importantly,
different from other approaches, CNNs allow the inference of what
landscape features have driven genetic differentiation directly from the
DNA alignment, containing all the genetic variation from sampled
individuals across the study area. CNNs eliminate the necessity of
calculating genetic summary statistics, as demonstrated by Flagel et al.
(2019). Therefore, CNNs enable alternative processes that potentially
influence contemporary genetic patterns to be directly compared.

Landscape model selection using convolutional neural
network (CNN)
We used a CNN to calculate the relative probability of twelve spatially
explicit models given the empirical dataset. Each model corresponded to a
unique combination of landscape predictors (Table 1): isolation by distance:
model 1 – geographic distance; isolation by resistance: model 2 – slope;
model 3 – rivers; model 4 – habitat shifts; model 5 – environmental niche
suitability; model 6 – slope and rivers; model 7 – slope and habitat shifts;
model 8 – slope and environmental niche suitability; model 9 – rivers and
habitat shifts; model 10 – rivers and environmental niche suitability; model
11 – slope, rivers, and habitat shifts; model 12 – slope, rivers, and
environmental niche suitability. We did not include habitat shifts and
environmental niche suitability in the same model because they were built
using the same set of environmental predictors, making them non-

independent hypotheses. Because IBD is a special case of IBR, geographic
distance is implicitly incorporated in IBR models.
We used Fastsimcoal2 (Excoffier et al. 2013) to simulate datasets for each

model. We created customized models that mirrored our empirical dataset
regarding the number of SNPs, localities, and individuals per locality. We
simulated a total of 2500 data examples under each model. Simulations
were performed under an island model in which an ancestral population
split into 39 demes 21,000 years ago, representing the total number of
localities and the oldest landscape layer, respectively. We sampled a value
for ancestral population size from a uniform distribution of 20,000–50,000
haploid individuals for each simulation. Population sizes of each individual
deme were sampled from a uniform distribution with minimum and
maximum values set to 5 and 100, respectively. We simulated a total of
4364 SNPs per individual, which is the number of SNPs per individual in the
empirical dataset.
For each simulated data example, a migration matrix representing the

expected amount of the gene flow was calculated for each landscape
hypothesis. The simulations included localities with and without genetic
data, with the latter included to account for their impact on the genetic
variation in sampled localities and to create a more continuous
migration model. However, during the simulation procedure, we only
sampled SNPs from localities with genomic data. To create the migration
matrix, we first sampled a value of landscape effect for each landscape
feature of a given model, ranging from 2 to 5, using a uniform
distribution. Based on preliminary runs, these values represent low to
high landscape effect. Next, we multiplied each pixel in the landscape
raster by the landscape effect. If a model included two or more layers, we
summed them to create a unique landscape layer, as recently
recommended by Peterman and Pope (2021). We used this composite
layer to calculate the least-cost path (i.e., resistance distance) among all
points using the costDistance function implemented in the R package
gdistance (van Etten 2017). Next, we converted the resultant resistance
matrix to a migration matrix using the equation (1/x)3, where x is the
resistance distance between two geographic localities. We used such an
equation because we expected that migration among demes decreases
exponentially as resistance distance increases due to the limited
dispersal capacity of lizards. These transformations were selected
because they were necessary to produce simulated datasets that
matched the empirical data in aspects such as the number of SNPs
and population genetic structure. Our assumption throughout was to
utilize the information that we could quantify (e.g., landscape resistance,
genetic variation, population structure) to simulate data that matched
the observed data as closely as possible. Simulations were compared to
the observe data using principal components analysis (PCA). In
preliminary runs, we raised the resistance matrix to a second power,
however, many simulated datasets had no genetic structure, likely due to
the high migration rate. Lastly, because there is no available information
about the dispersal ability of the focal species in the landscape, we
created a parameter to account for this uncertainty. We sampled this
parameter from a uniform distribution (minimum: 0.1 and maximum: 0.3)
and used it to multiply the migration matrix. In models containing the
vegetation shifts or environmental niche suitability hypothesis, we
repeated this step for each of the layers and updated each migration
matrix based on their historical period in the simulations.
Finally, we converted the genetic alignment of each simulated dataset

into a biallelic matrix, with rows and columns representing individuals and
individual SNPs, respectively. The major allele was labeled as “0” and the
minor allele as “1” and then, this matrix was converted into a black and
white image with each pixel corresponding to a SNP. Finally, columns
(representing SNPs) were sorted from higher to lower allele frequency and
rows (representing individuals) were organized from deme 1 to deme 9
(numbers in Fig. 1).

Table 1. Results from AMOVA showing the variance within and between demes and the population structure recovered by sNMF.

Source df Source of variaton Sum of squares Mean square % variation explained

Demes 8 Within demes 29,625.79 3703.22 35.1

43 Between demes 15,038.02 349.72 64.9%

51 Total 44,663.8 875.76 100%

sNMF 4 Within demes 26,088.98 6522.21 38.4%

47 Between demes 18,574.93 395.21 61.6%

51 Total 44,663.81 875.76 100%
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We built all CNNs with the Keras python library (https://keras.io) using
the following two-dimension architecture (Fig. 2): convolution layer
(kernel= 3 × 1), a two-dimensional maximum pooling layer
(kernel= 3 × 1), a two-dimensional convolution layer (kernel= 3 × 1), and
a two-dimensional maximum pooling layer (kernel= 3 × 1). Then, the
output layer from the last pooling was flattened and fully connected to a
layer with 100 neurons, followed by another with 40 neurons, and an
output layer with twelve neurons – each neuron on the last layer
corresponded to a different model. We used the rectified linear unit
activation function (ReLU) for all layers, except for the last one in which we
implemented a softmax function. The softmax function is a generalization
of the logistic function useful for multiclass prediction. CNN was compiled
using the Adam optimization procedure, a categorical cross-entropy loss
function, and a mini-batch size of 100 and then run for ten epochs. We
used 80% (24,000 data examples; 2000 data examples per model) of the
simulated datasets for training the model and the remaining 20% (6000
data examples; 500 data examples per model) to evaluate model accuracy.
Finally, the trained model was used to predict the empirical dataset. For a
more detailed information on CNNs and deep learning, we recommend
Lecun, et al. (2015) and Flagel et al. (2019).
To evaluate model accuracy under each model, we created a confusion

matrix and calculated precision [TP/(TP+ FP); where TP = true positive and
FP = false positive] and recall [TP/(TP+ FN); where TP = true positive and
FN = false negative] values. We evaluated the calibration of the softmax
function by computing the absolute output probability of each simulation
on each model on the test dataset and assigned each value into five
classes (0%–20%, 20%–40%, 40%–60%, 60%–80%, 80%–100%) because a
well-calibrated model should have the probability associated with the
predicted label proportional to the training dataset (Guo et al. 2017).
Finally, we simulated an additional 2500 data examples under the best
model and calculated FST among all localities. Then we used a PCA to
summarize the genetic variation in the simulated datasets to ensure that
each model produced a range of genetic data that contained the variation
observed in the empirical dataset.
The analyses described in the above paragraphs are intended to be

complementary, and we anticipate that inferences about the focal system
will be improved by interpreting the results from a given analysis in the
context provided by other results. For example, results from the
environmental modeling will inform the analyses that have been designed
to detect landscape effects, as will FST calculations and genetic dissimilarity
(Fig. 3).

Assessing potential bias on study design
Because one potential limitation in our study was that most of our samples
came from the western distribution of N. brasiliensis, we evaluated how the
number of demes and sequences influence the performance of the CNN.
To assess how this bias affected our predictive model, we re-simulated
datasets for each of the twelve landscape models. Simulations were
performed using the same priors and conditions as described above. We

built simulated datasets to assess the effect of (i) genetic and (ii)
geographic sampling and their interaction. First, we used the same number
of demes with genetic information (i.e., nine localities) as observed in the
empirical dataset and applied two genetic sampling strategies: 2 and 20
sequences within each deme, representing 1 and 10 individuals,
respectively. Next, instead of sampling genetic information for only nine
demes, we gathered genetic information for all the 39 demes under the
same two genetic sampling strategies (i.e., 1 and 10 individuals). We
assessed model accuracy under each model on each scheme using a
combination of confusion matrix, precision, recall, and model calibration.
Importantly, we compared the accuracy of these datasets with the
simulated dataset that mirrored our empirical data example (i.e., 9 localities
and an unbalanced genetic sampling). This experiment represents a
gradient of a highly desirable dataset (39 demes and 20 individuals/deme)
to lesser desirable datasets (39 demes and 1 individual/deme; 9 demes and
20 individuals/deme) to a very problematic dataset (9 localities and 1
individual/deme).

RESULTS
Genetic diversity and differentiation
Our final dataset contained a total of 4365 unlinked SNPs. The
overall values for expected (He) and observed heterozygosity (Ho)
were 0.09624 ± 0.145 and 0.07056 ± 0.05, respectively. Genetic
distance (FST) among localities varied from 0.08 to 0.75 (0.5 ± 0.14).
Plots of the genetic distance against each landscape feature are
shown in Fig. S2. AMOVA showed that there is more genetic
variance between demes and the populations recovered by sNMF
(Table 1; 64.9% and 61.6%, respectively) than within these
populations (Table 1; 35.1% and 38.4%, respectively). Pairwise
FSTs as calculated by BEDASSLE are shown in Table 2.

Genetic structure
The Mantel test showed that geographic distance is correlated
with genetic (P < 0.01; 999 permutations). The sNMF clustering
analysis supported five geographically structured populations
(Fig. 2). The plotted cross-entropy values indicated a valley at
K= 5, with lesser and greater values of K showing higher cross-
entropy values (Fig. S3). The bar plot depicting the ancestry

Fig. 2 Illustration of the architecture used in to build the CNN for
the analysis of simulated landscape data. From left to right, the
figure depicts the convolution, pooling, and flattening steps that are
used to transform the data into layers that can be analyzed via the
artificial neural network.

Fig. 3 Analytical workflow diagram. this schematic outlines the
sequential steps and data progression used in our study, with
directional arrows illustrating the flow and transformation of data at
each stage of the analysis.
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coefficient for K= 5 indicated some admixture among popula-
tions once the ancestry coefficient is shared between different
populations (Figs. 4 and 5). The cyan population is distributed in
an enclave of Seasonally Dry Tropical Forest. Green and purple
populations are found in low landscape in the Cerrado. Finally,
we found two populations that are more widespread in the
landscape (blue and orange populations; Fig. 4).
The migration surface estimated by EEMS showed evidence of

several regions of lower gene flow than expected by IBD (Fig. 4).
Overall, this surface supported the genetic structure recovered by
sNMF. For example, although localities from the orange popula-
tions are far apart, they are linked via a higher migration rate. In
contrast, the cyan population is disconnected from one of the
orange populations by a region of lower migration, albeit being
geographically close. Both sNMF and EEMS did not show any
visual concordance between population structure and physical
barriers.

Optimized IBR models
The maximum likelihood of the genotypic data conditional on the
IBR models was calculated using Radish. After calculating AIC,
model selection was conducted using optimized IBR models in the
set of twelve landscape scenarios (models 1–12). This procedure
recovered model 1 as the best model with the lowest AIC value
(AIC=−113.85; Table 3). Model 1 represented our null model of
isolation by distance (i.e., no effect of landscape on dispersal).
Although other models had ΔAIC scores lower than two (models 2,
3, and 5), they did not result in a substantial improvement in fit
relative to the null model (p > 0.05 using likelihood ratio tests).

Convolutional neural network
The simulation trained CNN recovered isolation by distance
(model 1) as the best fit model given the empirical dataset with
100% probability (Table 3). All other scenarios had a 0%
probability according to our predictive model. Our predictive

Table 2. Table reporting fixation indexes (FST) calculated using BEDASSLE for nine demes.

1 2 3 4 5 6 7 8 9

1 0 0.7807083 0.3579397 0.65438131 0.7816377 0.63948448 0.4810129 0.6354899 0.585507

2 0.7807083 0 0.3934924 0.67746453 0.4527906 0.65402307 0.5425239 0.7100498 0.6069379

3 0.3579397 0.3934924 0 0.30666951 0.2904241 0.33963419 0.4002934 0.4470513 0.4884074

4 0.6543813 0.6774645 0.3066695 0 0.631679 0.07997084 0.5178014 0.6098282 0.5744222

5 0.7816377 0.4527906 0.2904241 0.63167898 0 0.6147726 0.4702399 0.6343171 0.5704431

6 0.6394845 0.6540231 0.3396342 0.07997084 0.6147726 0 0.525684 0.6023262 0.5724203

7 0.4810129 0.5425239 0.4002934 0.51780138 0.4702399 0.52568397 0 0.3480316 0.4762887

8 0.6354899 0.7100498 0.4470513 0.60982823 0.6343171 0.60232615 0.3480316 0 0.5265446

9 0.585507 0.6069379 0.4884074 0.57442222 0.5704431 0.57242026 0.4762887 0.5265446 0

The numbers correspond to deme localities shown in Fig. 1.

Fig. 4 Map showing the result of the sNMF clustering analysis (colored circles) and the effective migration rates estimated using EEMS
(background color). Barplot represents the ancestry coefficient recovered in sNMF. In the background, migrates rates varies from lower (blue)
to higher (red). EEMS represent the mean migration rate across 8 independent runs.
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model reached high values of precision and recall (Table S1). The
trained CNN model had a high accuracy when predicting the test
dataset, with an overall accuracy of 89.5% (Fig. 5). Simulated
datasets under the best model produced summary statistics
consistent with our empirical dataset (e.g., Fig. S4). Also, the
calibration analysis showed that the predictive model is well-
calibrated and that individual probabilities are proportional to
training dataset accuracy (Fig. S5).

Assessing potential bias on study design
Because most of our samples were from the western Cerrado, we
built four additional CNNs models to assess the effect of the
number of demes and individuals within each deme, reflecting
potential bias on real datasets. Both the number of demes and the
number of sampled individuals within each deme play a role in
model accuracy. Simulating nine demes and sampling two
sequences from each deme resulted in poor model performance
in terms of overall accuracy (77.3%; Fig. S6) and precision and

recall (Table S1). Increasing the sampling strategy to 10 individuals
within deme while keeping the same nine demes drastically
increased the accuracy of the model. (91.1%; Fig. S7, Table S1). For
39 demes, both sampling strategies, two sequences or 20
sequences per deme (i.e., 1 or 10 individuals), recovered
satisfactory values of model performance (92% and 97.8%,
respectively; Figs. S8–S9, Table S1). The calibration of each
predictive model is presented in Figs. S10–S13 and showed that
only the model with nine demes and two sequences per deme
performed poorly. Based on these results, we conclude that our
sampling scheme is adequate to capture landscape variation and
produce a reliable inference, although we acknowledge that
additional sampling is likely to improve the analysis.

DISCUSSION
Simulation-based methods in evolutionary genetics attempt to
infer how historical processes acting across the landscape have

Fig. 5 Confusion matrix measuring the accuracy of the trained predictive model. Numbers represent percentages, which were calculated
based on 500 images for each model. Overall accuracy= 89.5%.

Table 3. Model probability values of the trained convolutional neural network (CNN) and AIC values for the optimized IBR models.

Model Landscape features CNN Optimized IBR models

Probability AIC ΔAIC wi

Model 1 Geographic distance 1 −113.9 0 0.252

Model 2 Slope 0 −111.9 1.92 0.097

Model 3 Rivers 0 −112.1 1.71 0.107

Model 4 Habitat shifts 0 −111.9 2 0.093

Model 5 Environmental niche suitability 0 −112.5 1.39 0.126

Model 6 Slope+ Rivers 0 −110.4 3.44 0.045

Model 7 Slope+Habitat shifts 0 −109.9 3.92 0.036

Model 8 Slope+ Environmental niche suitability 0 −111.7 2.16 0.086

Model 9 Rivers+Habitat shifts 0 −110.2 3.66 0.040

Model 10 Rivers+ Environmental niche suitability 0 −110.9 2.94 0.058

Model 11 Slope+ Rivers+Habitat shifts 0 −108.4 5.42 0.017

Model 12 Slope+ Rivers+ Environmental niche suitability 0 −110.3 3.55 0.043

The overall accuracy of the CNN model was 89.5%, The best model in each approach is highlight in bold.
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influenced extant genetic diversity (Knowles and Alvarado-Serrano
2010; Pelletier and Carstens 2016). While our investigation is
limited to some extent by its sampling, which potentially explains
curious results such as the higher FST values, the study design
facilitates the computationally complex analyses such as the CNN
used here. After reviewing briefly reviewing the history of the
region occupied by the focal species, we explore the potential
application of machine learning methods to landscape genetic
investigations.

Landscape effects on genetic structure and gene flow in
Norops brasiliensis
In any investigation into an empirical system, inferences are a
product of interpretation of the result given what is known about
the history of the region that the focal species occupies. The
Cerrado contains many features that have been implicated in
other investigations as important factors that influence intraspe-
cific genetic diversity. For example, several investigations have
demonstrated that river systems influence genetic variation (Funk
et al. 2007; Bartáková et al. 2015; Lanna et al. 2020), whether by
acting as allopatric barriers (Nazareno et al. 2017; Naka and
Brumfield 2018) or by facilitating gene flow (Thom et al. 2020;
Fonseca et al. 2021). Similarly, the topography of the Central Brazil
plateau, which was largely caused by erosion during the Neogene,
compartmentalized the Cerrado landscape and created younger
valleys characterized by more heterogeneous forest assemblages
between older plateaus, harboring savanna-like vegetation (Colli
2005; Werneck 2011). The varied topography has been imple-
mented as a cause of population genetic structure in other species
(Camurugi et al. 2021; Domingos et al. 2014; Giugliano et al. 2013;
Oliveira et al. 2018; Prado et al. 2012). Finally, Pleistocene climate
oscillations are a prominent driver of intraspecific diversification in
the Neotropics (Carnaval et al. 2009; Gehara et al. 2017) and have
been identified as a driver of genetic structure within other
species (Vasconcellos et al. 2019; Camurugi et al. 2021).
Our motivation for designing our SML approach to data analysis

was due in large part to our desire to infer the relative influence of
these features on genetic diversity in N. brasiliensis. However, few
of these features had a demonstrable effect in the SML results, for
reasons that may be related to how they were incorporated into
our models. Rivers were not recovered as an important landscape
feature that population genomics of N. brasiliensis. While rivers are
highly heterogeneous systems in evolutionary time, our models
assumed that they remained unchanged over the last few
thousands of years. We believe this is a reasonable assumption
for the Central Brazil plateau river drainages since large-scale river
rearrangement can take many thousands to millions of years to
occur (Mabesoone, 1994; Hoorn et al. 2010), but it does represent
a potential shortcoming of our model. We also did not identify
habitat shifts or niche suitability as factors that exerted a large
effect on genetic diversity in N. brasiliensis. Previously, Fonseca
et al. (2021) showed that conspicuous effective population size
expansions in N. brasiliensis occurred and hypothesized that these
were responses to Pleistocene climatic oscillations. Since ecologi-
cal niche models assume that species’ environmental preferences
are conserved through time and usually do not account for
adaptive processes, this result would either imply that demo-
graphic size changes were not a response to these oscillations or
that the environmental preferences in N. brasiliensis have
changed. It is possible that local adaptation and/or phenotypic
plasticity could potentially maintain a more stable range under a
less favorable climate, but these were also factors that were not
incorporated into our models.
Our population assignment analysis found evidence for five

geographically distributed populations (Figs. 2 and S3). Results
from the AMOVA indicate that most of the genetic variance is
partitioned among populations, while the EEMS analysis revealed
apparent regions of low gene flow. Furthermore, the population

structure observed in N. brasiliensis is similar to that found in other
species in the Cerrado (Prado et al. 2012; Santos et al. 2014;
Guarnizo et al. 2016). Taken in total, these results support an
inference that the varied topography of the Cerrado leads to
population genetic structure in the focal species. However, we did
not find evidence that landscape topography was the aspect of the
landscape that led to the genetic structure, as results from the
optimized IBR models and SNL analysis each demonstrated that
genetic structure in N. brasiliensis can be explained largely by
geographic distance. While our investigation, like that of.
Camurugi et al. (2021), used a spatial analysis to identify whether
slope has influenced patterns of gene flow, it may be that slope is
not an effective proxy of landscape topography. It remains the
case that some features of the landscape are difficult to model in a
manner that correspond to the particular life history character-
istics of the focal species.
Perhaps it shouldn’t be surprising that genetic variation in the

focal taxon is largely explained by geographic isolation. Isolation
by distance is an important phenomenon that has long been
recognized as a key influence on genetic variation (Wright 1943).
Recent global surveys have demonstrated that IBD is ubiquitous in
its influence across the tree of life (Sexton et al. 2014; Pelletier and
Carstens 2018). The fact that the Cerrado covers a large area in the
Central Brazilian Plateau, in combination with the limited dispersal
capability of lizards, can likely explain the prevalence of IBD in N.
brasiliensis. It is possible that some combination of the strong
signal of IBD and the less than comprehensive sampling made it
difficult to detect any effect of slope, rivers, habitat shifts or,
environmental niche suitability in the genetic variation of N.
brasiliensis.

Model selection in N. brasiliensis
We evaluated models that incorporated features of the landscape
that may influence genetic diversity in our focal species so that we
could identify the feature(s) that exerted the greatest influence
following Anderson (2008). This approach, which is widely used in
phylogeographic research (Fagundes et al. 2007; Satler and
Carstens 2016; Smith et al. 2017), uses statistical model selection
to identify the model that has the highest probability given the
data. In our case, the IBD model (i.e., model 1) was found to have
the highest probability by both the IBR and the SML analyses.
Importantly, model selection can quantify the support for all
models given the data. For example, the results of the IBR analysis
indicate that model probabilities (wi) are spread across multiple
models to the extent that there isn’t a single landscape feature
that can account for the observed genet\ic data (Table 3). In
contrast, the SLM approach finds that the model which
corresponds to isolation by distance contains all the model
probability (Table 3). We are uncertain as to which of these results
we should favored. While it seems intuitive that many features of
the landscape should influence genetic variation within N.
brasiliensis (e.g., Fig. 6), it may be that these features largely
covary with geographic separation and that this covariance does
not influence the SML approach. By conducting landscape
analyses in a model selection framework we avoid subjective
interpretations of the results and, consequently, makes them less
prone to overinterpretation (Knowles and Maddison 2002) and
confirmation bias (Nickerson 1998).

Machine learning methods in landscape genetics
Landscape genetics has expanded its analytical toolkit to take
advantage of recent advances in genomic sequencing (e.g.,
Bradburd et al. 2018; Petkova et al. 2015). However, researchers
have not fully explored all potential analytical tools to tackle the
challenges posed by the massive size of genomic datasets.
Simulations coupled with machine learning have the potential to
incorporate salient features of the landscape into analytical
frameworks, allowing the simulation of customized datasets under
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different hypotheses that can resemble the details of any
empirical system, including the number of demes (sampled and
non-sampled), number of individuals per deme, and number of
SNPs. Models that represent hypotheses that are tailored to the
focal system can be implemented and tested to ensure their
suitability and sensitivity (Carstens et al. 2022). In this investiga-
tion, we demonstrate that CNN can be an efficient and accurate
tool for use in exploring potential landscape effects on genetic
variation.
One appealing aspect of the approach used here is how the

genomic data are summarized. The CNN uses a series of
transformations to convert an alignment of DNA sequence data
into an image that captures salient features of the genomic
variation (Flagel et al. 2019). In contrast to allele frequency spectra
(e.g., Gutenkunst et al. 2009) or summary statistics, representing
the data as an image allows the researcher to borrow the suite of
computational tools that has been developed for image proces-
sing, leading to an efficient evaluation of the genetic data. Of
course information can be lost when genetic data is reduced to
any summary statistic, even when dozens of summary statistics
are used in landscape genetics (Shirk et al. 2017). This loss of
information can complicate inference. For example, many
investigations have compared genetic distance metrics, such as
Wright’s F-statistics, to landscape features (Fig. 6). A casual
interpretation of this figure might suggest that each of these
factors has a comparable influence on genetic diversity within N.
brasiliensis. There is no perfect summary of genetic data, as each

statistic has inherent advantages and disadvantages. In practice,
researchers too often rely on historical inertia or arbitrary choices
of summary statistics for their investigation, although newer
methods address this by directly modeling allele frequencies (e.g.,
Vanhove and Launey 2023). Machine learning approaches can
thus provide a useful complement to the use of statistics to
summarize genetic variation.
One disadvantage of the CNN approach is that it can be

computationally demanding. For reference, it took from 30min to
7 h (models with habitat shifts and environmental niche suitability
were more computationally demanding because of the high
number of layers) to simulate 2500 images under each model in a
supercomputer using 40 cores in parallel. In contrast, the
optimized IBR models implemented in Radish took less than
15min to fit all the models on a Mac mini, 1.6 GHz Intel Core i5,
8 GB RAM. Importantly, once a CNN is trained it takes little
additional effort to explore questions related to sampling. Here we
explored the potential effects of limited sample sizes, a feature
that is an unfortunate reality for many empirical datasets due to
the high cost of collecting samples for widely distributed species
across complex landscapes. Even though our sampling was biased
towards the western distribution range of N. brasiliensis, the results
of our analysis assessing the potential bias in study design
indicated that our empirical samples encompassed a sufficient
degree of landscape variation to fit a predictive model.
While machine learning has been applied to a range of

questions (Flagel et al. 2019; Smith and Carstens 2020; Suvorov

Fig. 6 Plots showing relationship between genetic distance and landscape distances. Comparison of genetic distance, measured by
estimates of FST among demes, and five landscape features: (a) geographic distance, (b) rivers, (c) slope, (d) habitat stability, (e) niche stability.
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et al. 2020; Fonseca et al. 2021), these approaches have
tremendous potential for landscape genetics. For example,
Burbrink et al., (2021) used an artificial neural network to infer
how landscape and environmental features predicted the genetic
structure of North American rat snakes (Pantherophis obsoletus
complex). They showed that their predictive model was highly
accurate in predicting genetic distance (accuracy was greater than
90%). A complementary approach is implemented in the R
package ResistanceGA (Peterman 2018), which uses a genetic
algorithm to optimize resistance surfaces based on pairwise
genetic data and resistance distances. Pless et al. (2021)
implemented a random forest classified to map landscape
connectivity in the invasive mosquito Aedes aegypti (vector of
several diseases, including dengue and Zika) in North America.
Kittlein et al. (2021) provided another example when they trained
a CNN to predict local FST and mean allelic richness. Thom et al.
(2021) used a bidimensional stepping-stone model with artificial
neural network to show that populations in tropical mountains in
the Brazilian Atlantic Forest have higher rates of gene flow. In
related disciplines, ABC-RF is now routinely being used in historical
demographic studies (Pudlo et al. 2016; Smith et al. 2017; Smith
and Carstens 2020).

CONCLUSIONS
Our study showed that geographic distance is an important
predictor of genetic structure in N. brasiliensis. Using a novel CNN-
based approach, we could not detect the effects of slope, rivers,
habitat shifts, and environmental niche suitability on genetic
differentiation. Other results suggest that some of these features
may be important and highlight the need for additional
exploration of the most effective ways to incorporate machine
learning methods into landscape genetics.

DATA AVAILABILITY
All data and scripts are openly available at GitHub (https://github.com/
emanuelmfonseca/landscape-effects-neotropical-lizard).
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