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Genomic data and Artificial Intelligence (AI) models will start to
play an increasingly important role in conservation biology. In a
recent study, Wilder et al. (2023) analysed genomic data from 240
mammal species to predict their extinction risk categories in the
Red List of the International Union for Conservation of Nature
(IUCN). The study processed genomic data with a machine
learning model, thereby demonstrating the value of these data
for the conservation of biodiversity. Wilder et al. (2023) thus show
how reference genomes—and thus, genomic data more broadly
—could be used for initial, cost-effective extinction risk assess-
ments, accelerating progress made in the Red List.

THE VALUE OF GENOMIC DATA IN CONSERVATION
Wilder et al. (2023) found that the association between genomic
data and the Red List threat category is not particularly strong.
Threatened species in the Red List tend to have lower genetic
diversity than non-threatened species, but the relationship is weak
and variable across taxa (Brüniche-Olsen et al. 2021; Schmidt et al.
2023; Wilder et al. 2023). Similarly, genetic load and Red List
category also show a very weak or inconsistent relationship (van
der Valk et al. 2021; Dussex et al. 2023; Wilder et al. 2023). Thus,
the relationship between the information contained in genomic
data and the conservation status is unclear, particularly in
recovered species (Femerling et al. 2022; Jackson et al. 2022).
The question is—what is the value of genomics if these data are
so poorly aligned with extinction risk as assessed by the Red List?
Genomic data are valuable precisely because their association

with the Red List assessment is so weak. Genomic data can provide
insights into aspects of extinction risk that are not reflected in the
Red List. The Red List employs four criteria to assess the extinction
risk of species based on a number of associated symptoms: rapid
reduction in population size (criterion A); small range (area of
occupancy or extent of occurrence) (criterion B); small or declining
population (criterion C); very small or restricted population (criterion
D), (IUCN 2012; Rodrigues et al. 2006). In addition, a very small
number of species are listed based on criterion E, which relies on
quantitative analysis of extinction risk (e.g., a population viability
analysis using Vortex, Lacy and Pollak 2021). Clearly, there is an
association between these parameters and genomic data, and
conservation efforts and assessments can be enhanced using
information obtained from genomic data (Paez et al. 2022; Formenti
et al. 2022; Theissinger et al. 2023). A decline in population size
increases the extinction risk by reducing genetic diversity, and by
elevating the realised load of harmful mutations (Mathur and
DeWoody 2021; Bertorelle et al. 2022). Small population size also

renders species more susceptible to stochastic events and multiple
Allee effects (Berec et al. 2007). However, there is a time lag
between population decline and its impact on the genome, a
phenomenon known as the ‘drift debt’ (Pinto et al. 2023).
Nucleotide diversity is lost only slowly, and it takes many
generations of drift to see this decline in genomic data (Brüniche-
Olsen et al. 2021; Jackson et al. 2022; Pinto et al. 2023).
Given that the long-term effective population size (Ne) is a

function of nucleotide diversity, the Ne drops very slowly during
population size decline as well. In turn, this raises the ratio
between the Ne and the census population size (Nc). Such elevated
Ne/Nc ratios have been reported in many threatened species
(Wilder et al. 2023). Due to the slowness of genetic drift, species
with Ne > Nc are set to continue to lose genetic diversity, which
undermines their long-term viability. Even if the Nc largely
recovers, such species may remain at a high risk of extinction
due to continued genomic erosion and ‘drift debt’ (Jackson et al.
2022; Pinto et al. 2023). However, species that no longer meet the
criteria under which they were Red Listed qualify for downlisting
to a lower category of risk.
Using the number of mature individuals, the Nc, or the increase

in Nc (criteria A, C or D) in the assessment of extinction risk might
be troublesome, especially for species that are receiving intense
conservation support. Conservation efforts such as supplementary
feeding are often instrumental in the demographic recovery of
threatened populations (Ewen et al. 2015). However, they also
relax natural selection and may help sketch an overly optimistic
picture of individual fitness and population viability. In addition, in
a recovering population with rapidly expanding population size,
the competition between individuals relaxes, thereby reducing the
efficacy of soft selection. Individuals that otherwise would have
succumbed by natural selection and competition over limited
resources might now be able to contribute to the gene pool of
future generations. These conservation actions may thereby hide,
or possibly even exacerbate, genomic erosion and its long-term
threats. Consequently, a species for which conservation efforts
have resulted in downlisting in the Red List may still be at risk of
longer-term extinction owing to genomic erosion (Jackson et al.
2022). This can be of particular concern if the downlisting also
leads to a reduction in conservation action. Conservation efforts
and priorities should therefore be informed by more than simply
the Red List category, as also stated in the IUCN Red List
categories and criteria (IUCN 2012). In particular, decisions to
reduce conservation management of downlisted species should
be informed by population viability analyses that take genomic
data into account.
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Recently, the IUCN introduced Green Status of Species assess-
ments as part of the Red List process, to complement the assessment
of extinction risk. These assessments measure the potential of
species to recover and their dependency on conservation (Grace
et al. 2021). Genomic data and computer modelling approaches are
exceptionally valuable in such assessments. Hence, there is now a
real window of opportunity to also include genomic analyses in the
IUCN’s evaluation of the recovery potential of species.

THE VALUE OF COMPUTER MODELLING
Identifying the longer-term risks to population viability, e.g., over the
next 100 years or 10 generations, is the real added value of genomic
data (Formenti et al. 2022; Theissinger et al. 2023). But how can we
use genomic statistics (e.g., nucleotide diversity) given that these
metrics experience an evolutionary time-lag or ‘drift debt’ them-
selves? This is where computer simulations and AI models come into

play. However, rather than setting the Red List category of species as
the target value (as in Wilder et al. 2023), the AI model needs to be
trained to predict the long-term extinction risk and recovery
potential of species 100 years or 10 generations into the future
(whichever is longest). These target values and training data can be
generated by forward-in-time, individual-based models such as SLiM
(Haller and Messer 2019) (Fig. 1). Similar to the population viability
analysis carried out by the software Vortex (Lacy and Pollak 2021),
SLiM can be parameterised with life history and ecological data of
the focal species, and it can simulate the impacts of conservation
action on population viability many generations into the future
(Bertorelle et al. 2022; Dussex et al. 2021; Jackson et al. 2022;
Femerling et al. 2022).
Unlike Vortex, however, this new generation of computer

simulation models can also be parameterised with data of entire
chromosomes (i.e., nucleotides, distribution of exons, introns and
intergenic regions, the linkage map, etc.) (Haller and Messer 2019).
Forward-in-time computer models can also simulate the dynamic

Fig. 1 Artificial Intelligence (AI) models such as Deep Neural Networks can be trained with different data sources to predict the
extinction risk and recovery potential of species. First, genomic data, Red List data, and other biological data are collected for species,
including ecological model species, up- and downlisted species, extinct species, and ‘hypothetical’ species (boxes 1, 2 and 3). Next, forecasts
are generated by forward-in-time computer models such as SLiM, and these synthetic data can be used as training and test data for the AI
model (box 4). The SLiM model is parameterised with relevant data of the species, and its genomic data are analysed to reconstruct the
ancestral demography. For ‘hypothetical’ species, a wide range of life history trait values, biological values, and demographic trajectories need
to be examined. SLiM simulates the present-day (and historic) population, and these data are compared to the empirical genomic data of
current samples (and historic samples, if available) to validate the model predictions. If the simulated data match the empirical data, the SLiM
model can be employed to also simulate the 100 year or 10 generation forecasts. (If the match is poor, the SLiM model needs to be improved).
The AI model is trained with these simulated data, using the SLiM forecasts as target values for the AI model to predict. The AI model is tested
with unseen simulated data, and with empirical data of species with known conservation outcomes (e.g., extinct or recovered). Finally, once
trained and tested, the AI model can assess the conservation status of species using only the genomic data, Red List data, and other biological
data (boxes 1, 2 and 3). Ultimately, AI-informed conservation genomic assessments could complement the IUCN Red List and improve the
Green Status assessments by providing a longer-term perspective of population viability.
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changes in genetic diversity from the ancestral population to the
present and future populations. This is insightful because that
determines the size and composition of the genetic load, i.e., the
proportion of masked load versus realised load (Bertorelle et al.
2022), the distributions of selection coefficients and dominance
coefficients, and the frequency of harmful variants (Kyriazis et al.
2023). Furthermore, spatially explicit SLiM models can simulate the
impact of habitat decline and fragmentation on genomic erosion
and population viability (Pinto et al. 2023).
However, conducting such computationally intensive simulations,

and collecting detailed ecological and environmental data for all
>150,000 species in the Red List is simply not feasible. Furthermore,
for most species we initially only possess single reference genomes.
Statistics derived from a reference genome (e.g., nucleotide
diversity) are more prone to the drift debt than other statistics that
can only be calculated using population genomic data (e.g., the
number of segregating sites or allelic richness). In addition,
population genomic samples are required to infer the recent
demographic trajectory (Santiago et al. 2020), which is critical when
modelling the precise scenario of population decline. Hence,
valuable insights can be gained first by studying a much smaller
number of ecological model species for which we do possess
extensive ecological and genomic data. These approaches become
especially insightful if historic (museum) samples are available to
study temporal trends (e.g., Dussex et al. 2021; Hogg et al. 2022;
Jackson et al. 2022; Femerling et al. 2022). The empirical data of
these species can then be used to simulate, hindcast, and forecast
population viability to build realistic computer simulation models,
and to validate their predictions (Fig. 1).

TRAINING AND TESTING THE AI MODEL
Analysing a relatively small number of ecological model species
might not be enough to generate sufficient training data and test
data to develop an AI model. These simulations need to be
expanded with extinction risk predictions of ‘hypothetical’ species
that cover a wide range of parameters of all possible life histories,
ecologies, and conservation scenarios. The forward-in-time SLiM
simulations of these hypothetical species can help train the AI
model so that it can interpolate (rather than extrapolate) from
these additional simulated data (Fig. 1).
Once trained, the AI model should be further validated and tested

using empirical data of species with reference genomes or
resequencing data, ecological data, and known conservation
outcomes. Such validation tests should also employ hindcasting to
assess model predictions about species that went extinct, such as
the passenger pigeon (Murray et al. 2017), mammoth (Díez-del-
Molino et al. 2023), and woolly rhinoceros (Lord et al. 2020). In
addition, there are dozens of species classified as extinct in the wild
that possess viable captive populations (Smith et al. 2023), and these
can provide important test data to validate AI model predictions.
Conversely, there are hundreds of mammals and birds that have
been downlisted in the Red List, some of which represent
conservation success stories of species that recovered. Furthermore,
the IUCN Red List documents population size trend data, and it
identifies changes in extinction risk categories resulting from
genuine improvement or deterioration in status, which can help
test AI model predictions. If a trained AI model would be able to
correctly predict the extinction or recovery of these species, it could
also significantly improve the accuracy of long-term extinction risk
assessments of other species with genomic data (Fig. 1).
Extinction risk assessments of such hypothetical species can

also test whether the five Red List criteria might underestimate the
short-term extinction risk, i.e. the risk over ten years or three
generations, whichever is longer (IUCN 2012). Such simulations
would help to illustrate the added value of genomic data.
Forward-in-time computer models such as SLiM could simulate
different conservation scenarios that threaten population viability,

and these simulated populations could be assessed using criteria
A to D of the Red List (IUCN 2012). The simulated populations
could also be subjected to a population viability analysis using
Vortex to test whether without genomic data, criterion E in the
Red List is able to assess the extinction risk.

FUTURE CHALLENGES
A big challenge in conservation will be training AI models to
assess the long-term viability of species using genomic character-
istics (e.g., nucleotide diversity, genetic load, runs of homozygos-
ity, etc.), in combination with their life history, taxonomic,
ecological, environmental, and distribution data (Fig. 1). A vast
amount of species-specific data are recorded in Open Access
databases such as the Global Biodiversity Information Facility
(https://www.gbif.org/), INSPIRE GeoPortal (https://inspire-
geoportal.ec.europa.eu/), PanTHERIA (https://esapubs.org/archive/
ecol/E090/184/), BirdLife International Data Zone (https://
datazone.birdlife.org/), and the IUCN Red List (e.g., https://
www.iucnredlist.org/resources/spatial-data-download). Unfortu-
nately, these biodiversity data tend to be taxonomically biased
(Cowie et al. 2022), which risks training and biasing AI models with
incomplete data, potentially resulting in overfitting.
Integrating diverse data types with high dimensionality and

sparsity is complex. Deep Neural Networks (DNN) can provide
misleading predictions if the model is overfitted, something that
could occur if many factors are included in the input layer as this
may lead to overparametrized models. Such overfitting causes the
model to only memorise the training data with limited generalisa-
bility, and solving this issue requires model simplification (Bejani and
Ghatee 2021). Therefore, it is vital to address this issue during each
stage of the AI model development. First, the DNN architecture is
important, including parameter sharing mechanisms (e.g. convolu-
tion neural networks). Secondly, various feature engineering
techniques can be utilised to reduce the complexity of the input
data. For instance, dimension reduction techniques like those by
Wilder et al. (2023) can facilitate joint analyses by mapping data to a
lower dimensional space without significant information loss.
Furthermore, feature importance ranking in Deep Learning helps
to identify the most important risk factors that negatively impact
population viability. This might not only help with the issue of
overfitting, but it could also inform more directed conservation
actions. In addition, training data need to be unbiased and span the
complete range of possible variation and parameter settings. Finally,
various regularisation methods, which could shrink certain model
parameters towards zero (see, e.g., Goodfellow et al. 2016), should
be explored during the training stage to simplify the model and
increase its interpretability.

IN CONCLUSION
The Red List assesses the extinction risk of populations and species
over the next ten years or three generations, whichever is longer. As
an evolutionary geneticist, I fear that the Red List is not looking far
enough into the future, and that the real long-term threat posed by
genomic erosion is insufficiently recognised in conservation
planning (van Oosterhout 2020). AI models and genomic data are
going to play an increasingly important role in conservation science,
helping us to assess threats that only become visible 100 years or 10
generations into the future. If we manage to implement this new
technology and data correctly, many species could be saved from
extinction and assisted in their recovery, resulting in long-term
viable populations. Although there are many new challenges ahead
implementing AI models and genomic data, this is going to be an
important and exciting research area in the next decades. DNA
language models have emerged as powerful tools for processing
unannotated genomic data to make molecular phenotype predic-
tions (e.g., predicting splice sites, promoter regions, etc.) (Talukder
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et al. 2021). Conservation scientists will need to develop and train AI
models to utilise genomic data to aid conservation. Genomic data
would then not only serve as a temporary substitute for ecological
data, but they would genuinely complement the Red List by
providing a longer-term assessment of the extinction risk. AI models
could then also enhance the IUCN’s Green Status of Species to
establish the recovery potential and future conservation needs of
species. AI-informed conservation genomics would constitute a
genuine step change, which is critically needed given the long-term
consequences of the biodiversity crisis that is challenging our
planet today.
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