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Gene expression and alternative splicing contribute to adaptive
divergence of ecotypes
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Regulation of gene expression is a critical link between genotype and phenotype explaining substantial heritable variation within
species. However, we are only beginning to understand the ways that specific gene regulatory mechanisms contribute to adaptive
divergence of populations. In plants, the post-transcriptional regulatory mechanism of alternative splicing (AS) plays an important
role in both development and abiotic stress response, making it a compelling potential target of natural selection. AS allows
organisms to generate multiple different transcripts/proteins from a single gene and thus may provide a source of evolutionary
novelty. Here, we examine whether variation in alternative splicing and gene expression levels might contribute to adaptation and
incipient speciation of dune-adapted prairie sunflowers in Great Sand Dunes National Park, Colorado, USA. We conducted a
common garden experiment to assess transcriptomic variation among ecotypes and analyzed differential expression, differential
splicing, and gene coexpression. We show that individual genes are strongly differentiated for both transcript level and alternative
isoform proportions, even when grown in a common environment, and that gene coexpression networks are disrupted between
ecotypes. Furthermore, we examined how genome-wide patterns of sequence divergence correspond to divergence in transcript
levels and isoform proportions and find evidence for both cis and trans-regulation. Together, our results emphasize that alternative
splicing has been an underappreciated mechanism providing source material for natural selection at short evolutionary time scales.
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INTRODUCTION
Understanding the genetic basis of adaptation is a key goal of
evolutionary biology. Regulation of gene expression is the
fundamental link between genotype, phenotype, and the
environment and is, therefore, a crucial component of this puzzle.
Regulatory variation is known to be a major source for adaptive
evolution (Jones et al. 2012; Martin and Orgogozo 2013; Signor
and Nuzhdin 2018; Whitehead and Crawford 2006). However,
research on this topic has primarily focused on gene expression
level, i.e., variation in transcript abundance. The role of other gene
regulatory processes is comparatively understudied (Singh and
Ahi 2022; Verta and Jacobs 2022).
Alternative splicing of pre-mRNA (AS) is one such post-

transcriptional regulatory process—conserved among eukaryotes
—that produces multiple unique mRNA transcripts (i.e., isoforms)
from a single gene, thus enhancing transcriptome and proteome
diversity (Petrillo 2023). This occurs via a dynamic ribonucleopro-
tein complex called the spliceosome. AS can generate isoforms
with novel functions, modulate transcript levels/turnover (Göhring
et al. 2014; Kalyna et al. 2012), or have other regulatory impacts via
truncated proteins (Filichkin and Mockler 2012; J. Liu et al. 2013).
These outcomes make AS a core regulatory mechanism capable of
generating diverse phenotypes (Bush et al. 2017; Wright et al.
2022).
In plants, alternative splicing contributes to multiple develop-

mental processes, in particular, seed maturation, seed dormancy/

germination, seedling establishment, and transition to flowering
(Posé et al. 2013; Sugliani et al. 2010; Szakonyi and Duque 2018;
Tognacca et al. 2022). AS is also known to underlie plastic
responses of plants to environmental stressors including drought,
heat, cold, and salt (Laloum et al. 2018; Tognacca et al. 2022).
Notably, the function of AS in stress response appears to be more
significant in plants than in animals (Martín et al. 2021).
Beyond developmental and environmental cues, alternative

splicing (and gene expression) have a heritable component that
allows for direct contribution to adaptation and divergence.
Variation in gene expression level and/or alternative splicing
among populations can be due to sequence variation within or
nearby that gene (cis regulation, e.g., promoters, enhancers,
suppressors, splice sites) or variation in distantly located genes
whose products diffuse to influence transcription/splicing (trans
regulation, e.g., transcription and splicing factors) (Hill et al. 2021;
Wang and Burge 2008).
Recently, evidence for the contribution of AS to adaptation and

population divergence has emerged from fish (Howes et al. 2017;
Jacobs and Elmer 2021; Singh et al. 2017), insects (Y. Huang et al.
2021), and mammals (Mallarino et al. 2017), among others. In
plants, studies that examine differences in AS between popula-
tions or genotypes of the same species have mainly been limited
to crops, comparing different domesticated varieties or domes-
ticated versus wild populations (Lin et al. 2020; Ner-Gaon et al.
2007; Smith et al. 2018, 2021; Thatcher et al. 2014; Vitulo et al.
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2014; Zhang and Xiao 2018) or within model organisms (Khokhar
et al. 2019; Lutz et al. 2015; X. Wang et al. 2019). Therefore,
although such studies have shown alternative splicing to be
important, we are only beginning to understand how it could be
involved in adaptation and divergence under natural selection
rather than artificial selection, particularly in plants.
To what extent does genetically based variation in alternative

splicing and gene expression level contribute to local adaptation
and population divergence? We investigated this question using
common garden transcriptomic data from a pair of prairie
sunflower (Helianthus petiolaris fallax) ecotypes originating from
Great Sand Dunes National Park (GSD) in southern Colorado, USA.
These well-studied ‘dune’ and ‘non-dune’ ecotypes represent an
example of local adaptation, in this case, to an extreme sand dune
environment (Andrew et al. 2012, 2013; Andrew and Rieseberg
2013). GSD is home to the tallest sand dunes in North America,
which are marked by shifting sands, low nutrient availability, and
intense exposure (Andrew et al. 2012). Helianthus petiolaris is
among just a few plant species that live in the dunefield, and the
divergence of dune and non-dune ecotypes is estimated to have
occurred in the last 10,000 years (Andrew et al. 2013).
The dune and non-dune populations are in close proximity to

each other, exchanging migrants and genes, but they are
differentiated genetically and phenotypically due to selection,
with low (but non-zero) survival when seeds are moved between
habitats (Andrew et al. 2012; Andrew and Rieseberg 2013; Goebl
et al. 2022; Ostevik et al. 2016). One of the most divergent traits
between the GSD ecotypes is seed size: the dune type has seeds
that are more than twice as large as the non-dune type, on
average. The latter has much higher fecundity, producing many
small seeds in comparison, and these differences are maintained
in a common garden (Ostevik et al. 2016; Todesco et al. 2020).
Larger seeds have previously been shown to have higher
emergence rates both on and off the dunes (Ostevik et al.
2016). Increased seed size is thus believed to be an adaptation
that aids with seedling provisioning in the depleted sand dune
environment (Ostevik et al. 2016). Other traits are less well
characterized, but the dune ecotype is reported to have
comparatively thicker stems, reduced branching, and faster
seedling growth (Andrew et al. 2013; Ostevik et al. 2016).
Gene flow between dune and non-dune populations is high

enough that their genetic divergence is close to zero across much

of the genome (Andrew and Rieseberg 2013). But selection is
strong enough such that there are a few important regions of
elevated divergence, containing alleles strongly associated with
the dune ecotype (Andrew and Rieseberg 2013; Goebl et al. 2022;
K. Huang et al. 2020). Several of these regions were recently shown
to harbor large chromosomal inversions that vary in frequency
across the landscape and are associated with divergent traits and
environmental variables, including seed size, vegetation cover, and
NO3 nitrogen levels (K. Huang et al. 2020; Todesco et al. 2020).
Within these inversions and other loci under strong divergent
selection, analysis of functionally annotated expression and
splicing variation could add insight into the molecular mechanisms
of adaptive divergence between GSD sunflower ecotypes.
The GSD system thus represents an excellent opportunity to

connect existing knowledge of natural and evolutionary history to
patterns of variation in different forms of gene regulation. We
sought to: (1) characterize genome-wide differences in alternative
splicing and expression (transcript levels) between ecotypes, (2)
gain a more holistic view of the transcriptomic changes under-
lying local adaptation by comparing patterns of gene coexpres-
sion, (3) explore how regulatory divergence corresponds to
genome-wide sequence divergence, and (4) determine putative
functional roles of genes experiencing divergent regulation.

MATERIALS AND METHODS
Plant material, seedling traits, RNA extractions, and
sequencing
We collected H. petiolaris seed from three sites in the dune habitat and
three sites in the non-dune habitat of Great Sand Dunes National Park,
Colorado, USA in 2017 (Fig. 1A). Seeds were cold stratified and germinated
on filter paper prior to planting 20 seedlings from each of the six sites.
Germination and planting occurred from July 3–6, 2018. For one of the
non-dune sites, only nine seedlings were planted due to limited
germination. Seedlings were grown in an even mix of sand and potting
soil and were kept in a greenhouse setting in Boulder, Colorado.
Temperature was kept between 60–80 F, humidity ranged from 20–40%,
and light was natural. Plants received an approximately equal amount of
water each day, to saturation. We randomly selected 12 seedlings of both
ecotypes for RNA extraction and sequencing, with even sampling across
sites (N= 4 per site). We chose to sample seedlings because this is a
consequential life stage for GSD sunflowers, especially in the dunes
(Goebl et al. 2022). On July 30, we harvested the top ~100mg of tissue
from selected ~3.5 week-old seedlings, which included meristem, new

Fig. 1 Sampling locations and seedling traits of Great Sand Dunes prairie sunflower ecotypes. A Map of sampling locations for dune
(yellow triangles) and non-dune ecotypes (green circles). Inset shows typical seeds of the dune (left) and non-dune (right) ecotypes with 1mm
grid paper. Photo credit Rose Andrew. B–E Seedling traits measured in a common garden ~3.5 weeks post germination. Up to 60 plants of both
ecotypes (20 per sampling location) were planted and measured; just 12 of both were randomly selected for the RNA sequencing experiment.
Asterisks denote statistical significance of t-tests; NS not significant. B Height measured from sand/soil to meristem. C Number of leaves. D Dry
mass of one fully expanded leaf. E Total above-ground dry mass. Total mass was not measured for plants harvested for RNA sequencing.
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leaves, and upper stem. Immediately before harvest we measured height
(sand to meristem) and number of leaves of all seedlings, including those
that weren’t sequenced. At this time, we also removed one fully expanded
leaf (not included in sampling for RNA) for measurement of leaf dry mass.
After harvest, we measured total dry mass of remaining above-ground
tissue for seedlings not chosen for RNA-sequencing. Plants of both
ecotypes were harvested at the same time and developmental stage, with
most plants at the 8-leaf seedling stage (Fig. 1C). We immediately flash-
froze the tissue in liquid nitrogen, stored it at −80 °C, and extracted RNA
the following day using a Qiagen Plant RNA Mini Kit. The meristem, new
leaf, and upper stem tissue of a single plant was disrupted together to gain
enough RNA for sequencing. This pooling of multiple cell types means that
we can’t determine tissue-specific expression differences between eco-
types. We expect that, as with all multicellular plant RNA-seq experiments,
observed expression differences are due to changes of expression within a
cell type in addition to different compositions of cell types. Library prep
(KAPA mRNA HyperPrep Kit) was performed for each of the 24 samples by
the CU Boulder Biofrontiers Sequencing Core, followed by sequencing on
an Illumina NextSeq using a 75-cycle High Output v2 reagent kit. This
produced 19–23 million reads (75 bp single-end) per library.

Filtering and read mapping
Adapter sequence and low-quality reads were trimmed using fastp v0.23.1
(Chen et al. 2018). We aligned trimmed reads to the Helianthus annuus
reference genome assembly Ha412HOv2 (Badouin et al. 2017; K. Huang
et al. 2023) using STAR v2.7.10a in two-pass mode (Dobin et al. 2013).

Variant calling and SNP annotation
We identified SNPs using GATK v4.2.5.0 (McKenna et al. 2010). We first
processed sorted bam files from STAR using AddOrReplaceReadGroups,
MarkDuplicates, and SplitNCigarReads. We then ran HaplotypeCaller in
-gvcf mode and used CombineGVCFs and GenotypeGVCFs for genotyping.
We selected only bi-allelic SNPs using SelectVariants and applied a generic
set of hard filters (–window 35 –cluster 3 –filter “FS > 30.0” –filter
“QD < 2.0”) using VariantFiltration. We then used vcftools v0.1.15 (Danecek
et al. 2011) to filter for (1) phred quality score above 30, (2) minor allele
frequency threshold of 0.05, (3) minimum read depth of at least 5 per
genotype, and (4) 0% missingness. To avoid spurious SNPs due to
paralogous alignments, we counted heterozygotes per-site using vcftools
–hardy and filtered out sites with >60% heterozygosity.

Analysis of sequence divergence
We calculated genome-wide Fst (Weir and Cockerham 1984) per-site between
dune and non-dune ecotypes using vcftools. We also used averaged Fst for
two different window sizes: (1) 500 kb non-overlapping windows for
visualization, and (2) single gene windows _x005F_xffff_± 5 kb, which were
used to investigate the association between sequence divergence and
expression or _x005F_xffff_splicing divergence, described below. The latter
was done using the python library scikit-allel v1.3.3 (Miles et al. 2021). We
performed a principal components analysis of filtered SNPs using the R
package SNPRelate v1.30.1 (Zheng et al. 2012). For the PCA we pruned SNPs
on linkage disequilibrium with an r2 threshold of 0.2, a sliding window of
500 kb, and a step size of 1 SNP, using PLINK v2 (Chang et al. 2015).

Read counting and differential expression
Reads mapping to each gene in the reference assembly annotations were
counted using HTSeq (Anders et al. 2015), which counts only uniquely
mapped reads by default. We excluded genes with total read counts less
than 24 as a pre-filter and then used DESeq2 to analyze differential
expression (Love et al. 2014). We identified significant differentially
expressed (DE) genes at FDR < 0.05 and log2 fold-change (LFC) > 0,
following previous similar studies (Carruthers et al. 2022; Grantham and
Brisson 2018; Jacobs and Elmer 2021; Steward et al. 2022). We also applied
a shrinkage function to LFC values using lfcShrink() in DESeq2 in order to
better visualize and rank DE genes (Zhu et al. 2019). To assess overall
divergence in gene expression between ecotypes, we performed principal
components analysis on regularized log-transformed count data
(N= 32,308 genes) using the R package vegan v2.6 (Oksanen et al. 2020).

Differential splicing
We used two approaches to analyze differential splicing between ecotypes:
(1) rMATS v4.1.2 (Shen et al. 2012), which identifies alternative splicing

events using reference genome read alignments produced by STAR, and
(2) the approach from Smith et al. (2018, 2021), which uses a custom
pipeline for analyzing a de novo transcriptome assembly. The latter
approach complements the reference-guided analysis by avoiding
reference bias during transcript assembly and potentially characterizing
more complex or novel splicing events.
The rMATS program is capable of detecting five major types of splice

events: skipped exon (SE), intron retention (IR), mutually exclusive exons
(MXE), alternative 3′ splice site (A3SS), and alternative 5′ splice site (A5SS). It
counts reads that align across splice junctions and within exons to estimate
the “percent spliced in” (PSI) value of each event, for each individual. PSI
ranges from 0 to 1 and represents the proportion of reads mapping to one
of two alternative isoforms (dubbed the “inclusion” and “skipping” isoform;
importantly, while each event comprises two alternative isoforms, rMATS
can identify multiple splicing events per gene, which would be expected if
a gene has three or more isoforms). The degree of differential splicing for
each event is then calculated as the difference in PSI between ecotypes
[ΔPSI=mean(PSIdune) – mean(PSInon-dune)]. ΔPSI ranges from 1 to −1, with
the extremes representing fixed differences in isoform proportions between
ecotypes. By default, rMATS excludes splice events where one or both of
the ecotypes have zero reads to support the event and also removes events
where neither ecotype has at least one read for either the inclusion or
skipping isoform. We opted to increase this threshold to require at least 12
reads in each case (up from at least 1 read) in order to increase statistical
power by avoiding splice events with low support. We implemented this
more conservative filter within the rMATS source code (rmats.py) because
there is no option to adjust rMATS read filtering with the program’s
command line arguments. We also enabled the detection of novel splice
sites using the rMATS option –novelSS, since the Ha412HOv2 reference
annotations have only a single transcript annotated per gene and
divergence between H. annuus and H. petiolaris may be significant enough
to alter exact splice site positions. Significant differentially spliced (DS)
events were called at the default ΔPSI threshold of 0.0001 (0.01%) and an
alpha level of 0.05 after FDR correction. After significance testing, we
removed events that had 40% or greater missingness (N= 193 events).
Lastly, we performed a PCA of alternative splicing using the event PSI
scores, with missing PSI values imputed as the average PSI for that event.
For the differential splicing analysis as per Smith et al. we first assembled

a transcriptome for H. petiolaris using Trinity v2.13.2 (Grabherr et al. 2011)
with all 24 samples. We removed redundant transcripts with CD-HIT-EST at
a threshold of 99% similarity (Fu et al. 2012). Next we aligned the
transcriptome to the Ha412HOv2 reference genome with BLASTN and only
considered hits that had at least 85% identity and aligned for at least 75%
of the transcript length. We estimated isoform abundance with RSEM (Li
and Dewey 2011) and imposed the following filters for low expressed
genes and isoforms: (1) we removed Trinity ‘genes’ (and thus each of its
corresponding isoforms) that were only expressed in one ecotype
(minimum total read count per ecotype of 24, with at least 8 samples
per ecotype having at least 3 reads) and (2) we removed isoforms with
total read count across all samples less than 24. Subsequent steps to filter
the transcriptome, retain high confidence alternative isoforms, and test for
differential splicing were the same as described previously (Smith et al.
2021). Briefly, we required alternative isoforms to align to the same
genomic region, otherwise we labeled the isoforms as separate genes. We
performed pairwise or multiple sequence alignments of isoforms of each
Trinity ‘gene’ using EMBOSS needle v6.6.0.0 or MUSCLE v5.1 (Edgar 2021),
respectively, to determine if the isoforms assembled by Trinity indeed
represented alternative isoforms, or if they were more likely different
alleles of the same isoform. In the latter case, we clustered alleles and
summed their abundance estimates (transcripts per million, TPM). Next we
converted isoform TPM values to proportions of overall gene TPM values
and reduced the dimensionality of each gene’s isoform composition matrix
using an isometric log ratio (ILR) transformation. Finally, we tested for
significant splicing differentiation between ecotypes using t-tests—or
MANOVA for genes with more than two isoforms—and used an FDR
threshold of 0.05 to correct for multiple testing.
To assess the congruence between rMATS results and those from the

‘Smith et al.’ de novo transcriptome pipeline, we aligned the longest
isoform of each de novo Trinity gene, including those filtered out in the
above steps, to Ha412HOv2 gene sequences using BLASTN and retained all
hits with a bit score greater than 100. For this search we generated a
Ha412HOv2 gene fasta file using AGAT v0.8.0 (Dainat 2023) and included
both intronic and exonic regions, since Trinity genes might harbor intron
retention events. PCA was performed using the ILR transformations of the
isoform proportions of Trinity genes with just two alternative isoforms. We
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did not include genes with more than two isoforms in the PCA because
their isoform composition matrix remains multidimensional even after ILR
transformation.

Association between sequence divergence and expression/
splicing divergence
We used a Kruskal–Wallis test to determine whether DE and DS genes
differed significantly in Fst from genes that were not DE or DS; we used
Wilcox tests for post-hoc pairwise comparisons. We also fit generalized
linear models to assess the association between per-gene sequence
divergence (see above for Fst methods) and expression/splicing diver-
gence. For these regression analyses, expression (log2 fold change, LFC)
and splicing divergence scores (ΔPSI) were set to zero if deemed not
significant. For splicing divergence, if a gene had multiple AS events, we
only used the event with largest absolute value ΔPSI. We fit zero-inflated
models in both cases and specified a beta distribution to model ΔPSI ~ Fst
and gamma distribution for LFC ~ Fst. These models were fit with the R
package glmmTMB. Pseudo-R2 values were estimated using the R package
performance.

Tests of DE and DS overlap and spatial enrichment
We performed hypergeometric tests to determine the significance of
overlap between DE and DS gene sets, using the R function dhyper(). The
representation factor of the overlap was calculated as the observed
divided by the expected number of overlap genes, where the expected
overlap is the number of DS genes times the number of DE genes divided
by the total number of genes expressed in our experiment.
We counted DE and DS genes within and outside of four major inversion

regions: pet5.01, pet9.01, pet11.01, and pet17.01, using BEDTOOLS v2.26.0
(Quinlan and Hall 2010). We focused on these regions out of seven
previously identified putative inversions (K. Huang et al. 2020) because
they were by far the most divergent between ecotypes in our dataset (Fig.
S1) and have been shown to contribute to adaptation in the dunes (Goebl
et al. 2022; K. Huang et al. 2020; Todesco et al. 2020). While other
inversions exist and are segregating, they are not strongly divergent
between populations (K. Huang et al. 2020; Todesco et al. 2020). We
performed Fisher’s exact tests with the R function fisher.test() to determine
whether these four inversion regions as a whole were enriched for DE or
DS genes.

Proximity of divergently regulated genes to previously
identified loci under selection
A recent study of the GSD sunflowers imposed experimental selection on
GSD sunflowers planted in the dunes and measured change in allele
frequencies from pre- to post-selection (Goebl et al. 2022). We labeled the
top 5% or the top 1% of these SNPs according to allele frequency change
in hybrid plants (dune x non-dune) grown on the dunes as loci under
selection, i.e., adaptive loci (see Goebl et al. 2022 Figure S10B) and
subsequently tested whether DS and DE genes from our present study are
more proximal to these loci compared to the null expectation, using the
same approach as Verta and Jones (2019). The null expectation is derived
from the proximity of adaptive loci to repeated random samples of non-
divergently regulated genes. We note that tests of proximity like this focus
on regulatory loci operating in cis.

Investigation of putative cis and trans splicing regulatory loci
We annotated the filtered SNPs with SnpEff v5.1 (Cingolani et al. 2012),
which identifies putative functional impacts e.g., splice site variants. We
also identified putative spliceosomal genes in the Ha412HOv2 assembly
based on homology (TBLASTN/BLASTN e-value threshold 1e-20) to
Arabidopsis thaliana core spliceosome components and other splicing-
related genes obtained from KEGG and arabidopsis.org.

Gene coexpression network analysis
We created signed, weighted gene coexpression networks for each
sunflower ecotype with the R package WGCNA v1.71 (Langfelder and
Horvath 2008). Here, we used a more stringent read count filter to reduce
noise in the networks, keeping genes with mean of at least 10 reads per
sample and with zero reads in no more than 6 samples of either ecotype;
this resulted in 24,421 genes. We used rlog-transformed count data for
input into WGCNA. The networks were built using the function
blockwiseModules() with all replicates of a particular ecotype (N= 12 in

both cases) and with a soft-thresholding power of β= 18 to achieve a
good model fit for scale free topology. Modules (groups of highly
interconnected genes) were defined using hierarchical clustering and the
dynamic tree cut algorithm with a minimum size of 30 genes. Similar
modules were merged at a cut height of 0.25, corresponding to a
correlation of 0.75. The remaining function parameters were set to the
default values, e.g., Pearson correlation was used for construction of the
networks. Separately, we used iterativeWGCNA (Greenfest-Allen et al. 2017)
with default settings (except: power= 18; minModuleSize= 30) to check
the robustness of coexpression networks obtained from the standard
WGCNA network construction.
We compared coexpression networks between dune and non-dune

ecotypes using the modulePreservation() function from WGCNA (Lang-
felder et al. 2011). This is a differential network analysis method that
assesses the extent to which connectivity patterns among nodes (genes) of
modules in a reference network are maintained in a test network. For each
module, it calculates mean and variance of seven network-based
preservation statistics related to density (i.e., the extent to which genes
retain strong connectedness) and connectivity (i.e., the similarity of
intramodular connection patterns). Permutation is used to construct
random modules and estimate a null distribution for each statistic, from
which P-values and Z-transformed scores are calculated (Langfelder et al.
2011). The Z-scores of each metric are then aggregated into a composite
summary score, the preservation “Zsummary”. A Zsummary score > 10 indicates
strong preservation, 2 < Zsummary < 10 indicates weak to moderate
evidence of preservation, and Zsummary < 2 indicates no evidence of
module preservation. These thresholds were recommended by Langfelder
et al. (2011) based on simulations. For this analysis, we set the non-dune
network as the reference network.

Gene ontology analysis
Gene ontology annotations are lacking for the Ha412HOv2 genome, so we
based our GO enrichment analyses on Arabidopsis thaliana GO annota-
tions (ATH_GO_GOSLIM.txt) downloaded from arabidopsis.org (Berardini
et al. 2004). We first matched Ha412HOv2 transcripts to Araport11 A.
thaliana peptides (Cheng et al. 2017) using BLASTX with an e-value
threshold of 1e-20, retaining only the top hit for each transcript. Next, we
merged the list of H. annuus–A. thaliana homologs with the A. thaliana GO
association file to annotate Ha412HOv2 genes with GO terms. We then
used the python package GOATOOLS (Klopfenstein et al. 2018) to perform
Fisher’s exact tests of GO term enrichment, for DE genes (separately for
dune up-regulated and non-dune up-regulated sets) and rMATS DS genes,
plus the genes that were both DE and DS (DE ∩ DS). We used the
complete set of expressed genes (total read count >= 24, N= 32,308) and
expressed multi-exonic genes (N= 28,389) as the background gene lists,
respectively, plus an FDR threshold of 0.05 for significance. We clustered
redundant GO terms from each enrichment test using GOMCL (Wang et al.
2020). We also identified enriched GO terms in the Smith et al. DS genes
for a qualitative comparison with rMATS DS genes, however, we focus on
the latter because rMATS is a more widely used and admittedly more
reproducible method.

RESULTS
Seedling traits
Despite plants being harvested at the same time and develop-
mental stage according to leaf number (dune mode= 8; non-
dune mode= 8; dune mean= 7.9; non-dune mean= 7.2; t-test
p= 0.08; Fig. 1C), dune ecotype seedlings were nearly twice as tall,
had over twice the mass, and also had larger leaves compared to
the non-dune ecotype on average (t-tests, p « 0.001, Fig. 1B, D, E).
These patterns were maintained when only considering the 24
plants randomly selected for RNA sequencing (results not shown).

Variant calling and sequence divergence between ecotypes
The amount of uniquely mapped reads per library (i.e., per plant)
ranged from 72 to 84% and averaged 80%. Unmapped reads
averaged 5.9%; the remaining reads mapped to multiple loci.
Variant calling with GATK HaplotypeCaller produced 3,007,876
variable transcriptomic sites across the Ha412HOv2 reference
genome, which includes 17 chromosomes plus unplaced contigs.
These variants were filtered to 295,383 high quality bi-allelic SNPs.
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Subsequent pruning of SNPs that were in linkage disequilibrium
resulted in 29,113 independent loci. PCA of LD-pruned SNPs
showed distinct clustering of ecotypes along the first PC, which
explained ~9.3% of the overall SNP variation among samples
(Fig. 2A).

Gene expression divergence between ecotypes
RNA-seq libraries from bulk seedling tissue produced detectable
expression for 32,308 genes, representing roughly 70% of the total
genes annotated in the Ha412HOv2 genome. PCA based on the
transcript levels of these genes clearly separated dune and non-
dune ecotypes along the first principal component, which
explained 18.14% of the total variation (Fig. 2B). We found
significant differential expression between dune and non-dune
ecotypes for 5103 genes (|Log2FC|> 0, FDR < 0.05), approximately
15% of genes expressed in our study (Extended Data S1). Of these,
2480 were up-regulated in the dune environment, while 2623
were up-regulated in the non-dune environment.

Alternative splicing divergence between ecotypes
We detected 17,845 alternative splicing events across 6551 genes
using rMATS (Extended Data S2). This means approximately 23%
of the 28,839 multi-exonic genes expressed in our study showed
evidence of alternative splicing. Intron retention was the most
common event type (9946 RI events, ~55%), as expected for a
plant species. PCA of isoform proportion values (percent spliced
in, PSI) of all AS events produced separation between ecotypes
along PC1, similar to what was found for SNPs and transcript
levels, with the first axis explaining 8.7% of the total variation
(Fig. 2C).
We identified 1442 differential splicing (DS) events among 1038

unique genes (rMATS ΔPSI > 0.0001, FDR < 0.05), which represent
around 16% of alternatively spliced genes. Intron retention
remained the most prevalent event type among the significant
DS events, though to a slightly reduced extent (669 significant RI

events, ~46%). The dune ecotype tended to retain more introns
(360 events with positive ΔPSI) compared to the non-dune
ecotype (309 events with negative ΔPSI). Exon skipping was the
least frequent AS event type overall but had a comparatively
higher frequency in the set of DS events (7.9 vs 13.7%, Fig. S2).
Compared to rMATS, we obtained similar results with the Smith

et al. (2018, 2021) de novo isoform-based analysis of alternative
splicing. We identified 6050 Trinity ‘genes’ with clear cases of
alternative splicing, and 75% of these genes had strong BLAST hits
to the 6551 rMATS AS genes (Fig. S3A). Of the 6050 Trinity AS
genes, 1281 were significantly differentially spliced (DS), repre-
senting a similar fraction compared to rMATS (1038 DS/6551 AS).
The 1281 Trinity DS genes had high confidence BLAST hits (bit
score > 100) to approximately 28% of rMATS DS genes (290 of
1038, Extended Data S2). Considering only reciprocal best BLAST
hits, the overlap between rMATS and Trinity DS genes was 53
genes, representing the highest confidence examples of differ-
ential splicing (Extended Data S2). The small overlap in DS genes
between rMATS and the Smith et al. pipeline is similar to what has
been reported between other tools (Mehmood et al. 2020), and
we think is reasonable because they differ in a number of ways:
pipeline A (rMATS) tests significance of DS for a single AS event at
a time, i.e., whether a particular intron or exon is spliced in or out,
whereas pipeline B (Smith et al.) uses abundance estimates (TPM)
of whole isoforms and can test for DS among three or more
isoforms; pipeline B uses the ILR transform and many other steps.
PCA of isoform proportions for Trinity AS genes with just two
isoforms (4050 of 6050) again showed distinct clustering of
ecotypes along the first principal component (Fig. S3B), further
supporting the results from rMATS.

Gene coexpression network divergence between ecotypes
We observed substantial differences in patterns of gene coex-
pression between ecotypes, which can provide insight into how
the transcriptome is evolving as a whole. Coexpression networks

Fig. 2 Sunflower ecotypes cluster according to sequence, expression, and splicing variation. A–C Principal component analyses showing
variation along the first and second principal components for A 29,113 LD-pruned transcriptomic SNPs B transcript levels of 32,308 genes and
C isoform proportions of 17,845 alternative splicing events identified with rMATS. Percent of total variation explained by each PC is given in
parentheses.
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for dune and non-dune ecotypes showed scale-free topology
(Figs. S4, S5) and had similar numbers and sizes of modules (dune
N= 260, non-dune N= 280; dune mean module size= 92.4 genes;
non-dune mean module size= 85.3 genes). However, connectivity
patterns of modules and overall network structure were not well
preserved between ecotypes (Fig. 3, S5). Average Zsummary

preservation score of non-dune modules in the dune network
was 2.2, meaning that non-dune modules had very low
preservation in the dune network overall (Fig. 3). Indeed, only 7
modules showed strong preservation (Zsummary > 10); 80 modules
had weak to moderate preservation (2 > Zsummary > 10); 195 had no
preservation (Zsummary < 2). Networks constructed with iterati-
veWGCNA (Greenfest-Allen et al. 2017) had similar module
numbers, sizes, and low module preservation statistics, therefore,
we report just the results from standard WGCNA.

Distribution of sequence, expression, and splicing divergence
across the genome
In general, divergence in expression and splicing tended to be
greater for genes in regions of higher sequence divergence, but
this trend explained a small amount of the total variation in
expression and splicing differences between ecotypes.
Fst estimates in 500 kb sliding windows revealed similar patterns

of sequence divergence between ecotypes as reported previously
(Andrew and Rieseberg 2013; K. Huang et al. 2020; Todesco et al.
2020). We found Fst peaks in regions known to harbor large
chromosomal inversions that segregate strongly between eco-
types, though some peaks existed outside these inversion regions
as well (Fig. 4A, S1). This closely matches findings based on WGS
data (Todesco et al. 2020); previous reduced representation
approaches seemingly hid some of these smaller peaks of
differentiation in non-inversion regions (Andrew and Rieseberg
2013; K. Huang et al. 2020).
Divergence in transcript level was widespread across the

genome and not confined to individual regions, although some
regions of high Fst also harbored numerous genes with high
expression divergence, for example, the inversion regions (Fig. 4B).
Splicing differentiation was likewise scattered across the genome,
with a notable peak of significantly differentiated splicing events
within or near the pet11.01 inversion (Fig. 4C). Genes inside the
four inversion loci pet5.01, pet9.01, pet11.01, pet17.01 overall
were more than twice as likely to be differentially regulated (DE or
DS) compared to genes outside of these inversions (Fig. S6,
Fisher’s exact tests, p « 0.001). We also found that DE genes, DS
genes, and DE ∩DS genes tended to have higher Fst than non-
divergently regulated genes (0.134 ± 0.003 DE-only; 0.124 ± 0.006

DS-only; 0.175 ± 0.013 DE ∩ DS; 0.083 ± 0.001 non-DE/DS; mean Fst
± standard error; Fig. 4D). Associations between Fst (single gene
windows ±5 kb) and log2 fold-change or ΔPSI were positive and
significant, though weak (pseudo R2= 0.023 and pseudo
R2= 0.008, respectively; Fig. 4E, F).

Proximity of divergently regulated genes to loci under
selection
Differentially spliced genes were consistently more proximal to
previously identified SNPs experiencing the greatest allele
frequency shifts following experimental selection in the dune
habitat (Goebl et al. 2022) when considering distances less than or
equal to 1 Mb: approximately 30% of all DS genes were within
1 Mb or less from a Goebl et al. adaptive SNP (Fig. S7A). This trend
lessened beyond the 1 Mb distance (results not shown), as well as
when we used a more stringent threshold (99th percentile) for
considering SNPs as adaptive (Fig. S7B). We found that DE genes
showed no significant difference from the null expectation in their
proximity to adaptive SNPs (results not shown).

Sequence divergence at splice sites and in spliceosomal genes
SnpEff annotated 884 SNPs as located in splice sites or splice
regions. Average Fst of these splice variants (0.087) was compar-
able to that of the mean across all sites (0.084). We identified
49 splice variants among the top 5% of all SNPs based on Fst, 13 of
which were in differentially spliced genes (Table S1). The strongest
outlier splice variant was located in the chromosome 11 inversion,
had an Fst of 1, and was associated with an intron retention event
in the gene Ha412HOChr11g0490131, a homolog of an A. thaliana
organic solute transporter ostalpha protein, AT4G21570.
We found 535 sunflower genes with significant homology to

known A. thaliana spliceosome-related genes. Average Fst of these
spliceosomal homologs (0.089) was similar to that across all genes
(0.095). Thirteen spliceosomal homologs were among the top 5%
of all genes according to Fst and 12 of these were within one of
the four major chromosomal inversions (Table S2). The spliceso-
mal gene with strongest Fst was Ha412HOChr11g0496501,
homologous to ABH1 (AT2G13540), which encodes a nuclear
cap-binding protein that is required for both pri-miRNA proces-
sing and pre-mRNA splicing and is involved in abscisic acid
signaling (a key plant stress response hormone) and flowering
(Cutler et al. 2010; Hugouvieux et al. 2001; Laubinger et al. 2008).
The second most divergent spliceosomal gene according to
sequence was Ha412HOChr11g0495951, homologous to GFA1
(AT1G06220) which is involved in activation of the spliceosome
and in embryo development (M. Liu et al. 2009; Moll et al. 2008;

Fig. 3 Gene coexpression networks are restructured between ecotypes. A Preservation values (‘Zsummary’) of non-dune network modules in
the the dune network. Preservation Zsummary > 10 indicates strong preservation (green dashed line); 2 < Zsummary < 10 indicates weak to
moderate evidence of preservation; very low preservation indicated under the blue dashed line. B Module preservation of non-dune modules
in the dune network, versus module size (number of genes). Colors are arbitrary module labels; similar colors do not represent inherently
similar modules. The x axis is on the log scale; values 50–100 on the y-axis are squashed.
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Zhu et al. 2016). Both these genes are within the pet11.01
inversion (Table S2).

More overlap between DE and DS gene sets than expected
by chance
More than 22% of differentially spliced genes were also
differentially expressed: of the 5103 DE and 1038 DS genes, 232
genes were both DE and DS (Fig. 5B). This overlap is significantly
greater than expected due to chance, based on a hypergeometric
test (p= 4.3e-09; representation factor= 1.42).

Putative functions of DE and DS genes
Our homology-based functional annotation (GO annotation) of
the H. annuus Ha412HOv2 genome provided matches to
Arabidopsis thaliana for 26,536 of the 32,3208 genes expressed
in our study. We found 23 GO terms significantly enriched among
genes up-regulated in the dune environment (10 after clustering),
and these were primarily related to transcription, fatty acid
biosynthesis, nutrient reservoir activity, and stress response
processes, notably involving abscisic acid (Fig. 5A). For genes
up-regulated in the non-dune ecotype, there were 152 signifi-
cantly enriched GO terms (66 after clustering), and those involving
translation, mRNA binding, embryo development, and photosyn-
thetic processes/compartments were among the most significant

(Fig. S8). Genes up-regulated in the dune ecotype were more likely
to have unknown function compared to those up-regulated in the
non-dune ecotype, based on fractions of either set that lacked a
strong BLAST hit to Arabidopsis and thus lacked GO annotations
(18% of dune versus 13% of non-dune up-regulated genes). This
might partially explain the substantial difference in number of
enriched GO terms between the two sets.
There were 34 (16 after clustering) significantly enriched GO

terms among rMATS DS genes (97% of DS genes had GO
annotations); these were primarily related to mRNA binding,
photosynthesis, embryo development, and nitrogen assimilation
(Fig. 5C). This represents an intriguing functional overlap with DE
genes, specifically for those involved in embryo development and
photosynthesis, which appear to be divergently regulated by both
transcription and splicing mechanisms. Indeed, our GO enrich-
ment analysis of the 232 genes that were both DE and DS
recovered just four significantly enriched terms after clustering
with GOMCL: chloroplast stroma, embryo development ending in
seed dormancy, ATP binding, and metal ion binding (Fig. 5D). The
Smith et al. DS genes had fewer enriched GO terms but still
showed some qualitative similarity with those from rMATS. They
were involved in mRNA binding, targeted to the chloroplast,
related to translation, or part of the U2AF splicing complex (results
not shown).

Fig. 4 Both cis and trans regulation appear to contribute to expression and splicing divergence. Red shaded regions indicate positions of
putative chromosomal inversions. A Mean Fst values along 500kbp non-overlapping windows. Note putative inversion regions correspond
with Fst peaks. B Differentially expressed (DE) transcripts along the genome. Positive log2fold-change indicates up-regulation in the dune
ecotype compared to the non-dune ecotype, while negative values indicate the reverse. C Differential splicing (DS) along the genome. ΔPSI of
1 or −1 indicates a fixed difference in isoform proportions between dune and non-dune ecotypes. Circles represent alternative splicing events
(a single gene can have multiple splice events if it has more than two isoforms). Significance of DE in B and DS in C is indicated by circle size,
and we randomly down-sampled non-significant transcripts and events to improve visualization. Note concentration of DE transcripts and DS
events within Fst peaks (e.g., pet11.01 inversion, putative cis-regulation) but also in regions of low Fst (e.g., chromosome 12, putative trans-
regulation). D Fst box plots for different sets of genes. Significant differences are noted with letters. E Association between Fst and expression
divergence per gene. F Association between Fst and splicing divergence per gene. For panels D–F, Fst for each gene was calculated as the
average of SNPs within the gene’s start/stop window ±5 kb.

P.A. Innes et al.

126

Heredity (2024) 132:120 – 132



Beyond analysis of gene ontologies, we highlight individual
genes based on magnitude and significance of divergence in
expression and/or splicing. Three of the top four DE genes ranked
by adjusted p-value are nuclear-encoded homologs of ATP
synthase subunit beta (ATPB; ATCG00480) and were up-
regulated in the non-dune ecotype (Extended Data S1, Fig. S9).
Homologs of four other chloroplast ATP synthase subunits (alpha,
ATPA, ATCG00120; delta, ATPD, AT4G09650; gamma, ATPC1,
AT4G04640; epsilon, ATPE, ATCG00470) also tended to be up-
regulated in the non-dune ecotype (Fig. S9). Two homologs of
ATPI, a subunit of the ATP synthase proton pump complex CF0,
were also among the most significant DE genes, and up-regulated
in the non-dune ecotype (Fig. S9).
A homolog of the A. thaliana splicing factor, ATO (AT5G06160)

was the 15th most differentially expressed transcript, ranked by
log2 fold change (Ha412HOChr09g0395201; baseMean= 23, log2
fold change= 8.6, FDR= 1.7e-26; Fig. S10). We also identified
homologs of splicing factor SUS2 (AT1G80070) that were
significantly up-regulated in the dune ecotype, with the most
abundant being Ha412HOChr02g0050341 (baseMean= 213, log2
fold change= 1.5, FDR= 0.001; Fig. S10). Other homologs of both
these splice factor genes were found in the Ha412HOv2 genome,
which were not DE (Extended Data S1). Homologs of a third
splicing factor, CWC22 (AT1G80930), were also significantly up-
regulated in the non-dune ecotype (Fig. S10).
Lastly, we highlight one gene that overall had the third

strongest splicing difference between ecotypes according to
rMATS, was also DS according to the Smith et al. approach, and
was differentially expressed: Ha412HOChr02g0088581, a homolog

of A. thaliana glycosyl hydrolase GLH17 (AT3G13560), which is
involved in lateral root emergence (Swarup et al. 2008). This gene
harbored an exon skipping event with ΔPSI of −0.644, meaning
the dune ecotype more often expressed the alternative “skipping”
isoform (Fig. 6). It had a reciprocal best match to a Trinity DS gene
and thus is among the highest confidence examples of differential
splicing (Extended Data S2). Intriguingly, the alternatively spliced
(skipped) exon is in the 5’ untranslated region of GLH17.

DISCUSSION
Extent of expression and splicing divergence between
ecotypes
Previous research has demonstrated that selection is driving
strong allelic differences between the dune and non-dune prairie
sunflower ecotypes at GSD (Goebl et al. 2022). Our results show
the ecotypes also have evolved distinct patterns of both gene
expression levels and alternative splicing (Fig. 2B, C). Recent
findings have been equivocal as to which of these two processes
evolves faster at time scales involving ecotypic adaptation and to
what extent they follow complementary versus independent
trajectories (Carruthers et al. 2022; Jacobs and Elmer 2021; Verta
and Jacobs 2022). The first principal component for expression
level, which also delineates ecotypes, explained a substantially
larger amount of overall variation compared to that of alternative
splicing (Fig. 2B, C). We also observed substantially more
significantly differentially expressed genes compared to differen-
tially spliced genes (Fig. 5B), though we are cautious in taking this
difference at face value because (1) the nature of short read

Fig. 5 Functional enrichment of differentially regulated genes between ecotypes. A GO terms enriched among DE genes up-regulated in
the dune ecotype (N= 2480). B Venn diagram showing number of transcripts that are differentially expressed (DE), differentially spliced (DS),
or both (DE ∩DS) between ecotypes (FDR < 0.05). Significance of overlap between DE genes and DS gene sets was assessed with a
hypergeometric test (p < 0.001; Representation Factor, RF= 1.4; RF values > 1 indicate more overlap than expected due to chance). C GO terms
enriched among DS genes (N= 1038). D GO terms enriched among genes that are both DE and DS (N= 232). GO terms are arranged top to
bottom by decreasing enrichment test significance (decreasing dot size) in panels A, C, and D. Some GO terms are abbreviated due to space:
“…endoplasmic reticulum membrane”=“integral component of cytoplasmic side of endoplasmic reticulum membrane”; “embryo dev. ending
in seed dorm.”=“embryo development ending in seed dormancy”; “glycine decarboxylation…”=“glycine decarboxylation via glycine cleavage
system”.
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sequencing data likely makes detection of alternative splicing
more difficult than expression (2) the relative proportion of
alternatively spliced genes that are DS is similar to that of
expressed genes that are DE (around 15%), and (3) DE and DS are
called using slightly different thresholds, in this case, LFC > 0 and
ΔPSI > 0.0001. Still, a similar magnitude of difference in number of
DE versus DS genes was found between sexes of multiple bird
species (Rogers et al. 2021), and analyses of environmentally
determined phenotypes also report fewer DS compared to DE
genes (Grantham and Brisson 2018; Healy and Schulte 2019;
Steward et al. 2022). In contrast, comparisons of arctic charr
ecotypes did not reveal consistently more DE than DS genes
(Jacobs and Elmer 2021). It is important to note that the inferred
relative importance of expression vs splicing in adaptation is
highly dependent on what thresholds are used for these analyses;
we recommend that future studies keep this problem in mind and
use consistent thresholds.
The fact remains that expression (transcription) and alter-

native splicing are inherently linked. Substantial overlap in DE
and DS genes, their functions, or their associated SNPs (i.e.,
expression and splicing QTL) has been observed in cases of
plasticity (Grantham and Brisson 2018; Healy and Schulte 2019),
ecotype differences (Carruthers et al. 2022), and species
differences (Singh et al. 2017). Other studies suggest the two
regulatory processes mostly evolve independently (Jacobs and
Elmer 2021; Jakšić and Schlötterer 2016; Martín et al. 2021; Verta
and Jacobs 2022). We have shown that both transcript level and
alternative splicing are associated with divergence in the GSD
sunflower ecotypes. Although the majority of differentially
spliced genes were not differentially expressed in our study,
the ~22% overlap was larger than expected by chance (Fig. 5B).
Thus, there appears to be an important role of the two processes
acting both independently and jointly in divergent adaptation of
GSD sunflowers.

Because we sequenced RNA from heterogeneous tissue
samples, some of these observed expression and splicing
differences between ecotypes may be related to differences in
tissue and cell composition rather than regulatory changes within
a specific cell type (Montgomery and Mank 2016; Price et al. 2022;
Hunnicutt et al. 2022). We think this source of variation is likely
limited in our results, based on quantitative and qualitative
observations of relevant seedling traits (e.g., Fig. 1), which are far
less different than many genes’ expression and splicing profiles.
We also observed correspondence between sequence, expression,
and splicing divergence (e.g., within large inversion regions),
which again points to sequence variation, rather than tissue
composition, as a substantial source of observed expression and
splicing differences. Future studies that analyze transcriptomes of
specific tissues or quantify tissue composition between dune and
non-dune ecotypes would be helpful is disentangling these two
components that contribute to patterns discussed here.

Disruption of gene coexpression networks
Gene coexpression also appears to have been dramatically
restructured in the process of adaptive divergence: strong
correlations in transcript level among genes are rarely preserved
when comparing the coexpression network modules of the non-
dune to the dune ecotype (Fig. 3, S5). It seems that, beyond the
differential expression or splicing of particular genes, novel
connections among genes could be important for—or a product
of—adaptive divergence. The dramatic restructuring of gene
coexpression is striking given that the ecotypes are so recently
diverged. Comparison of wild versus domesticated cotton also
revealed substantial restructuring of coexpression networks,
marked by fewer, larger modules with tighter connections in the
domesticated variety (Gallagher et al. 2020). A similar scenario of
coexpression rewiring has been reported for maize vs teosinte
(Swanson-Wagner et al. 2012). It is notable that these examples,
including ours, all involve recent adaptive evolutionary shifts in
phenotypes, ecological circumstances, and allelic variation.

Distribution of regulatory divergence across the genome
We were curious how gene expression level and splicing
divergence are patterned across the genome in relation to
sequence divergence, and what this might tell us about the
relative contributions of cis versus trans regulation. The increased
prevalence of DE and DS genes within four large chromosomal
inversion regions—previously implicated in the adaptive diver-
gence of the GSD sunflowers—indicates there are substantial cis-
regulatory variants within these haploblocks that are contributing
to splicing and expression divergence (Fig. S6). Furthermore, DE, DS,
and DE∩DS genes tended to have higher Fst than non-DE/non-DS
genes (Fig. 4D), which is consistent with the influence of cis-
regulation. Although we found only a few splice site variants with
high Fst within DS genes (i.e., putative cis-sQTL, Table S1), we note
that our characterization of specific cis-sQTL is very much
incomplete due to technical limitations: the tool we used to
annotate splice site variants does not recognize novel splice sites (of
which there were many) and also does not recognize other splicing
cis regulatory elements like splicing enhancers and silencers, which
can be found further from the splice site region (Lovci et al. 2013;
Wang and Burge 2008). Lastly, we found some evidence that DS
(but not DE) genes tend to be more proximal to previously
identified loci under selection (Fig. S7). Because these previously
identified loci were SNPs derived from reduced representation
sequencing (Goebl et al. 2022), we expect that most direct targets
of selection were not sequenced, and that identified adaptive loci
were more likely to be indirectly affected by selection. Though we
don’t have the exact targets of selection identified, the combination
of our study with that of Goebl et al. (2022) suggests that divergent
selection is affecting cis regulation of splicing such that the
ecotypes express different compositions of isoforms.

Fig. 6 Differential regulation of GLH17, an example of a gene that
is strongly differentially spliced and also differentially expressed
between ecotypes; GLH17 functions in lateral root emergence.
A Structures of two alternative isoforms of GLH17, which constitute a
case of exon skipping. The “skipping” isoform is above the
“inclusion” isoform, with the skipped exon marked by a red box;
isoforms are marked for whether they are more prevalent in the
dune (yellow triangle) or non-dune (green circle) ecotype. Dark blue
blocks represent coding exons and light blue represents exons in
untranslated regions (UTRs). The alternatively spliced (skipped) exon
is within the 5′ UTR. B GLH17 gene-level normalized expression
differences between dune (D) and non-dune (N-d) ecotypes (log2
fold change=−4.3e-05, FDR < 0.05) and differences in alternative
splicing (ΔPSI=−0.644, FDR « 0.001) for the exon skipping event.
“Percent Spliced In” (PSI) refers to the proportion of reads
supporting the inclusion isoform. Points represent individual plants.
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On the other hand, we found widespread expression and
splicing divergence outside of inversions and within low Fst
regions (Fig. 4), which suggests trans regulatory elements in the
inverted/highly divergent regions (e.g., Table S2) may modulate
expression or splicing throughout the genome. Although we
cannot rule out the possibility that our 500 kb sliding window Fst
averages are masking high divergence at individual cis-regulatory
SNPs (Fig. 4A), regression analyses show that sequence divergence
in cis explains only a small fraction of the total variation in
expression level or splicing divergence (Fig. 4E, F), consistent with
the influence of trans regulation. We also found that genes
comprising transcription and splicing machinery were often
differentially expressed or differentially spliced (Fig. 5A, C, S8,
S10), which is in agreement with previous findings (Jacobs and
Elmer 2021; Jakšić and Schlötterer 2016). For instance, a homolog
of splicing factor ATO was one of the most divergently expressed
genes between ecotypes (Fig. S10). ATO has been previously
shown to regulate gametic cell fate in plants alongside
spliceosomal component GFA1 (Moll et al. 2008). We also found
homologs of splicing factors SUS2 and CWC22 that were up-
regulated and down-regulated in the dune ecotype, respectively
(Fig. S10). Alongside the Fst outlier spliceosomal homologs we
identified (which included homologs of GFA1 and ABH1, Table S2),
these genes represent strong trans-regulatory candidate loci.
Together these results show that in addition to cis regulation,

there are trans-regulatory variants contributing to variation in
both transcript abundance and alternative splicing. We stress that
future investigations would benefit from controlled crosses to
map cis- and trans-sQTL (and eQTL) with more specificity, as in
Smith et al. (2018). Still, our findings appear consistent with
previous work showing trans regulatory loci tend to contribute
more to expression variation within species, while cis regulatory
divergence becomes more impactful between species (Bao et al.
2019; Schaefke et al. 2013; Signor and Nuzhdin 2018; Wittkopp
et al. 2008). We speculate that increased divergence at trans-
regulatory loci would be expected to result in more dramatic
restructuring of coexpression networks, as described above (Fig. 3,
S5), since these genes often influence expression of multiple other
genes [i.e., they are more pleiotropic (Vande Zande et al. 2022)].

Divergent regulatory evolution highlights potential
mechanisms of adaptation
Results from gene ontology enrichment analyses lend some
additional weight to the idea that transcription and splicing
variation are contributing to adaptation in the GSD sunflowers.
Larger seed size and tolerance of low nitrogen levels have been
most clearly implicated as adaptive traits in the dunes (Andrew
et al. 2012; K. Huang et al. 2020; Ostevik et al. 2016; Todesco et al.
2020). In congruence with this, we found that divergently spliced
and expressed genes were enriched for functions related to seed
development and/or nitrogen assimilation, among others
(Fig. 5, S8). We note that the expression of seed development-
related genes in seedlings could be due to multiple factors,
including pleiotropy and the correlation of expression across
multiple tissues and developmental stages.
Adaptation to the dunes also appears to involve constitutive up-

regulation of abiotic stress response genes, including those
involved in abscisic acid signaling (Fig. 5A). Consistent differences
between ecotypes in gene expression and splicing of chloroplast
and mitochondria-targeted genes is another intriguing pattern
that may relate to the overall difference in growth strategies
between ecotypes (Figs. 1, 5, S8, S9). One last phenotype that
would be interesting to characterize in the future is root structure:
the dune and non-dune habitats have very different soil
conditions, and one of the strongest differentially spliced genes
(GLH17), which was also differentially expressed, is known from
previous Arabidopsis studies to be involved in the auxin mediated
initiation of lateral root emergence (Swarup et al. 2008).

In sum, these results reinforce some of what is already known
about traits important to adaptation in this system, provide insight
into molecular mechanisms related to these traits, and highlight
new traits to investigate in the future.

CONCLUSION
Understanding the molecular processes that contribute to
adaptation and divergence is a key goal of evolutionary biology,
but alternative splicing has been understudied in this regard, with
just a handful of well documented examples to date (Singh et al.
2017; Verta and Jacobs 2022). Because alternative splicing is an
important mechanism for plant development and plastic stress
response, we hypothesized it may underlie adaptive changes as
well, especially in extreme habitats such as the Great Sand Dunes.
We found that differences in splicing and expression level
between a sand dune-adapted prairie sunflower ecotype and its
neighboring non-dune ecotype were widespread throughout the
genome at the seedling stage in a common environment. Overall,
our results represent one of the first clear examples of genome-
wide alternative splicing divergence within a non-crop plant
species.
Although we do not specifically test the adaptive impact of

alternative splicing and expression variation in the dunes, given
that gene flow is ongoing between the ecotypes (Andrew et al.
2012, 2013), neutral divergence is expected to be limited in this
system, with divergence of genes and traits driven mainly by
selection (Goebl et al. 2022; Nosil et al. 2009; Yeaman and Whitlock
2011). This raises the possibility that gene expression and
alternative splicing are either indirectly or directly under selection,
which is bolstered by results of multiple analyses described above.
Thus, we conclude that variation in alternative splicing and gene
expression level are both likely contributing to adaptive diver-
gence of the Great Sand Dunes prairie sunflower ecotypes.

DATA AVAILABILITY
The raw RNA sequence data is available in the NCBI Sequence Read Archive under
BioProject PRJNA996226. All code is available at https://github.com/peterinnes/
Innes_et_al_2023_GSD_RNA-Seq.
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