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Fusiform rust disease, caused by the endemic fungus Cronartium quercuum f. sp. fusiforme, is the most damaging disease affecting
economically important pine species in the southeast United States. Unlike the major epidemics of agricultural crops, the co-
evolved pine-rust pathosystem is characterized by steady-state dynamics and high levels of genetic diversity within environments.
This poses a unique challenge and opportunity for the deployment of large-effect resistance genes. We used trait dissection to
study the genetic architecture of disease resistance in two P. taeda parents that showed high resistance across multiple
environments. Two mapping populations (full-sib families), each with ~1000 progeny, were challenged with a complex inoculum
consisting of 150 pathogen isolates. High-density linkage mapping revealed three major-effect QTL distributed on two linkage
groups. All three QTL were validated using a population of 2057 cloned pine genotypes in a 6-year-old multi-environmental field
trial. As a complement to the QTL mapping approach, bulked segregant RNAseq analysis revealed a small number of candidate
nucleotide binding leucine-rich repeat genes harboring SNP associated with disease resistance. The results of this study show that
in P. taeda, a small number of major QTL can provide effective resistance against genetically diverse mixtures of an endemic
pathogen. These QTL vary in their impact on disease liability and exhibit additivity in combination.
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INTRODUCTION
Endemic pathosystems of plant disease are characterized by
steady-state dynamics between host and pathogen populations,
in which negative frequency-dependent selection maintains
genetic polymorphism and ensures that neither player gains
the upper hand (Ennos 2015; Tellier and Brown 2007). This
contrasts with epidemic pathogens that cause catastrophic local
extinction events and large fluctuations of population size in
both the host and the pathogen. In agricultural plant breeding,
much attention has been focused on epidemic pathogens and
the identification of specific host resistance genes that confer
resistance against the predominant race of the pathogen in the
local production environment (Saintenac et al. 2013; Vossen et al.
2003). The traditional experimental approach for identifying
these gene-for-gene interactions is geared toward epidemic crop
pathogens since it involves isolating a pure strain of the
predominant pathotype from the production environment and
testing it for virulence against a panel of known host resistance
genes (Keen 1990).
In endemic pathogens of forest trees, millions of years of

coevolution result in a large degree of genetic variability, both in
the host and the pathogen (Thompson and Burdon 1992). Studies
of endemic fungal pathogens of forest trees have indicated little
or no discernible population structure, making it difficult to
adequately sample wild pathogen populations (Hamelin et al.
1994; Mercière et al. 2017). In these pathosystems, the host
population may adapt to the pathogen through increased
tolerance to the disease, reducing the fitness benefit of

qualitative resistance genes (Roy and Kirchner 2000). None-
theless, effective qualitative resistance is highly sought after in
production forestry, since endemic diseases result in significant
losses of merchantable timber and other forest products through
mortality or decreased wood quality (Mercière et al. 2017;
Anderson et al. 1986; Powers et al. 1974). Gene-for-gene
interactions discovered in laboratory settings using single-strain
inoculation experiments should be interpreted within the context
of endemic forest pathogens rather than from the agricultural
paradigm, since there is little chance that the single-race isolate
will be present in any given environment. New population-level
approaches for identifying gene-for-gene interactions in these
pathosystems should be focused on effectors rather than
pathotypes, since in the absence of reproducible pathotypes, it
is the allele frequency of the cognate effector that defines the
efficacy of the host resistance gene.
The pine-rust pathosystem is an ideal platform for studying

genetic disease resistance against co-evolved endemic pathogens.
Pinus taeda L. (loblolly pine) is the most widely planted forest tree
species in the world, established on over 13 million hectares in the
southern United States for fiber, biomass, and wood production
(Prestemon and Abt 2002). The species is used extensively in
Africa, Asia, and South America (Schultz 1999). Fusiform rust
disease, caused by the endemic fungus Cronartium quercuum
(Berk.) Miyabe ex. Shirai f. sp. fusiforme (abbreviated Cqf hereafter),
is the most important disease affecting pine species such as
P. taeda in the southern United States (Kubisiak et al. 2005; Wilcox
et al. 1996). Annual losses from fusiform rust disease range
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between $40 and $100M (Anderson et al. 1986; Cubbage et al.
2000; Powers et al. 1974). The host-parasite interaction between
Cqf and various species of pine dates back as early as the Jurassic
period, preceding the split of the Laurasia supercontinent (Millar
and Kinloch 1991; Wilcox et al. 1996). Monokaryotic (1N)
basidiospores are released from telia on the underside of oak
leaves in the early spring and are wind-dispersed to nearby pines.
Infection of young pine trees by Cqf occurs through cotyledons,
needles, and soft stem tissue. It results in the formation of
spindle-shaped woody galls (Supplementary Fig. 1), which
reduces the structural integrity of the wood. Galls formed on
the main stem in the first 5 years of the tree’s life cycle often
result in mortality from stem girdling or wind breakage, but galls
formed on branches are usually tolerated. Dikaryotic (N+ N)
aeciospores are released from the galls in the early spring and are
wind-dispersed to nearby oaks where they can germinate on the
underside of oak leaves to complete the life cycle (Czabator
1971). Due to the large geographic deployment area and long-
lived nature of P. taeda, durable genetic resistance to fusiform
rust is one of the most important breeding objectives for the
species (Isik and McKeand 2019).
Studies reporting genomic mapping of resistance loci in

P. taeda date back to 1996, and in all cases, the objective was
identifying resistance genes that confer resistance to single-race
isolates of Cqf (Amerson et al. 2015; Isik et al. 2012; Wilcox et al.
1996). In the first mapping study in which the Fr1 resistance QTL
was identified, two single-race isolates were used in a controlled
inoculation experiment. Using a genomic map consisting of
several hundred RAPD markers, a QTL was identified for resistance
against one isolate but not the other, leading the authors to
conclude there was contrasting virulence between the isolates
against the Fr1 gene (Wilcox et al. 1996). The mapping of the other
eight named resistance loci, Fr2 through Fr9 was described in
Amerson et al. (2015). In these experiments, seven different pine
families were tested with a set of five single-gall isolates in
controlled inoculations, resulting in the naming of an additional
eight resistance loci, most of which were clustered on a single
linkage group (LG) (Amerson et al. 2015). In the case of Fr1, the
resistance QTL was only observed using specific rust isolates, and
the localization of the gene was approximate since the genetic
map only consisted of several hundred RAPD markers to cover a
genome greater than 22 Gb in size (Neale et al. 2014). These
factors, coupled with the expensive and time-consuming RAPD
genotyping procedure, made it difficult to incorporate Fr1 and the
other Fr QTL as targets for marker-assisted selection.
The fitness benefit of pathotype-specific disease resistance genes

is a function of the genetic diversity of the pathogen. Wild
populations of Cqf are characterized by low LD, high allelic diversity,
and extensive variation in genome size. Several studies found that
the genetic diversity of Cqf within local regions was equivalent to
the diversity among regions (Anderson et al. 1986; Burdine et al.
2007; Kubisiak et al. 2005). The lack of evidence for clear population
structure, together with the evidence for differential avirulence
profiles among the handful of Cqf isolates tested (Amerson et al.
2015; Wilcox et al. 1996), suggests a multitude of avirulence alleles
may be present in wild populations. This contrasts with the major
fungal pathogens of agricultural crops such as Puccinia graminis or
Magnaporthe oryzae, which are characterized by a relatively small
number of predominant races that affect large production areas
(Fang et al. 2017; Saintenac et al. 2013).
A significant gap exists in our knowledge of how genetic

resistance functions in co-evolved forest pathosystems. On the
one hand, genetic resistance in forest trees at the population level
has long been explained by a polygenic model of host resistance
in which the inheritance of disease resistance is controlled by
many alleles throughout the genome, each with a small effect (Isik
et al. 2012). Alternatively, some examples of the gene-for-gene
interaction paradigm have been demonstrated in tree species,

resulting in a proposed model in which the host may have
multiple pathotype-specific resistance genes corresponding to
different pathogen avirulence alleles (Devey et al. 1995; Wilcox
et al. 1996). In this study, we use a bulked inoculum strategy to
identify race-nonspecific broad-spectrum resistance (RNS-BSR)
QTL (Li et al. 2020). A small number of RNS-BSR resistance genes
have been identified in agricultural crops (Deng et al. 2017; Wang
et al. 2015), but have not yet been identified in any forest tree
species. We propose that major host resistance QTL harboring one
to many single genes may confer effective immunity against a
diverse group of Cqf isolates, provided the allele frequency of its
cognate effector is high in the fungal population. Other resistance
QTL may be more specific since their cognate effectors are at
lower frequency in the pathogen population. By averaging over
the genetic variability of the pathogen, QTL that confer RNS-BSR
relevant to production forestry should immediately become
apparent. This perspective on the allele frequency of the effector
is lost in single-strain inoculation experiments. Such experiments
may be successful in identifying gene-for-gene interactions but
yield little information about the frequency of these gene-for-gene
interactions in real environments.
The primary question we addressed in this study relates to the

genetic architecture of RNS-BSR in a conifer species, P. taeda. Can
environmentally stable, high-level disease resistance measured in
the progeny of a P. taeda parent be explained by the segregation of
single large-effect RNS-BSR QTL? Secondly, are RNS-BSR QTL that are
discovered in controlled inoculation experiments effective and
durable in real forest environments? Finally, if there are expressed
genes associated with RNS-BSR, are they similar to other known
disease resistance genes? In order to discover associations with RNS-
BSR in the transcriptome, we used a modified version of bulked
segregant RNASeq (Liu et al. 2012) to interrogate allelic variation in
the gene space for associations with the disease phenotype.

MATERIALS AND METHODS
QTL discovery populations
Since the goal of this work was mapping RNS-BSR QTL, parents 4 and 9
were selected as resistance donors due to their superior rust resistance
breeding values and high rank stability across multiple environments.
These parents were compared to the parents used in the mapping of the
named Fr genes using analysis of multi-environmental progeny trials in the
southern United States (Supplementary Table 1). From these results, it was
clear that the disease resistance of the parents used in the original
mapping experiments, including the parent 10-5 which is known to
segregate for the Fr1 resistance gene (Wilcox et al. 1996), was mediocre or
below average. The one exception to this is parent A, which was identified
as a heterozygote for the Fr2 resistance gene (Amerson et al. 2015); parent
A was ranked in the top 50, but significantly below parents 4 and 9. Parent
A has no known pedigree relationships with parents 4 or 9.
Two full-sib families were produced by crossing parents 4 and 9 to rust-

susceptible parents 202 and 313, respectively (Supplementary Fig. 3). In
both crosses, the rust-resistant parents 4 and 9 were used as a male. About
1500 seeds from each cross were harvested 18 months after the mating.
Seeds were sown at the USDA Forest Service Resistance Screening Center
in Asheville, NC, in May of 2018 for artificial inoculation (see details in
“Artificial inoculation of QTL discovery population” section). In August
2018, about 1000 full-sib seedlings from each family were individually
labeled and sampled for DNA and RNA extraction. These full-sib families
will hereafter be referred to as E4 and E9.

QTL validation population
A clonally propagated population was used to validate the field-level
efficacy of the QTL. This population was established in the early 2000s, and
is described elsewhere (Shalizi and Isik 2019). Briefly, the Atlantic Coastal
Elite population consisted of three disconnected eight-parent diallels
among 24 parents, which resulted in 76 full-sib families. Each full-sib family
was challenged with a bulked Cqf inoculum at the USDA Forest Service
Resistance Screening Center in Asheville, NC. The spore density used in the
assay was 50,000 spores/ml. From the original 76 full-sib families, 23 highly
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susceptible families were removed from the population. About 46 rust-gall-
free progeny from the remaining 53 full-sib families were clonally
propagated via rooted cutting techniques and planted across eight test
environments in the southeastern United States (Shalizi and Isik 2019). The
QTL validation population was scored 6 years after test establishment for
tree height, stem diameter, stem form, and the presence/absence of
fusiform rust disease. The disease incidence recorded at 6 years in the field
(eight locations) represents random wild environmental inoculum.
The QTL discovery populations (full-sib families E4 and E9) shared

extensive pedigree connectivity with the QTL validation population
described above (Supplementary Fig. 3). Parent 4 shared two grandparents
with a total of 406 clones, and shared one grandparent with a total of 556
clones. Parent 9 had 221 offspring clones in the validation population.
These offspring were distributed among six nested full-sib families.

Artificial inoculation of QTL discovery populations
Collection and preparation of the fungal inoculum were performed by
USDA Forest Service Resistance Screening Center personnel using standard
in-house protocols (K. McKeever, personal communication). The Cqf
inoculum used in the study was composed of a mixture of 150 different
single-gall isolates. These isolates were collected from five regions in the
southeast United States known to have the highest fusiform rust incidence.
Within each region, three collections were made, with each collection site
being located at least 16 km away from any other collection site. Within
each collection site, aeciospores from ten individual galls on separate trees
were collected. Each sample was tested for spore viability using
germination tests, and samples with 15% or less germination were
discarded. Viable aeciospore samples from each collection site were then
mixed in equal volumetric proportions to produce a single collection,
which was then put through a stepwise process of desiccations and
packaged under vacuum in glass vials. In order to produce the
basidiospores used in the inoculation, desiccated aeciospores from three
collections per region were resuspended in sterile water at a concentration
of 1.2 × 10−3 g/ml, for a total of 15 aeciospore resuspensions representing
the five regions. These resuspensions were mixed in equal proportions and
used to inoculate the underside of oak leaves. Once telia appeared on
the undersides of the leaves (2–3 weeks after inoculation), the leaves were
clipped and suspended over acidified water (pH= 2) in order to release the
basidiospores. The acidified water was filtered through a Millipore system,
and the basidiospores were captured on filter paper. These spores were
then resuspended in sterile water at a concentration of 100,000
basidiospores/ml. Empirical dose-response studies found the concentra-
tion of 100,000 basidiospores/ml minimized the rate of escapes, or known
susceptible seedlings not developing disease due to a lack of pathogen
challenge, to 5% or below (Kuhlman et al. 1997).
Artificial fungal inoculations were performed at the USDA Forest Service

Resistance Screening Center in Asheville, NC using standard in-house
protocols. Briefly, spore suspensions were sprayed over 3-month-old seedlings
using the concentrated basidiospore inoculation system of Mathews and
Rowan (1972) at a concentration of 100,000 basidiospores/ml. Seven months
after inoculation, the seedlings were observed for the presence or absence of
galls. Disease incidence was recorded as a binary response variable for
individually labeled full-sib seedlings. The seedlings were then moved to
greenhouse facilities at the Horticultural Field Lab at North Carolina State
University, Raleigh, USA, for continued observation. A second observation was
made on the population 10 months after inoculation to confirm the original
disease incidence data and to ensure that disease symptoms that may not
have been apparent at 7 months were accurately recorded.

Marker genotyping and SNP filtering
In the QTL discovery population, genomic DNA was isolated from needle
tissue of seedling progeny from the two full-sib families, as well as two
replicates of each of the four parents used in the crosses. The samples
were genotyped with the Pita50K Axiom array developed for P. taeda in
October 2019 (Caballero et al., In Review). In total, 920 full-sib progeny
from family E9 and 1071 full-sib progeny from family E4 were genotyped.
In-house scripts were used to ascertain the parental genotypes and to
compare observed with expected progeny genotype ratios. The criteria for
SNP inclusion in the genetic map were threefold: (1) the SNP genotype
must be identical for both replicates of the same parent, (2) the SNP had to
be heterozygous in one or both parents, and (3) the progeny genotype
ratios must not differ significantly from 1:1 (segregation distortion).
Following SNP filtering, 6019 SNP were retained for linkage mapping in
family E9, and 8552 SNP were retained in family E4 (Supplementary Table

2). All SNP filtering was performed in the R programming environment
using customized in-house scripts.
In the clonal validation population (clonal field trials), 2057 clonal

varieties were successfully assayed with the Pita50K Axiom array. The SNP
for these clones were filtered to include only those SNP that had a minor
allele frequency >0.01 and were placed on the linkage map generated
from the QTL discovery populations. This resulted in a total of 10,040 SNPs
used in GWAS of the validation population.

RNA sample collection. Prior to the inoculation, two random samples of
100 seedlings of each family were taken by removing a single needle from
each seedling and immediately placing the tissue on dry ice, followed by
storage in a −80 °C freezer. This sample was taken to provide a random
sample of the population prior to the disease challenge, which was used to
construct the PacBio reference transcriptome and to estimate allele
frequencies from read count data. Seven months after inoculation, three
samples of diseased individuals and three samples of non-diseased
individuals were taken from each family (50 seedlings per sample or
150 seedlings in each category). A single needle from each seedling was
collected and immediately placed on dry ice, followed by storage in a
−80 °C freezer. At the 10-month disease assessment, one additional
diseased bulk of 50 individuals and one additional non-diseased bulk of 50
individuals were taken from both families, using the same procedure
outlined above. RNA from all samples was extracted simultaneously, using
conventional methods via the Qiagen RNEasy MiniPrep kit.

Linkage maps, QTL analysis, and model fitting. Linkage maps were
produced using the two-way pseudo-testcross design for both families.
Briefly, prior to linkage mapping, the genotype of each parent at each
marker was ascertained. For each cross, a linkage map was produced using
markers in either backcross configuration (AB:BB or BB:AB), resulting in
separate maps for the maternal and paternal genomes. Markers in the
intercross configuration (AB:AB) were used to generate the sex averaged
map for each LG, but these were dropped from the dataset prior to QTL
analysis since the linkage phase of heterozygous genotypes for which both
parents are heterozygous is unknown in an outbred F1 cross. The
consensus map combining the linkage maps from all four parents was
generated through linear programming methods. Details of these
procedures are presented in the Supplementary Materials.
All QTL analysis was conducted using the R package R/QTL (Broman and

Sen 2009). Interval mapping was conducted via the Expectation Maximization
algorithm, using a logistic regression model implemented in the scanone
function of R/QTL. LOD thresholds for declaring QTL were determined using
1000 permutations of the phenotypic data. Peaks that surpassed the LOD
threshold were declared as putative QTL, and their genomic positions under a
conditional model (with more than one QTL) were determined using the
refineqtl function. For identified QTL, genotype probabilities for each individual
were estimated by calc.genoprob. Individuals were assigned to two genotype
classes (Rr, rr) in family E9, and assigned to four genotype classes (rr/rr, Rr/rr, rr/
Rr, Rr/Rr) in family E4. These genotype classes were used as categorical
variables in generalized linear models. The amount of variance explained by
each QTL was estimated using the fitqtl function in R/QTL, which utilizes a
simple transformation of the conditional LOD score. Additive effects for QTL
haplotypes and specific contrasts were estimated using the GLIMMIX
procedure of SAS/STAT software v9.1 (SAS Institute, Cary NC 2013). In these
models, the susceptible haplotype (either one- or two-QTL susceptible
haplotype) was declared as the reference level.

Modeling the effect of QTL haplotypes. Disease occurrence was recorded
as a binary variable; yi= 1 if the seedling progeny had a gall on the stem,
and yi= 0 if the progeny was gall-free. The disease outcome is a realization
of the random variable Yi with the probability of π for 1 outcome and the
probability 1− π for 0 outcome. The response variable Yi is distributed
according to a Bernoulli distribution with the expectations E(Yi)= μi= πi
and Var(Yi)= σ2= nπi(1− πi) (Collett 2002). We modeled the effect of each
QTL haplotype (the odds of disease outcome) using the following logistic
regression model:

Yij ¼ loge
π

1� π

� �
¼ β0j þ βnxn (1)

Where Yij is the log-odds of the ith seedling in the jth family being 1, β0j
represents the fixed intercept or the mean disease incidence for family
j, βn is the logit-scaled regression parameter (fixed effect) for the average
effect of the nth QTL haplotype, xn is an indicator variable taking on values of
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0 or 1 for 0 or 1 alleles of the nth QTL haplotype. The odds ratios and the least
square means (probability scale) were calculated using the lsmeans option of
SAS GLIMMIX procedure (SAS Institute Inc. 2019). The number of haplotype
effects in the model was 2qwhere q was the number of QTL discovered in the
family. The design matrix for the haplotype effects was estimated from the
QTL probabilities in the output of calc.genoprob in R/QTL. For each individual,
the probability of both QTL genotypes at each QTL was estimated from local
marker data in the QTL regions using calc.genoprob, and the multi-locus
haplotype with the most support from the data (the highest probability) was
declared as the individual’s putative haplotype. Interaction terms were
explored in the models, but they did not improve the model fit in either
family and were dropped from the final analysis.

Bulked segregant RNASeq analysis
Contingency tables were used to identify polymorphisms associated with
disease. Variants called against the PacBio assembly for each family were
analyzed separately using a customized R pipeline. For each polymorph-
ism, a 2 × 2 matrix consisting of the summation of the reference allele
counts X and alternate allele counts Y across diseased bulks i= 1,…, n and
resistant bulks j= 1,…,m was computed, and the log of the count ratio
was obtained as follows:

LOD ¼ Log10

Pn
i¼1

XD=
Pn
i¼1

YD

Pm
j¼1

XR=
Pm
j¼1

YR
(2)

The odds ratio under the null hypothesis was derived by multiplying the
allele frequency observed in the random bulks by the total number of
reads in each disease category. Because the random bulks were sampled
prior to disease challenge, the read counts observed in these samples
could not have been influenced by pathogenesis, disease-induced
programmed cell death, or any other interaction with or contamination
by Cqf. Fisher’s exact test, via the native R function fisher.test, was used for
testing the null hypothesis of independence between rows and columns of
the matrix. p values were adjusted using Bonferroni correction.
Since this mapping exercise sought to identify variants in tight linkage to

dominant resistance genes, any SNP that were fixed in the diseased bulks but
polymorphic in the resistant and random bulks were automatically considered
potential candidates for fine mapping. In this context, all diseased individuals
are expected to be homozygous recessive (rr) at the resistance locus, while
non-diseased individuals would either be heterozygous (Rr) for the resistance
allele or homozygous recessive (rr), depending on whether the non-diseased
individual inherited the resistance allele or was an escape, respectively. In a
bulk sample composed of non-diseased or randomly selected individuals,
both alleles should be expected at the resistance locus. In a sample of
diseased individuals, either a single allele (the susceptible allele) or a high
frequency of the susceptible allele would be expected.

Genome-wide association analysis
Experimental-design adjusted predictions of clones were obtained from a
generalized linear mixed model and were used in genome-wide
association analysis (see details in the Supplementary Materials). The
GWAS function within the R package rrBLUP was used as a mixed-model
platform for association analysis (Endelman 2019). The following model
was used for the association analysis:

y ¼ Xβþ Zg þ Sτ þ ε (3)

With y representing a (2057 × 1) vector of probability-scaled clonal
predictions for fusiform rust incidence. X represents a (2057 × 3) design
matrix of ones relating the principal component loadings of each clone on
the first three principal components of the kinship matrix to the response
vector y, and β represents a (6171 × 1) vector of principal component
loadings for each of the 2057 clones on the first three principal
components of the kinship matrix, Z is the design matrix for the random
effects, in this case relating the additive genetic values for the 2057 clones
to the response vector y, g is a (2057 × 1) vector of additive genetic values
for each clone, S was a (2057 × 10,040) marker design matrix taking on
values of −1, 0, 1 for the minor allele homozygote, heterozygote, and
major-allele homozygote, respectively, τ was a (10,040 × 1) vector of fixed
marker effects, and ε is a (2057 × 1) vector of residual errors. The random
genetic background effect had the expectations g~N(0, Kσ2) with K

representing the realized genomic relationship matrix calculated from SNP
markers using the observed allele frequencies in the validation population
(VanRaden 2008). The residual errors were distributed ε � N 0; Iσ2e

� �
. The

loadings in β were determined from an eigenvalue decomposition of K.

RNASeq library preparation, sequencing, variant calling,
sequence annotation and phylogenetic analysis of the NLR
gene family
Detailed procedures used for RNASeq are described in the Supplementary
Materials. Briefly, PacBio ISOSeq libraries were produced from needle tissue
of 100 randomly selected seedlings from each family prior to the
inoculation in order to produce family-specific reference transcriptomes.
After the inoculation, Illumina libraries were prepared from multiple bulked
samples of the two disease categories in each family, and the short-read
data were aligned against the corresponding family-specific PacBio
reference transcriptome. Variants were called using FreeBayes (Garrison
and Marth 2012), and the digital read count data from the Illumina data
were used in bulked segregant analysis. Details pertaining to sequence
annotation and genomic alignment of the PacBio reference transcrip-
tomes, as well as phylogenetic analysis of the NLR transcripts discovered in
both families, are presented in Supplementary Materials.

RESULTS
Disease incidence
The first observation of the disease outcome in the QTL discovery
populations was taken 7 months postinoculation. There was a large
contrast in overall disease incidence between the two families. In
family E4, 26% of the seedlings were diseased. In family E9, 71% of
the seedlings were diseased. The populations were observed again at
10 months postinoculation. The mean incidence increased slightly to
28% in family E4 but it remained the same in family E9.

Genetic maps
Both families had the expected number of LGs (12) for the maternal
and paternal genomes. For family E4, the map consisted of 6835
markers with an average spacing of 0.6 cM and an individual map
length of 2024 cM per genome, with a maximum gap of 8.8 cM. The
map for family E9 had 4623 markers with an average spacing of
1.5 cM and an individual map distance of 3353 cM, with a maximum
gap of 23 cM. The consensus map combined the maps from both
families, and consisted of 10,204 markers distributed across 12 LGs,
with a total map distance of 3137 cM and an average spacing of
0.31 cM (Supplementary Table 4).
LG assignments from our consensus map for the Pita2.01

reference genome contigs were compared to previously published
LG assignments (De La Torre et al. 2019). A total of 7187 contigs
were placed on our consensus map, out of which only 2.8%
mapped to two or more LGs. A total of 15 contigs were placed on
three LGs; notably, all these contigs had the prefix “super” (e.g,
“super2789”, “super2905”). Out of these 7187 contigs, 1761 were
also placed in the De La Torre et al. (2019) consensus map.
Agreement between the two consensus maps was generally high,
with an average correlation between the map positions of 0.92
(Supplementary Fig. 2). The increased genetic resolution of our
map, due to larger population size, was readily apparent. Large
regions lacking any apparent recombination in the De La Torre
et al. (2019) map were resolved into unique positions in our map.
To make our analyses directly comparable with previously
published work, we renamed our LGs to be consistent with the
nomenclature in De La Torre et al. (2019), and re-oriented the
marker order for those LGs in which the marker order was inverted
in our map relative to the order in the De La Torre map.

QTL analysis
In family E4, a double QTL peak was observed on the paternal
complement of LG2 (Fig. 1) with a LOD score >20 from the output
of one-dimensional QTL scanning via the scanone function of the
R/QTL package (Broman et al. 2003). The QTL locations, as well as
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the overall model likelihood, were improved using the function
refineQTL, which utilizes a multi-QTL model to adjust the location
and effect estimates for each QTL (Broman et al. 2003).The two-
QTL model was a better fit to the data than the one QTL model,
resolving the doublet into two single, separate QTL which
together explained 31% of the variance (Fig. 1). The first and
second QTL each explained 23% of the phenotypic variance. The
95% Bayesian credible intervals for QTL1 and QTL2 were 0–0 and
29.3–29.4 cM, respectively (Table 1 and Fig. 2). The large
population size in each family and the large number of markers
contributed to narrow confidence intervals for the QTL locations.
We modeled the effects of the linked QTL on LG2 on the basis

of two-locus haplotypes. QTL haplotype effects (Rr/rr, rr/Rr, Rr/
Rr) for disease resistance in family E4 were significantly different
from the double-susceptible haplotype (rr/rr) (Table 2). The
relative frequencies of the single- and double-resistant haplo-
types in the population suggest the resistance alleles at the two
QTL are linked in repulsion on LG2 of parent 4. Individuals
inheriting the resistance allele at either QTL (Rr/rr or rr/Rr) had a
disease probability of 0.19. Individuals with both resistance
alleles (Rr/Rr), representing recombinant haplotypes, had a
disease probability of 0.007 (Table 2). Only one out of 156
individuals carrying both resistance alleles was diseased.

Individuals inheriting neither resistance allele (rr/rr) in family
E4 had a disease probability of 0.92. The average effects for the
two single-resistant haplotypes were not significantly different
from each other. These loci are hereafter termed GRID1 and
GRID2 (General Rust Immunity Determinant). One small QTL
peak on maternal LG7 was also observed in the results of
scanone which marginally surpassed the significance threshold
(not shown). However, this peak only explained 0.5% of the
variation, so was dropped from the model.
In family E9, a single QTL discovered on LG7 of the paternal

genome explained 14% of the variance, with a LOD of 29.8 (Fig. 1).
The 95% Bayesian credible interval for the QTL on LG7 extended
from 47.1 to 47.4 cM (Table 1 and Fig. 2). This QTL is hereafter
referred to as GRID3. The average effect for this QTL was highly
significant (Table 2), although not the same magnitude as GRID1
or GRID2. Individuals in family E9 that inherited the resistance
allele at this QTL had a disease probability of 0.54, while
individuals that did not inherit the resistance allele at this QTL
had a disease probability of 0.89 (Table 2).

GWAS validation
Significant associations were observed on LG2 and LG7 in the
same genomic regions as the QTL from the discovery population
(Fig. 3A). A single SNP marker (PitaSNP268432) at 184.6 cM on LG7,
surpassed the 5% false discovery rate threshold. This marker was
not mapped to the paternal complement of LG7 for family E9 in
the QTL analysis. A marginally significant SNP marker
(PitaSNP092601) located at 189.9 cM had a LOD value of 26.02
in scanone, and was mapped to the paternal complement of LG7
for family E9 (Table 3).
On LG2, two regions contained markers significantly associated

with rust resistance, the first region around 20 cM, and the second
from 28.6 to 33 cM (Fig. 3B). A total of nine SNP loci were
significantly associated with resistance on LG2, but only two of
these were mapped to the paternal complement of LG2 for family
E4 in the QTL analysis. These two SNP loci had LOD values of 15.1
and 21.5 in scanone (Table 3). A close agreement between the
expected and observed p values was evident for the vast majority
of SNP, with minimal inflation caused by long-range LD or
population structure (Fig. 3C).
Principal component decomposition of the kinship matrix

revealed four large subclusters in the validation population
(Fig. 4). Within each subcluster, a relatively large number of highly
resistant and a smaller number of highly susceptible clones was
evident, suggesting that disease resistance was not stratified by
population structure. This indicates that the parents contributing
the rust resistance alleles were used in many crosses that spanned
all four large-scale strata within the validation population.

Bulked segregant RNASeq
The average sequence coverage of the PacBio reference
transcriptomes was around 163x for both families (Supplemen-
tary Materials). This amount of sequence coverage was
associated with >98% agreement between SNP identified in
RNAseq and whole-genome-sequence datasets in humans
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Fig. 1 Genome-wide LOD profile for family E4 (red dots) and
family E9 (blue dots) from one-dimensional QTL scanning via
scanone function of R/QTL. Three loci, one on paternal LG7 of family
E9 and two on paternal LG2 of family E4 showed large effects on
disease outcome. Paternal linkage map is displayed with LG
identifiers ending in “.P”. Map positions are given along the x-axis
of each subpanel in centimorgans (cM). The inset on the top right
shows the improvement of the model likelihood under the two QTL
model implemented in refineQTL function of R/QTL compared to the
one QTL scanone model for the two peaks on LG2, with LOD values
approaching 70 under the two-QTL model. The LOD profile over the
maternal linkage map is not shown, since no QTL were discovered
on maternal LGs.

Table 1. Genomic localization of QTL discovered in full-sib families E4 and E9.

QTL Parent LG Left (cM) Right (cM) 95% CI (cM) Variance (%)

GRID1 4 2 PitaSNP011719 (0) PitaSNP218776 (0.38) 0–0 22.5

GRID2 4 2 PitaSNP023281 (27.7) PitaSNP157585 (31.3) 29.3–29.4 22.9

GRID3 9 7 PitaOCSNP554671 (44.3) PitaOCSNP505248 (49.2) 47.1–47.4 13.9

QTL identifier for the QTL, Parent identifier for the parent in which the QTL was discovered, Left (cM) first Pita50K marker to the left of the LOD peak, with
genetic position on the parental backcross linkage map in parenthesis, Right (cM) first Pita50K marker to the right of the LOD peak, with genetic position on
the parental backcross linkage map in parenthesis, 95% CI is the Bayesian Credible Interval for the QTL on the parental backcross linkage map in cM, Variance
(%) is percent variance explained by the QTL.
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Fig. 2 Regional linkage maps for the QTL discovered in families E4 and E9. Genetic distance (cM) is shown on the ruler to the left of the
figure. 1-LOD confidence intervals for QTL are shown in red. Closely linked markers validated for MAS are shown in blue text. Cyan Map of LG2
harboring the QTL discovered in family E4 (GRID1, GRID2). The paternal LG2 map from family E4 is shown to the right of the consensus map of
LG2. Blue Map of LG7 harboring the QTL discovered in family E9 (GRID3). The paternal LG7 map from family E9 is shown to the right of the
consensus map of LG7.

Table 2. Probability of chi-square test values for the QTL haplotype effects in families E4 and E9, odds ratios, Wald 95% confidence intervals of the
odds ratios, counts of seedlings in each haplotype category and least square means on probability scale with standard errors.

Term Pr > ChiSq Odds ratio 95% CI Count LS Means (SE)

Family E4

Intercept (rr) <0.001 Reference Reference 140 0.92 (0.29)

Rr/rr <0.001 0.021 0.011, 0.038 360 0.19 (0.14)

rr/Rr <0.001 0.022 0.012, 0.039 414 0.19 (0.12)

Rr/Rr <0.001 <0.001 <0.001, 0.003 156 0.007 (0.007)

Family E9

Intercept (rr) <0.001 Reference Reference 385 0.89 (0.016)

Rr <0.001 0.15 0.102, 0.211 532 0.54 (0.022)

For family E4, genotypes at the two loci GRID1 and GRID2 are separated by /, with R representing the resistance allele and r representing the susceptible allele.
In this model, the double-susceptible haplotype rr/rr was the reference level. For family E9, the susceptible haplotype rr was the reference level. Double-
resistant progeny of family E4 was almost immune to disease (1 out of 156 got diseased).
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(Piskol et al. 2013). In the transcriptome SNP dataset for family
E4, ten out of 71,848 SNP exhibited complete separation on the
basis of disease status, and had odds ratios of infinity (Fig. 5A).
These SNP were fixed in the diseased bulks but polymorphic in
the resistant and random bulks, and had an intermediate
minor allele frequency in the random sample (Fig. 5/B). Three
out of ten of these SNP were discovered within NLR genes
(Table 4).
In family E9, 65,849 variants were available for analysis out of

which 11 SNP had odds ratios of infinity, showing a complete
separation based on disease status. One of these was
found within an NLR gene, while another was found within a
partial NLR gene that only had a leucine-rich repeat domain
(Table 4).

Phylogenetic analysis of NLR genes
The transcriptome datasets for family E4 and E9 contained a total
of 231 and 288 NLR gene sequences, respectively. To determine
the relationship between the candidate RNS-BSR genes and the
rest of the NLR gene complement, the highly conserved NB-ARC
domain from each protein was used in a multiple sequence
alignment. Two of the candidate genes discovered in family E4,
tx_69 and tx_8565, were highly homologous in this domain and
clustered together within a small clade containing one other
protein, transcript tx_5551 (Fig. 5C and Supplementary Fig. 4). All
of the proteins within this clade were discovered in family E4. The
third candidate gene in E4, transcript tx_12122, did not share
significant sequence homology with the other two candidate
genes in family E4.
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Fig. 3 Major QTL on linkage groups 2 and 7 were validated in GWAS of clonally replicated field trial. A Genome-wide association analysis
results for 2057 clonal genotypes from the multi-environment trial. The −log(p-value) for a false discovery rate of 0.05 is shown as a horizontal
red dashed line. Markers are ordered according to genetic position on the consensus map along each LG. B Close-up of the region of LG2
harboring significant associations with rust resistance. The region between 15 and 20 cM contains markers that were mapped to the distal end
of LG2 on the paternal linkage map of parent 4 of family E4, in proximity to GRID1. The region around 30 cM contains markers that were
mapped in proximity to GRID2 on the paternal linkage map of LG2. C QQ plot showing close agreement with the null hypothesis for the vast
majority of markers included in the GWAS, while a small number of SNP in LD with the resistance QTL deviate from the expectation.

Table 3. Markers significantly associated with fusiform rust resistance in the GWAS of the multi-environment trial are tabulated below. The bold LOD
values correspond to markers that were also mapped to the paternal complement of linkage group 2 in family E4 and of linkage group 7 in family E9.

SNP marker LG POS Ref Contig Ref Pos Pr LOD MAF

PitaSNP268432 7 61.01 scaffold139972 67961 5.27 0.25

PitaSNP092601 7 55.77 scaffold1059 96582 4.33 26.02 0.17

PitaSNP263321 2 19.38 scaffold222845 75654 4.96 0.41

PitaSNP263320 2 19.50 scaffold222845 75644 5.27 0.41

PitaSNP175095 2 20.64 scaffold138101 20933 4.38 0.33

PitaSNP023277 2 23.18 C4860079 25027 4.82 0.30

PitaOCSNP591644 2 26.48 C4860079 22846 4.89 0.29

PitaSNP401164 2 28.59 C4292101 8503 6.32 0.21

PitaSNP023281 2 29.18 C4860079 28229 6.23 15.1 0.19

PitaSNP063966 2 33.38 scaffold221998 169691 4.87 21.5 0.40

PitaSNP065702 2 34.17 super4514 23866 4.96 0.43

Markers mapped to the paternal chromosomes of maps are italicized.
LG the linkage group of the consensus map, POS the genetic position (cM) of the consensus map, Ref Contig the contig of the Pita2.01 reference genome
harboring the SNP, Ref Pos the physical position (bp) of the SNP on the reference genome contig, Pr the −log10(p value) for the SNP, LOD the LOD value from
QTL analysis for the SNP if it mapped to the paternal complement of the corresponding chromosome in the QTL analysis, MAF the minor allele frequency.
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Sequence alignment and characterization
The alignments of the candidate genes against the Pita2.01
reference genome revealed differences in the NLR gene comple-
ment between the two families. Some isoforms (including tx_69
and tx_8565) were detected in one family but not the other, and a
large degree of variation in gene structure was observed. A
description of the candidate NLR genes discovered in the PacBio
reference transcriptomes is provided in the Supplementary
Materials. The alignment between the PacBio contigs discovered
in family E4 harboring SNP significantly associated with rust
resistance against the Pita2.01 reference genome is shown in
Supplementary Fig. 5.

DISCUSSIONS
We present the first evidence for putative RNS-BSR QTL in a
conifer genome. Some evidence for efficacy of the previously
identified Fr loci against bulked inocula was obtained (Isik et al.
2012), but the genetic map used to localize the Fr loci was based
on 311 markers and fewer than 100 individuals in each cross
(Amerson et al. 2015; Echt et al. 2011). This genetic resolution is
not high enough to rule out the existence of multiple linked
resistance QTL, and makes the determination of the number of
genes segregating in each family very difficult. Our demonstration
of one-to-many relationships between host resistance QTL and
fungal isolates is supported by high mapping resolution in the
QTL discovery populations, high-depth coverage of the expressed
gene content, and independent validation in a clonally replicated
field trial. Moreover, the field-level efficacy of the QTL mapped
here are much higher than the previously named Fr resistance
genes (Supplementary Table 1); presumably, this is because the

resistance QTL segregating in E4 and E9 may have less specific
resistance spectra, or recognize effectors that are common in the
pathogen population. Importantly, both of the LGs harboring rust
resistance QTL have been associated with resistance in previous
studies. LG2 was previously associated with rust resistance QTL; it
is the same LG believed to harbor six Fr loci (Amerson et al. 2015).
However, since parent 4 has no known pedigree relationships with
any of the other parents used in Amerson et al. (2015) study, and
since parent 4 shows significantly superior field-level rust
resistance to the parents used in the Amerson study (Supple-
mentary Table 1), we infer that the QTL segregating in family E4
are distinct from the those identified in previous studies. LG7,
harboring GRID3 in this study, was previously associated with a
rust resistance marker in a GWAS (Cumbie et al. 2020); however,
the predicted map position of GRID3 is ~100 cM away from the
predicted map position of SNP2374 reported in Cumbie et al.
(2020) study.
This discovery may help to answer long-standing questions

about the efficacy of qualitative resistance in complex forest
pathosystems. Resistance QTL may be variable in terms of their
resistance spectra and exhibit additivity with respect to their
impacts on disease liability. The long-term maintenance of such
effective qualitative resistance alleles in the host population is
likely facilitated by multiple factors. These factors include the
broad host range of the pathogen, the abundance of susceptible
trees in natural environments, the tolerance of the pine hosts to
the disease, and the fact that aeciospores released from galls can
reinfect oak but not pine (Czabator 1971). These factors would act
in concert to reduce the likelihood of large-scale epidemics
caused by the sudden emergence of a virulent pathogen
genotype within a local environment and maintain polymorphism
at large-effect resistance loci in the host population. Conversely,
these are the same factors that would maintain the efficacy of
these resistance genes over the long term, since the broad host
range and high levels of disease tolerance reduce the selection
pressure for virulence in the pathogen population (Roy and
Kirchner 2000).
For a resistance gene to be classified as a broad spectrum, its

protein must confer resistance against two or more pathogens or
pathotypes (Li et al. 2020; Ning and Wang 2018; Xiao et al. 2001).
From the results presented here, we infer that parent 4 carries two
QTL with similar broad-spectrum properties, and parent 9 carries
one QTL. In family E4, these QTL behave additively with respect to
the odds of disease outcome in the population, suggesting that
their resistance spectra and/or modes of action are not identical.
The evidence suggests that the QTL segregating in family E9 is
quantitatively different from the QTL segregating in family E4
(Table 1), and we infer that this difference is a function of different
resistance spectra and/or mode of action. Finally, the candidate
genes detected in the transcriptome are similar to other known
plant resistance genes (Dangl and Jones 2001), suggesting that
RNS-BSR against fusiform rust of pines may be mediated through
NLR resistance genes.
One likely explanation for the difference in disease incidence

between the two families is that the resistance allele at GRID3 in
family E9 has a narrower resistance spectrum, since it recognizes
an effector protein that is present at a lower frequency in the
pathogen population than the effectors recognized by GRID1 and
GRID2. In family E4, the additivity between the resistance alleles at
GRID1 and GRID2 suggests that they have recognition spectra that
are not identical. The disease incidence of the double-resistant
GRID1/GRID2 individuals was striking, with only one out of 156
individuals in this class being diseased. The additivity between the
resistance alleles at these QTL suggests that the probability of
infection may be a multiplicative function of the allele frequencies
of the virulence alleles in the pathogen population.
Despite a population history of high selection pressure for rust

resistance in the clonally replicated validation population (Shalizi

Fig. 4 Genetic variation for fusiform rust incidence was indepen-
dent of the population structure in the validation population.
Loadings of each clone on the first two principal components of the
kinship matrix revealed four large subpopulation clusters. Within
each cluster, both highly resistant (incidence ~0) and highly
susceptible (incidence >0.25) clones were identified. This was likely
caused by the diallel mating design, in which the parents
contributing the resistance genes were used in multiple crosses
that spanned all large-scale population strata. The average propor-
tion of “susceptible” clones in each full-sib family was 0.24.
Probability-scaled rust incidences are presented in the third row
and the third column to show how a similar ratio of resistant to
susceptible clones was observed in each cluster.

E. Lauer and F. Isik

295



and Isik 2019), polymorphism at the resistance loci was
maintained. This is likely due to the fact that a lower spore
density (~50,000 spores/ml) was used in the initial screening for
the validation population, which was only half the spore density
used in the QTL discovery experiment. This probably resulted in a
higher rate of escapes, which would have preserved the genetic
variation within families. It is important to note that the inoculum
used to screen the validation population was different from the
inoculum used in the QTL discovery experiment. Furthermore, the
disease recorded at the eight test sites was derived from wild
environmental inoculum. Nonetheless, the same genomic regions
were associated with rust resistance in both populations. The
principal component decomposition of the kinship matrix
revealed the existence of four large sub-groups, all of which
contained both highly susceptible and highly resistant clones (Fig.
4). The SNP with significant associations all had a moderate to
high minor allele frequency (Table 2), which reflects the low
effective population size and the nested family structure of the
population. The QQ plot showed a small number of significant p
values and a close agreement with the null hypothesis for the vast
majority of SNP, suggesting that the population’s history of
selection did not severely limit the genetic resolution of the
analysis (Fig. 3C). The known pedigree connectivity, combined
with the overall agreement between the genomic locations of the
QTL found in the discovery population and the marker-trait

associations detected in the validation population, suggests that
all three resistance alleles detected in GWAS are identical-by-
descent with the alleles detected in the QTL analysis.
The bulked segregant analysis, although not providing con-

clusive proof of function for the candidate genes, indicated that
these resistance QTL might harbor genes that are members of the
NLR superfamily. In family E4, the proportion of PacBio contigs
annotated as NLR-type resistance genes was only 0.006; but in the
set of candidate SNP showing a complete separation with disease
status, this proportion was 0.30. A similar enrichment was
observed for family E9. The large magnitude of this enrichment,
combined with the high depth of coverage of the expressed gene
content (~163x), suggests that the identification of these
transcripts as the causal factors of RNS-BSR observed in this study
is not due to chance alone. In family E4, which had threefold lower
rust incidence than family E9, two of the three candidate proteins
clustered into a clade that was private to family E4 (Supplemen-
tary Fig. 3). This suggests that the candidate genes in E4 may have
a similar function, and this function may be lacking from family E9.
More experimentation will be required to develop SNP markers
within these candidate genes to determine their linkage relation-
ships with the QTL on LG2 and LG7. Since the family-specific
reference transcriptomes were derived from a single time-point,
there may have been other expressed sequences in the
transcriptome that played a role in conferring resistance that
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Fig. 5 Bulked segregant analysis (BSA) using read count data from RNAseq. A Distribution of LOD values for variants discovered in RNAseq
dataset from family E4. Cutoff line for SNP candidacy is shown as a dashed red line. Only 11 SNP surpassed this threshold in family E4. B
Example of read count data for a SNP with a LOD value of ~2.9 (left panel) and a LOD value of infinity (right panel). C Amino acid sequence
alignment in the NB-ARC domain of the three candidate genes from family E4 (tx_69, tx_8565, tx_12122) and the one candidate gene from
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was not represented in the PacBio ISOSeq libraries. The fact that
multiple SNP were discovered on the candidate transcripts but
only one was associated with resistance in each case suggests
there were other highly homologous expressed sequences in the
genome, which is expected of duplicated gene families such as
NLR (Van Ghelder et al. 2019; Wegrzyn et al. 2014). This fact makes
the SNP discovered in bulked segregant RNAseq particularly
valuable, since they could help identify the causal gene in a group
of multiple duplicated genes and/or pseudogenes. However, since
Illumina data were used for SNP discovery, and there were other
SNP on each PacBio contig that were not associated with disease,
we can only conclude that the fragment of the transcript
encompassed by the paired-end reads aligning to the SNP site
were associated with disease resistance.
Because of the large number of gametes sampled within each

full-sib family, the genetic map produced in this study is one of
the highest resolution linkage maps ever produced for a conifer
species (De La Torre et al. 2019; Sewell et al. 1999; Westbrook et al.
2015). A total of 10,204 markers of the Pita50K Affymetrix array
were genotyped on two populations of ~1000 individuals each,
which undoubtedly contributed to the narrow confidence
intervals for the QTL detected in this study. The high resolution
of our map is evident in the comparison between map positions of
Pita2.01 contigs from our consensus map and the map published
in de la Torre et al. (2019) (Supplementary Table 2); large blocks of
contigs that were placed at the same position in the De La Torre
et al. (2019) map could be uniquely positioned in our map due to
a large number of recombination events. The same genomic
regions underlying the QTL were associated with field-level rust
resistance, confirming both the accuracy of the consensus map as

well as the efficacy and durability of the QTL across a broad
sample of environments in the southeastern United States (Shalizi
and Isik 2019).
The demonstration of one-to-many relationships between host

resistance QTL and fungal genotypes shows how simply inherited
qualitative genetic resistance can deliver effective levels of
immunity, despite the genetic variability of the pathogen. In crop
systems, resistance alleles with such strong effects would not be
expected to retain efficacy due to the inevitable adaptation in the
pathogen population, resulting in resistance breakdown (Janzac
et al. 2009; Li et al. 2003). However, in endemic systems such as
the pine-rust pathosystem, the selection pressure for virulence is
reduced due to physiological tolerance and the abundance of
susceptible genotypes of multiple species in the environment,
leading to the persistence of large-effect qualitative resistance
genes in the host population. Further experimentation will be
conducted to understand the pathogen side of the interaction and
validate the efficacy spectrum hypothesis presented here.

DATA AVAILABILITY
Raw .fastq files from the NovaSeq6000 instrument, as well as subreads.bam files from
the PacBio Sequel instrument used to produce the family-specific reference
transcriptomes were deposited at NCBI sequence read archive under BioProject
accession number PRJNA719490. QTL datasets formatted for import into R/QTL were
deposited at the Dryad depository and can be located using this https://doi.org/
10.5061/dryad.mcvdnck0x. Family-specific PacBio reference transcriptomes were
deposited at the Dryad depository and can be located using this https://doi.org/
10.5061/dryad.jsxksn08x. Variants discovered in the bulked segregant RNAseq
analysis were deposited at the Dryad depository as .vcf files, and can be located
using this url: https://doi.org/10.5061/dryad.hhmgqnkgg.

Table 4. SNP loci exhibiting complete separation (LOD=∞) on the basis of disease status in the bulked segregant RNAseq analysis. For each SNP, the
transcript ID and the position of the SNP within the transcript is reported. The reference genome contig and the position of the SNP within the
reference genome contig are also reported for transcripts that were able to be mapped to the Pita2.01 reference genome. A high-level annotation
description for each transcript is reported in the last column. Bold text represents transcripts discovered in family E4, while italic text represents
transcripts discovered in family E9a.

Transcript (pos) Reference Contig (pos) Annotation

tx_69 (5245) scaffold95090 (26711) AAM28917.1putative TIR/NBS/LRR disease resistance protein

tx_395 (4774) scaffold83796 (28383) ATI25035.1RNA polymerase beta subunit (chloroplast)

tx_879 (2785) super2297 (244416) ABO52899.1shikimate hydroxycinnamoyltransferase

tx_879 (2789) super2297 (244412) ABO52899.1shikimate hydroxycinnamoyltransferase

tx_8565 (272) C4274665 (421) AAM28917.1putative TIR/NBS/LRR disease resistance protein

tx_12122 (3309) C4204757 (4558) AAM28917.1putative TIR/NBS/LRR disease resistance protein

tx_13307 (3791) AFG49401.1hypothetical protein 0_16705_01

tx_14609 (226) super143 (212628) Nucleic acid-binding; zinc ion binding

tx_1326 (1081) scaffold51213 (380119) AFG46335.1hypothetical protein 0_1679_01

tx_6743 (34) C5166441 (51993) CAC35976.1putative metallothionein-like protein

tx_5752 (2778) C4493093 (13934) AAM28917.1putative TIR/NBS/LRR disease resistance protein

tx_6308 (1321) scaffold27173 (98112) Transcription coregulator activity

tx_12340 (692) scaffold109184 (8946) AAM28915.1NBS, partial

tx_13899 (381) AEW07674.1hypothetical protein 0_8542_02, partial

tx_15063 (561) scaffold135844 (112885) NA (no IPS match)

tx_15491 (1674) super4031 (72803) Protein binding; nucleus

tx_20495 (3368) scaffold47632 (103037) NA (no IPS match)

tx_20923 (1854) scaffold97392 (76864) AEW08424.1hypothetical protein 2_9455_01

tx_33102 (2759) AFG70890.1hypothetical protein 0_2234_01

tx_35272 (185) scaffold17636 (122491) AFG52121.1hypothetical protein UMN_962_01

tx_37649 (1715) C4327921 (2426) AEW09000.1hypothetical protein CL3078Contig1_01, partial
aFor full-length transcript ID’s corresponding to the identifiers in the reference transcriptomes, see Supplementary Table 2.
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