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Abstract
Wheat is a major food crop, with around 765 million tonnes produced globally. The largest wheat producers include the
European Union, China, India, Russia, United States, Canada, Pakistan, Australia, Ukraine and Argentina. Cultivation of
wheat across such diverse global environments with variation in climate, biotic and abiotic stresses, requires cultivars
adapted to a range of growing conditions. One intrinsic way that wheat achieves adaptation is through variation in phenology
(seasonal timing of the lifecycle) and related traits (e.g., those affecting plant architecture). It is important to understand the
genes that underlie this variation, and how they interact with each other, other traits and the growing environment. This
review summarises the current understanding of phenology and developmental traits that adapt wheat to different
environments. Examples are provided to illustrate how different combinations of alleles can facilitate breeding of wheat
varieties with optimal crop performance for different growing regions or farming systems.

Introduction

Genes for phenology and plant development, their interac-
tions with each other and the environment largely determine
if a wheat (Triticum aestivum L.) crop is successful. For
instance, in order to reach maximum seed size and number
(potential yield), wheat must establish, develop biomass and
flower at a time that coincides with optimal seasonal con-
ditions (Trethowan 2014). Flowering in winter risks frost
damage to reproductive structures, and suboptimal radiation
levels can reduce yield (Dreccer et al. 2018). Alternatively,
if crops flower too late in warm and dry environments, heat
damage and water limitation can reduce yield (Flohr et al.
2017). Other aspects of plant biology beyond development
are important for adaptation, including winter hardiness and

plant architecture, and these must also be co-ordinated with
seasonal development.

Understanding the genetic basis for variation in phenol-
ogy and other adaptive traits can inform crop breeding
strategies and contribute to prediction of yield risks, such as
drought, frost or heat, and thereby improve crop manage-
ment. This review focusses on the molecular genetics of
wheat adaptation, and how this knowledge can facilitate
breeding wheat adapted to diverse growing environments or
different farming systems.

Defining and measuring wheat development

Development is the progression of the plant lifecycle,
independent of growth that is due to accumulation of bio-
mass. Development comprises distinct phases outlined in
Fig. 1. Feekes developed a scale (stages 1–11) classifying
the wheat lifecycle from tillering, stem elongation, heading
and flowering, through to ripening (Fig. 1b.) Another
developmental scale developed by Haun (1973) quantifies
progressive leaf emergence on the main stem of wheat,
which can then be used to determine leaf emergence rate,
otherwise known as phyllochron. In addition, a compre-
hensive scale describing the wheat lifecycle from germi-
nation through to ripening in a two-digit computer-
compatible decimal format was developed (Zadoks et al.
1974). The “Zadoks scale” comprises 100 stages describing
development of the wheat plant (Fig. 1c).
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The wheat seed usually contains four leaf primordia, and
more develop on the vegetative meristem during seedling
growth (Z10–Z19). Leaf primordia appear as ridges on the
apex, before elongation and differentiation into leaves. The
position of emerging leaves is predictable with each new
leaf developing on the opposing side of the apex to its
predecessor. When around three non-embryonic leaves have
developed, tiller buds located in the axils of leaves differ-
entiate to produce tillers (branches) sequentially: tiller 1
from the axil of leaf 1, tiller 2 from leaf 2 and so on.
Exceptions to this ordered leaf and tiller development have
been described and may be environmentally dependent
(Percival 1921). Each tiller has potential to produce sec-
ondary tillers. The overall extent of branching, tiller survi-
val and fertility are affected by temperature, light, nutrient
status and row spacing. Genetic control of tillering has also
been identified (Hyles et al. 2017; Zhao et al. 2019). The
primary stem continues to produce tillers, until the plant
transitions to the stem elongation (reproductive) phase.

A pivotal point in the wheat lifecycle is transition of the
shoot apex from vegetative to reproductive development
(Fig. 1a, Waddington et al. 1983). At this stage, production
of new leaf primordia ceases, and spikelet formation begins.
This represents a commitment to flowering and determines
the final leaf number (Wang et al. 1995). The shoot apex
elongates, followed by formation of two ridges on the sides

of the shoot apex, where previously only single ridges were
formed. These can be visualised microscopically; when the
plant has reached double-ridge stage, vegetative-to-
reproductive transition is complete (Slafer et al. 2015).
The lower ridge is a leaf primordium that will later abort,
while the upper ridge is the spikelet primordium that will
differentiate to form all the floret organs: glume, lemma,
palea and stamens of the floret (Moncur 1981). Subse-
quently, the terminal spikelet forms, and thereafter no fur-
ther spikelets are formed on the primary axis. The duration
of development from double ridge to the terminal spikelet
stage is the primary determinant of maximum spikelet
number (Rawson 1970).

Simultaneous to early stages of reproductive shoot apex
development, stem elongation proceeds. Nodes formed
during vegetative development thicken and become a point
of rapid growth and extension to form internodes, with each
successive internode longer than its predecessor (Evans
1975). This provides a means for the developing spike to
travel upwards through the stem from Z30 onwards. As the
stem elongates, spikelet differentiation and floret develop-
ment also occur. Wheat adjusts its growth in response to
environmental stress so that the last-formed spikelets at the
base and tip are the first to abort in poor-growing condi-
tions. Usually up to 12 floret primordia are formed in each
spikelet; however, only 3–5 survive and set seed, thought to

Fig. 1 Development stages in wheat. a Apex morphology, vegetative
to reproductive (Moncur 1981). b Feekes Scale, stage 1–11 (Feekes
1941; Large 1954). c Zadoks Decimal Scale, score 0–100 (Zadoks
et al. 1974). d Example of cumulative degree-days from emergence to

heading and emergence to flowering for near-isogenic lines (NIL)s
with differing vernalisation or photoperiod requirements grown in
inductive conditions (Bloomfield et al. 2018 and pers. comm.).
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be a function of the competition for resources between
spikes and stems during the elongation phase (Kirby 1988).

Synchrony of each developmental phase with optimal
seasonal conditions is necessary to optimise production of
biomass and yield. For instance, grain number and thus
yield in wheat is largely determined by growth rates during
the critical period that extends from emergence of the
penultimate leaf until early grain filling (Dreccer et al.
2018). Agronomically, it is thus vital to align this sensitive
stage to the likely occurrence of seasonal conditions (tem-
perature, radiation and water availability) most conducive to
wheat growth. The timing of developmental phases also
influences abiotic stress tolerance such as winter hardiness.
Seasonal conditions and regional factors, including avail-
able moisture, temperature, latitude and day length, all
influence the duration of developmental phases (Slafer and
Rawson 1994; Angus and Moncur 1977; Amir and Sinclair
1991; Trethowan et al. 2006). This dependence of crop
phasic development upon the growing environment repre-
sents a strong genotype by environment interaction, and acts
to synchronise the lifecycle with external conditions.

Early studies demonstrated that the switch from vegeta-
tive to reproductive development is promoted by prolonged
cold temperatures of winter (vernalisation) (Chouard 1960).
The duration of cold is important, for instance, a plant that
responds by flowering after a “cold snap” in autumn would
not survive in climates with long, cold winters. From a
developmental perspective, vernalisation influences the
duration of the vegetative phase, and is a large determinant
of the final leaf number. Vernalisation requirement is typi-
cally combined with day-length-responsive flowering, such
that plants that have vernalised over winter will flower
rapidly as days subsequently lengthen in spring (Chouard
1960). This led to the “long-day” and “winter-type”, clas-
sification of wheat. That is, the naturally occurring ancestral
plant type (wild type) requires vernalisation followed by
increasing photoperiod in order to flower. In regions with
cold winters, autumn sowing of these types allows flower-
ing to coincide with favourable temperatures and radiation
in early summer for optimum yield.

Interaction of plant development and the
environment

Alternative life-cycle strategies facilitate adaptation to dif-
ferent environments (Evans et al. 1975). Unlike winter
types, spring wheats require little-to-no environmental
inducement for flowering (Chouard 1960). These types
typically flower rapidly without vernalisation, with rapid
progression to the double-ridge stage, and reduced final leaf
number relative to winter wheat in similar growing condi-
tions. Spring wheat can also have varying levels of

sensitivity to day length. Day-length-insensitive spring
cultivars can progress to the terminal spikelet stage and
flower rapidly even in short days. Taken together, the
absence of vernalisation or day-length requirements allows
some spring wheats to be sown in environments with milder
winters and at different times of the year (see “Quantitative
traits in the farming system”, Fig. 3). From a study of wild
emmer wheat Triticum dicoccoides, it is thought that spring
types evolved from wild-type winter habit in the progenitor
of cultivated hexaploid wheat (Kato et al. 1997).

Since wheat can be grown across diverse environments
and at different times of the year, it is useful to calibrate
development versus temperature and day length using
accumulated thermal time or degree-days (DD), or photo-
degree days (PDD). This allows comparison of develop-
mental rates across different conditions, where the rate of
development per se differs. For DD (Eq. 1), calculations are
based on accumulated temperature above a base, and may
also consider an upper limit so that only temperatures
conducive to plant development are considered. DD can be
determined by summing daily average temperatures as the
equation below, or considers more frequent measures of
temperature or estimates thereof, for example, using sine
curve or triangular equations (McMaster and Wilhelm 1997;
Zalom et al. 1983; Snyder 1985).

DD aveð Þ ¼ Tmax� Tmin

2

� �
� Tbase: ð1Þ

Equation 1. Estimation of thermal time
DD(ave)=Degree-days, average calculation (°C d)
Tmax=Maximum daily temperature (°C)
Tmin=Minimum daily temperature (°C)
Tbase= Base temperature, typically 0 °C or 5 °C,

dependent on growth stage
In a study by Bloomfield et al. (2018), development of

near-isogenic lines (NILs) was recorded (in DD) under
inductive growth conditions; the approximate cumulative
DDs to heading and flowering relative to other scales of
development are shown in Fig. 1d (Bloomfield, pers.
comm.). Comparison of slow-developing wheats (photo-
period-sensitive winter types) versus fast-developing wheats
(photoperiod-insensitive spring types) illustrates the varia-
tion in response to temperature between these different
classes.

To determine PDD, cumulative time from sunrise to civil
twilight (day length) can be incorporated through the fol-
lowing equation (Wilsie 1962):

PDD ¼ DD � t: ð2Þ
Equation 2. Estimation of photo-thermal time
PDD = Photo-degree days (°C d h)
DD =Degree-days (°C d)
t = day-length (h)
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A similar approach can be applied to calibrate tempera-
ture accumulation during vernalisation. Vernal days, the
cumulative time in days until vernalisation saturation is
reached (i.e., double-ridge stage reached), are determined
by summing days from germination to development of the
final leaf (Robertson et al. 1996). Porter and Gawith (1999)
suggest that vernalisation occurs most rapidly at 4.9 °C, and
requires temperatures between −1.3 and 15.7 °C.

Molecular pathways of wheat development

Since the phenology of wheat determines adaptation to
different environments, an understanding of the genes
underlying developmental variation is paramount. The
major genes affecting wheat phenology (see Fig. 2) are
those related to vernalisation requirement, photoperiod
sensitivity and earliness per se, which is the duration of
development until flowering, in conditions where vernali-
sation and photoperiod requirements are met.

Vernalisation pathway

The key component of vernalisation requirement of wheat is
the VERNALIZATION1 (VRN1) locus, with a copy on the
long arm of chromosome 5, in each of the A, B and D sub-
genomes. VRN1 encodes an MIKC-type MADS box

(MINICHROMOSOME MAINTENANCE1/AGAMOUS/
DEFICIENS/SERUM RESPONSE FACTOR), with a con-
served 60 amino-acid MADS box DNA- binding domain
and three additional domains I (intervening), K (keratin-
like) and a C-terminal domain. VRN1 is most like the
APETALA1/FRUITFULL class (AP1/FUL) of MADS box
genes of Arabidopsis thaliana. These genes play important
roles in floral development in Arabidopsis, and can trigger
early flowering when expressed at high levels (Mandel and
Yanofsky 1995). Unlike the AP1/FUL genes of Arabi-
dopsis, transcription of VRN1 increases with exposure to
prolonged cold (Danyluk et al. 2003; Trevaskis et al. 2003;
Yan et al. 2003). It seems that VRN1 evolved from
recruitment of the floral-promoting potential of AP1/FUL
genes to provide a low-temperature-induced flowering
switch. This role for AP1/FUL-like genes is seemingly
unique to the temperate grasses. VRN1 is expressed in both
leaves and shoot apices of vernalised plants; accumulation
of VRN1 transcripts in the shoot apex is associated with the
switch to reproductive development, while transcription of
VRN1 in leaves facilitates the long-day flowering response
after winter (Fig. 2).

The precise mechanism that mediates low-temperature
induction of VRN1 is not known, but histone modifications
appear to play a role. Epigenetic modification of chromatin
by histone modification or methylation of DNA has been
well studied and linked to heritable changes in gene

Fig. 2 Major genes of the flowering pathway. a Gene activity prior
to vernalisation (winter wheat). b Gene activity in response to ver-
nalisation. c Gene activity in response to vernalisation and long days,

associated with transition to flowering. d Black arrows depict gene
action, colour (grey vs. green) illustrates gene expression state (inac-
tive vs. active) and circular arrows represent the feedback loop.
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expression and phenotypic variance (see Banta and
Richards (2018) for review). Histone modifications mediate
downregulation of the Arabidopsis flowering repressor
FLOWERING LOCUS C during vernalisation (Finnegan
et al. 2005). In cereals, before vernalisation, histones at the
promoter and the first intron of the VRN1 locus have
modifications associated with gene repression (histone 3
lysine 27 trimethylation, H3K27me3), and during vernali-
sation, there is a shift towards modifications typical of
active genes (histone 3 lysine 4 trimethylation, H3K4me3)
(Oliver et al. 2009). These histone modifications potentially
maintain repression of VRN1 before winter and conversely,
sustain activity of VRN1 after prolonged cold. This could
provide a “memory” of vernalisation, such that chromatin at
the VRN1 locus remains in an active state after winter even
when temperatures rise, allowing flowering to proceed
when days lengthen in spring (Oliver et al. 2009). Pre-
sumably, the chromatin state is restored during meiosis, as
the vernalisation requirement “resets” in progeny. During
seed development, cold conditions while ripening can ver-
nalise the progeny seed, and this memory of vernalisation is
retained post seed development, drying and harvest
(Gregory and Purvis 1936; Atayde 2019). The implications
of this need to be considered during seed increases and
cropping situations.

Mutations in the promoter and deletions in the large first
intron of VRN1 are both associated with elevated expression
of the gene in the absence of cold and accelerated flowering
without vernalisation (Kippes et al. 2018). These mutations
are found in the VRN1 gene from each of the A, B and D
genomes, and give rise to dominant alleles for reduced
vernalisation requirement, with the A-genome version
conferring the greatest effect (no requirement for cold
temperature to flower) relative to the B- and D-genome
alleles (reduced vernalisation requirement, semi-spring
types) (Trevaskis et al. 2003). The difference between the
sub-genomes is potentially due to the nature of the muta-
tions found in each allele (i.e., promoter insertion plus gene
duplication on A genome, intron deletions of differing size
on B and D genomes).

The first intron of VRN1 contains a binding site for the
T. aestivum glycine-rich RNA-binding protein 2
(TaGRP2), which blocks expression of VRN1 until it is
released by cold. During sustained low temperatures,
TaGRP2 interacts with a jacalin lectin carbohydrate-
binding protein TaVER2 (vernalisation-related 2) via O-
GlcNAc (O-linked β-N-acetyl glucosamine) (Xiao et al.
2014). This in turn leads to accumulation of VRN1 tran-
scripts and ultimately, flowering. Some wheats have
sequence variation (single-nucleotide polymorphisms,
SNPs) in the TaGRP2-binding site within the first intron
of the A-genome copy of VRN1. These reduce the binding
of TaGRP2, and are associated with a moderate reduction

of vernalisation requirement (Kippes et al. 2018; Xu et al.
2019). Loss of TaGRP2-binding sites might partially
explain why deletions in the first intron are associated
with increased VRN1 expression.

VERNALIZATION4 (VRN4), which also reduces verna-
lisation requirement, is located on chromosome 5DS and
arose from translocation of the region from chromosome 5A
that contains the VRN1 gene (Kippes et al. 2014). VRN4 is
associated with increased VRN1 transcript levels from the
extra gene copy at the VRN4 locus, and thus reduced ver-
nalisation requirement. The copy of VRN1 at the VRN4
locus contains the intron SNPs described earlier (those
which disrupt TaGRP2 binding in VRN1), which potentially
explains why VRN1 transcription is elevated in wheats that
carry VRN4. The origin of VRN4 in Australian cultivars has
been traced to cv. Gabo (Kippes et al. 2015), an important
cultivar introducing spring-growth habit and adaptation to
the Australian climate.

Other MADS box genes also play roles in regulation of
wheat flowering. Two other AP1/FUL-like genes TaFUL2
and TaFUL3 are paralogues of VRN1 that regulate spike
development and also influence flowering time, though to a
lesser extent than VRN1 (Li et al. 2019). Another MADS
box gene, ODDSOC2 (OS2) (also known as TaAGL33 and
TaAGL22 in wheat) is a repressor of flowering down-
regulated by vernalisation (Greenup et al. 2010, 2011). A
Short vegetative phase-like gene, Vegetative to reproductive
transition 2 (VRT2), located on the short arm of group 7
chromosomes, was suggested to be a repressor of floral
development downregulated by cold (Kane et al. 2005), but
subsequent studies found that transcription of this gene
increases at low temperatures, and that VRT2 more likely
activates flowering in cooperation with VRN1 (Trevaskis
et al. 2007; Xie et al. 2019). It remains unclear whether any
of these MADS box genes underlie variation in phenology
or any other developmental traits.

The gene that triggers long-day-induced flowering of
wheat is the functional equivalent of Arabidopsis FLOW-
ERING LOCUS T (FT), referred to here as TaFT1 for FT-
like 1 (Turner et al. 2005). FT is proposed to be “florigen”, a
plant hormone capable of triggering flowering in inductive
day-length conditions (Zeevaart 2006). In wheat, TaFT1 is
transcribed in long days, but only when VRN1 is active (i.e.,
in vernalised plants or those containing spring VRN1 alleles,
see Fig. 2), consistent with vernalisation being a pre-
requisite for long-day-induced flowering in winter wheat
(Yan et al. 2006). At the shoot apex, the TaFT protein
interacts with a bZIP transcription factor (encoded by
FLOWERING LOCUS D-LIKE 2, TaFDL2). The resulting
TaFT protein complex directly binds to the promoter of
VRN1 at sites with an ACGT core motif, and in some
genotypes and environments, this promotes further expres-
sion of VRN1 (Distelfeld et al. 2009).

Phenology and related traits for wheat adaptation 421



The VRN3 gene, which can reduce the vernalisation
requirement of wheat, has been mapped to TaFT1 (Yan
et al. 2006). Insertions within the promoter of TaFT1/VRN3
give rise to dominant alleles associated with elevated TaFT1
expression and rapid flowering, irrespective of vernalisation
or day length. Conversely, deletion of the B-genome copy
of TaFT1 delays flowering, extending the spike develop-
ment phase and increasing spikelet numbers under long-day
conditions (Finnegan et al. 2018). Other genes from the FT
family have been identified in cereals. Shaw et al. (2019)
found that TaFT2 had a mild effect on time to flowering and
a more profound effect on spikelet number, while the FT3
of barley (Hordeum vulgare) was associated with acceler-
ated flowering in short-day conditions (Halliwell et al.
2016).

VRN2 is a repressor of flowering that plays a key role in
blocking the long-day flowering response before winter
(Fig. 2) (Yan et al. 2004; Trevaskis et al. 2006). The VRN2
locus contains two closely related “zinc-finger CCT” genes
(ZCCT1 and ZCCT2), so-called due to the presence of a
zinc finger at the N terminus and a conserved CCT domain
first identified in the predicted protein sequences of CON-
STANS, CONSTANS-like and TIMING OF CAB
EXPRESSION-1 genes (Yan et al. 2004; Kippes et al. 2015;
Li and Xu 2017). VRN2 is expressed in long days where it
represses flowering by suppressing transcription of TaFT1
(Trevaskis et al. 2006; Hemming et al. 2008). This repres-
sion likely occurs via protein interactions with NUCLEAR
FACTOR -Y (NF-Y) genes (Li et al. 2011). NF-Y proteins
interact with proteins containing CCT domains and bind to
the CCAAT box of promoters to elicit expression responses
(Stephenson et al. 2007). Following winter, in vernalised
plants, the VRN1 protein is produced and binds to the
promoter of VRN2 and TaFT1. This downregulates VRN2
and so allows the photoperiod pathway to activate TaFT1 in
long days, to promote flowering (Trevaskis et al. 2006;
Deng et al. 2015). VRN1 binding to the promoter of TaFT1
potentially plays a more direct role in activating the long-
day flowering response.

The wild-type “winter” phenotype (requirement for ver-
nalisation) requires a functional copy of VRN2. Recessive
VRN2 loss-of-function alleles give rise to spring growth
habit in diploid wheats and barley, but in a day-length-
dependent matter, where flowering is accelerated in long
days. Loss-of-function alleles of VRN2 in hexaploid wheat
are unlikely to account for natural variation in phenology
due to genome redundancy masking allele effects; however,
triple loss-of-function genotypes of hexaploid bread wheat
have been generated by inducing and stacking loss-of-
function mutants of all three copies of the VRN2 gene (Yan
et al. 2004; Distelfeld et al. 2009). This suggests that there
may be potential for the generation of new allelic diversity
at VRN2 to broaden the adaptation of wheat.

Photoperiod sensitivity

Sensitivity to day length is largely determined by alleles of
the PHOTOPERIOD1 (PPD1) gene, with homoeologous
copies on the A, B and D genomes of hexaploid bread
wheat (chromosomes 2A, 2B and 2D) (Welsh et al. 1973;
Law et al. 1978). PPD1 belongs to a pseudoresponse reg-
ulator (PRR) family and is also known as PRR37. As for
VRN2, the PRR family of proteins feature the CCT motif
(Mizuno and Nakamichi 2005). Wild-type alleles of PPD1
have a rhythmic diurnal pattern of gene expression (peak in
the middle of the day), and are associated with day-length-
sensitivity, where lengthening/longer days accelerate flow-
ering (Diaz et al. 2012, Shaw et al. 2012). Allelic diversity
in PPD1 arises through deletions or a transposon insertion
in the promoter, and through copy-number variation (CNV).
Diaz et al. (2012) showed that alleles of PPD-B1 (along
with VRN-A1) were associated with increased copy number
of both genes, and resulted in earlier flowering (PPD-B1a)
or increased vernalisation requirement (VRN-A1w). These
results, along with a separate study in durum (Wu̎rschum
et al. 2017), suggest that copy-number variation is impor-
tant for the adaptation of wheat. Non-wild-type alleles of
PPD1 alter the expression of the gene, leading to elevated
transcription throughout the day, and accelerated flowering
through elevated TaFT1 expression. This can substitute for
long days and reduce day-length sensitivity.

Alleles that confer a strong insensitivity to day length
(e.g., an allele of the D-genome copy of PPD1, PPD-D1a,
with a deletion in the promoter region) are associated with
rapid flowering in all day-length conditions (Diaz et al.
2012; Wilhelm et al. 2009). Other studies (Bentley et al.
2011, 2013) describe the importance of the PPD-A1 and
PPD-B1 loci. It is likely that these differences are driven by
allele-specific effects (e.g., the nature of discrete mutations
in the PPD1 gene) rather than simply due to a particular
genome. It is worth noting that long days will accelerate
flowering to some extent, even in wheats with the alleles of
PPD1 that confer strong day-length insensitivity, suggest-
ing that additional genes or pathways can contribute to the
long-day flowering response of wheat (Bloomfield et al.
2018). Similarly, flowering of “day-length insensitive”
wheats can be further accelerated by elevated ambient
temperatures (Hemming et al. 2012).

Alleles of PPD1 that are associated with reduced day-
length sensitivity are also associated with an increased rate
of spikelet development and decreased spike fertility (Prieto
et al. 2018). A recent study attributed a shorter duration of
pre-anthesis stem elongation and decreased number of fer-
tile florets to PPD-D1a, highlighting the scope for increased
yield potential by selection for photoperiod-sensitive alleles
(Perez-Gianmarco et al. 2019). Conversely, it may be ben-
eficial to select for insensitivity in some environments as
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PPD-D1a has been shown to increase the duration of
flowering (across all tillers of a plant, not within a single
spike) (Jones et al. 2017). This ability of the plant to spread
flowering of tillers could be beneficial to minimise the
impact of a brief stress event, such as frost or heat, because
not all spikes on the plant will be at a stage most sensitive to
damage (Lukac et al. 2012).

Genes at other loci are also part of the photoperiodic
flowering pathway. Zhang et al. (2016) reported a TaPPD1
paralogue, TaPRR73, located on chromosome 4A, was
highly expressed in early-flowering wheats and contributed
to plant height. A locus on chromosome 7B, TaPPD-B2,
was associated with early flowering in long days, and linked
to high protein content of grain (Khlestkina et al. 2009).

Circadian clock

The importance of PPD1, a PRR gene, in determining
photoperiod sensitivity of wheat, highlights the fundamental
role of the circadian clock in coordination of the day-length
response (Mizuno and Nakamichi 2005). The circadian
clock is the intrinsic mechanism used by plants to syn-
chronise internal biological processes with the daily fluc-
tuating environment that is cycles of light and temperature
between day and night (Ford et al. 2016). Aside from a key
role in day-length perception, the circadian clock also reg-
ulates other important biological processes, such as photo-
synthesis, metabolism and the response to biotic and abiotic
stress, to maintain synchrony between internal processes
and daily changes in the external growing environment.

The plant circadian clock has been studied intensively in
Arabidopsis, with much less research undertaken in wheat.
The fundamental components appear conserved in cereals,
so Arabidopsis remains an exemplar model. The clock
consists of negative feedback loops that give rise to rhyth-
mic waves of gene expression through the day–night cycle
(see Hsu and Harmer 2014 for review). Circadian clock-
associated 1 (CCA1) and late-elongated hypocotyl (LHY)
are MYB transcription factor genes with peak transcript
levels occurring at dawn. Then there are a series of PRR
genes that are expressed sequentially from morning to
evening (PRR9, PRR7, PRR5, PRR3 and TIMING OF CAB
EXPRESSION 1 (TOC1)). In the morning, CCA1 and LHY
repress transcription of TOC1 (also known as PRR1). TOC1
expression peaks in the evening, and this in turn represses
CCA1 and LHY, creating a feedback loop. Other compo-
nents of the circadian clock include ARRHYTHMO/PHY-
TOCLOCK (LUX/PCL), EARLY FLOWERING 3 (ELF3),
EARLY FLOWERING 4 (ELF4) and GIGANTEA (GI) (see
Bendix et al. (2015) for review).

The circadian clock of Arabidopsis plays a key role in
the photoperiod pathway by regulating diurnal expression

of CONSTANS (CO), a light-sensitive activator of FT
(Samach et al. 2000, Lazaro et al. 2015). Peak transcript
levels of CO occur late in the afternoon (Suarez-Lopez et al.
2001). CO is degraded in darkness, which means that in
short days, when dusk arrives early, the peak of CO protein
accumulation will occur during the dark, and thus the pro-
tein degrades. In long days, peak expression coincides with
light when CO activates FT to induce flowering. TaHD1 is a
wheat CO orthologue located on the long arms of chro-
mosome group 6, distal to the TOC1 locus. Like CO,
TaHD1 exhibits diurnal gene expression (peak during the
day, low at night) in long days, suggesting conservation of
the day-length-sensing mechanisms between Arabidopsis
and cereals.

Light perception

Phytochromes perceive light and so contribute to photo-
period responses and regulation of the circadian clock.
There are two interchangeable states of phytochrome
chromoprotein, Pr and PFr. The inactive form, Pr, absorbs
red light, and the active form, PFr, absorbs light from the
far-red regions of the visible spectrum. PFr interacts with
phytochrome-interacting factors, helix–loop–helix tran-
scription factors that regulate processes in wheat, like
growth responses (towards the direction of sunlight or to
minimise shading for example), and flowering (Pearce et al.
2016). The proportion of PFr to the total chromoprotein,
known as the phytochrome-photostationary state of the
plant, affects architecture (for instance height, tillering
capacity and leaf mass per unit area), which is important for
light interception, photosynthetic capacity and yield (Evers
et al. 2006; Barnes and Bugbee 1991; Casal 1993; Ugarte
et al. 2010). Halliday and Davis (2016) suggest that Ara-
bidopsis phytochromes are responsive to temperature and
play a role in regulating plant temperature response. In
wheat, PHYTOCHROME C (PHYC) is the primary phyto-
chrome that provides light input into the photoperiod flow-
ering pathway (Chen et al. 2014). Unlike PHYC in
Arabidopsis, wheat PHYC is stable and does not require
other phytochromes for activity (Monte et al. 2003). In long
days, PHYC upregulates both PPD1 and TaHD1, accelerat-
ing flowering via FT1 (Chen et al. 2014; Pearce et al. 2016).

Earliness per se

Genes that influence duration of the wheat lifecycle in
conditions where vernalisation and photoperiod require-
ments have been met, are described as “Earliness per se”
(EPS) loci (Snape et al. 2001). An emerging theme is that
many cereal EPS genes correspond to components of the
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circadian clock. The EPS-3Am gene of Triticum mono-
coccum is an orthologue of the Arabidopsis LUX/PCL gene
(Gawronski and Schnurbusch 2012). Another EPS locus,
Eps-Am1, encompasses a deletion of the wheat ELF3 gene
(Zikhali et al. 2016). Ochagavía et al. (2019) reports that
allelic differences at TaELF3 confer differing levels of
sensitivity to temperature; earliness was associated with an
increased sensitivity to temperature during the late repro-
ductive phase of development in hexaploid wheat. The
same study also revealed temperature-dependent suppres-
sion of TaGI due to TaELF3. Both genes have also been
associated with phytochrome-mediated light signalling and
the circadian clock (Ford et al. 2016).

Secondary adaptive traits

Adapted wheat contains allelic combinations of the multiple
genes affecting phenology to ensure that the lifecycle is
appropriate to the growing conditions. Secondary to this,
other traits are also important and must be matched to
phenology and the environment.

Winter hardiness

In cold climates where wheat is sown in autumn, cultivars
require a degree of “winter hardiness” to survive freezing
temperatures during the vegetative phase. Key to this is the
ability to acclimate to cold, whereby freezing tolerance is
acquired in response to low temperatures. This can occur in
conjunction with the vernalisation response.

Cold acclimation is mediated by C-repeat-binding factors
(CBF), also known as dehydration-responsive element
binding (DREB) proteins. CBF/DREBs contain a DNA
motif of approximately 60 amino acids that bind specific
promoter elements (CRT-DRE boxes) of target genes
leading to their activation, for instance, late embryogenesis
abundant (LEA) (also known as dehydrins (DHNS)) and
cold-regulated (COR) genes. Li and Chen (1997) found
higher accumulation of DHNS transcripts in winter cereals
subject to cold relative to spring types, given the same cold
acclimation treatment. Upregulation of a cereal-specific
COR gene (wlt10) has been reported in response to low
temperature, with accumulation of transcripts more rapid
and sustained in a cold-tolerant winter background (Ohno
et al. 2001). Soon after exposure to cold, inducer of cbf
expression 1 (ICE1) is upregulated, followed by expression
of COR genes some hours later. In Arabidopsis, freezing
tolerance is related to the subsequent production of cryo-
protectants, such as sucrose, raffinose and hydrophilic
peptides, which protect membranes against dehydration
during freezing (Thomashow 2010). In wheat, changes in
the leaf content of lipids, sugars, sugar alcohols and amino

acids have been associated with cold acclimation and
metabolomics suggested as a measurement tool for chilling
and frost tolerance (Cheong et al. 2019).

Not only have CBFs been identified as key components
of the cold acclimation pathway, they have also been found
to contribute to allelic variation. At least 15 CBFs have been
identified in wheat with an important locus, FR2 comprising
a cluster of CBF genes close to VRN1 on group 5 chro-
mosomes. Copy-number variation of CBF genes at FRA2
was attributed to increased winter hardiness and therefore
adaptation in European winter wheat (Wu̎rschum et al.
2016), while variation at the FRB2 locus was associated
with frost tolerance, flowering time and improved yield
(Pearce et al. 2013; Badawi et al. 2007; Eagles et al. 2016).
The wild-type allele of FRB2 is often present in winter
wheat, and is considered advantageous for adaptation and
yield in frost-prone environments, opposed to a large
deleted segment frequently found in spring types, which
should be beneficial in areas with low-frost risk (Eagles
et al. 2016, 2018). Genetic linkage of the VRN1 and FR2
loci, and the association of vernalisation sensitivity with
particular alleles of FRB2, suggests that co-selection of
these independent loci is important for adaptation.

There are broader functions for CBF genes, including reg-
ulation of growth and development. These transcription factors
are members of the APETALA 2/ethylene-responsive element
binding gene family also involved in floral organ identity and
drought and salinity stress response (Yamaguchi-Shinozaki and
Shinozaki 2006). A controlled condition experiment involving
transgenic barley overexpressing TaDREB2 and TaDREB3,
showed that plants that constitutively expressed the transgenes
grew more slowly, flowered 2–3 weeks later and had changed
activity of other CBFs and improved frost tolerance (Morran
et al. 2011).

The cold acclimation pathway also potentially plays a
role in regulating plant architecture. A feature of many
winter-type wheats with a high degree of winter hardiness is
early prostrate growth habit, where plants have large tiller
angles at the vegetative stage of development (Li and Chen
1997). Prostrate plant types in the vegetative stage might
confer adaptation to cold and frosty winters by allowing the
plant to be covered by a blanket of snow that protects the
crop against freezing temperatures.

Tillering

Aside from prostrate growth habit, another feature of winter
wheat is a high degree of tillering, due to the increased
duration of the vegetative phase (a vernalisation-requiring
wheat will take longer to switch to reproductive development
relative to a vernalisation-insensitive plant). A larger number
of tillers can increase yield in a high-input (water, nutrient)

424 J. Hyles et al.



system due to production of additional fertile spikes. In
water-limiting environments however, a higher tiller number
may not contribute to increased yield, with additional tillers
unable to support fertile spikes. A tiller-reducing gene in
wheat, TIN, has been identified and studied for yield effects
in water-limiting environments of Australia (Richards 1988).
To date, there are conflicting reports of the benefit or dis-
advantage of reduced tillering due to TIN in Australian
farming systems, and it is likely that the limited number of
backgrounds in which the gene has been studied, along with
a strong genotype × environment interaction is confounding
(Mitchell et al. 2012; Hendriks et al. 2016; Fletcher et al.
2019). Exploring the optimal tillering potential in different
phenological types would be interesting.

Plant height

Final plant height is another developmental trait that influences
adaptation. In high-input irrigated farming systems, cultivars
with short stature are required to prevent lodging (Sanchez-
Garcia and Bentley 2019), whereas taller cultivars are often
suited to low-input dryland systems such as the Australian
wheat belt (Mathews et al. 2006). A major determinant of the
final plant height is the endogenous supply and sensitivity to
the hormone gibberellic acid (GA), which is involved in most
aspects of development, including germination, vegetative
growth, stem elongation and production of flowers and seeds
(see Yamaguchi 2008). GA is also implicated in stress response
pathways, for example, drought and salinity (Llanes et al.
2016). Other research shows that GA is an important compo-
nent of the flowering pathway of grasses (MacMillan et al.
2005) and in barley, early flowering triggered by mutations in
HvELF3 requires elevated GA biosynthesis (Boden et al.
2014).

GA promotes growth by an interaction with, and removal
of the effect of growth-inhibitory DELLA proteins. In this
process, bioactive GA binds to a receptor protein GA-
insensitive dwarf 1 (GID1) and DELLA to form a complex
that is targeted by an E3 ubiquitin ligase, degrading DELLA
(see Sun (2010) for review).

REDUCED HEIGHT 1 (Rht-B1, RHT1, chromosome
4BS) and REDUCED HEIGHT 2 (Rht-D1, RHT2, chro-
mosome 4DS) are homoeologous copies of the same
DELLA-encoding gene on the B and D genomes. Muta-
tions in these genes give rise to alleles conferring semi-
dwarf habit (reduced stem elongation). These mutations
create premature stop codons with subsequent truncated
proteins unable to form the GA–GID–DELLA complex.
Instead of being degraded, DELLA then accumulates and
represses growth. Dwarf alleles Rht-B1b and Rht-D1b
have been deployed in plant breeding to develop wheat
adapted to environments with high-yield potential.

Otherwise known as green revolution genes, they facil-
itate use of irrigation and nitrogen fertiliser to boost bio-
mass production, harvest index and yield, by ensuring that
crops are adapted to high-input farming systems and do
not lodge (Peng et al. 1999). Dwarf alleles can be traced to
a Japanese landrace, which was introgressed with US
germplasm to create the cultivar Norin-10. This germ-
plasm was then deployed by Norman Borlaug in the
International Maize and Wheat Improvement Centre
(CIMMYT) breeding program. Alleles from Norin-10
then spread to breeding programs throughout the world
via cultivars Pitic 62, Penjamo 62 and their progeny. The
success of these cultivars is due to their reduced height
and also likely improvement in productive tiller number to
increase yield (Evans 1975). Other dwarf alleles of Rht-B1
and Rht-D1 have been identified at these loci conferring
differing levels of height reduction that may be useful for
adaptation in different environments (Pearce et al. 2011).

An international trial found that in high-yielding environ-
ments, on average, there is no yield penalty associated with
Rht-B1b and Rht-D1b relative to wild-type alleles in near-
isogenic tall lines (Mathews et al. 2006). In low-yielding sites
however, semi-dwarfs yielded less than the tall wild-type NIL,
and so breeding for taller semi-dwarfs, or “short-talls” would
be ideal for adaptation and yield in these environments. This
result may reflect the disadvantage of dwarf alleles of Rht-B1
and Rht-D1 loci, that the whole plant is insensitive to GA. This
means that after germination, the growing sheath that delivers
the shoot from the seed to soil surface (coleoptile) is also
reduced in length. For this reason, Rht-B1b- and Rht-D1b-
carrying lines cannot be sown as deep as their wild-type
counterparts. This can have a negative impact on establishment
and the ability to capture soil moisture deep in the profile
(Whan 1976).

Other dwarfing genes responsive to GA and so with
potential to maintain long coleoptiles have been described
in wheat (Ellis et al. 2004). Recently, a mutant with lower
endogenous GA content (originally described in durum)
was identified as Rht18 on chromosome 6AS (Ford et al.
2018). An agronomic study (Tang 2016) suggests that
Rht18 is a promising candidate to replace Rht-D1b. Haque
et al. (2011) proposed that Rht14 and Rht16 are alleles at
the same locus, and based on the map location of Rht24 in
Chinese Spring (Wu̎rschum et al. 2017), it is possible that
this gene is allelic to Rht18. A distinct locus on chromo-
some 6A, Rht25, reduced height to a lesser extent than Rht-
B1b and Rht-D1b (Mo et al. 2018), and may be a good
candidate to produce “short-talls”. Other dwarfing genes,
including Rht4, Rht5 and Rht8, are attractive breeding tar-
gets for adaptation if they are not associated with growth
penalties such as short coleoptiles (Ellis et al. 2004).

There is a coincidence of height and phenology, and
studies have detected an association of VRN1 and PPD1 with
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plant height in both diverse and structured genetic wheat
populations (Camargo et al. 2018; Wilhelm et al. 2013). It is
important to consider dwarfing genes and phenological var-
iation together as gene–gene and gene–environment inter-
actions will affect the final plant height.

Quantitative traits in the farming system

Phenology is fundamental to the adaptation of wheat. This is
particularly evident in the cropping regions of Australia. Cul-
tivars with a strong vernalisation requirement and sensitivity to
day length are suited to regions of Australia which have cold
winters and a high risk of frost (Fig. 3). Most of the wheat-
growing regions of Australia have milder winters and hot and
dry summers, so wheats with a shorter lifecycle from lack of
vernalisation requirement and day-length sensitivity (spring
types) are traditionally sown after late autumn rain and flower
early in spring, before temperature and drought stress in sum-
mer (Fig. 3). In response to a changing climate, a field and
simulation study assessed performance of different combina-
tions of development alleles in near-isogenic lines (Hunt et al.
2019), and suggested that a shift to earlier sowing of slower-
developing genotypes in these regions would increase yield,
despite the predicted decrease in rainfall and increase in tem-
perature. For this to occur, Australian breeders need to develop
cultivars with slower rates of development and flowering
behaviour matched to each growing environment. This is
possible with the use of high-throughput marker platforms in
breeding programmes to select allelic combinations for adap-
tation (Grogan et al. 2016). Other traits, such as plant

architecture and tolerance to climatic stress, are also important
to optimise yield in each farming system. The complex net-
work of genes that underlie adaptation interact strongly with
the environment, and in a changing climate, breeding new
cultivars and changing agronomic practices will be required to
ensure future crop success.

Future possibilities

The current understanding of phenology and adaptation
was developed through reductionist approaches, such as
gene mapping in biparental populations, and detailed stu-
dies of NILs, to determine the genetic basis and develop
molecular markers for individual traits. These approaches
are often time consuming and labour intensive. Emerging
technologies, including whole-genome sequencing, high-
throughput genotyping and genome-wide analytical tech-
niques, are accelerating progress and allow research to be
conducted at a larger, more holistic scale. The tran-
scriptome for instance, captures the response of the genome
to the environment. Transcriptome analysis of diverse
genetic material adapted to different climates around the
globe should provide new insights. Other data, such as
proteomics and metabolomics, will also be invaluable, and
analytical techniques such as machine learning, utilised to
handle different types of data at scale. Technologies that
allow rapid resolution of complex systems will be impor-
tant to harness quantitative traits for future crop improve-
ment, particularly where these traits exhibit strong
environmental interactions.

Fig. 3 Seasonal lifecycle of wheat: major genes in the farming
system. Photoperiod response from insensitive (yellow) to sensitive
(red) conferred by alleles (a, c, d, b) at PPD1-D loci and vernalisation
requirement from none (green) to strong (lilac) conferred by alleles (a,
b, v, w) at VRN1-A loci (allele nomenclature from Cane et al. 2013)

changes life-cycle duration and adaptation to different growing
environments and times of sowing: I. Adaptation to cold winters and
early sowing—slow-developing wheat, II. Adaptation to mild winter—
mid-developing wheat, III. Adaption to hot summer and late sowing—
fast-developing wheat.
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Conclusion

Quantitative traits are complex due to the action of
multiple genes and their interactions with each other and
the environment, giving rise to a continuous distribution
of phenotypes. Phenology and plant architecture are
examples of quantitative traits that are fundamental
contributors to the adaptation of wheat. Major loci
include VRN, PPD, EPS, RHT and genes from the CBF/
DREB family, though there are many other minor-affect
loci that are important for adaptation. It is a worthy
pursuit to characterise the genes that underlie these traits,
and most relevant if the effect of alleles can be assessed
in the growing environment that best reflects the farmer’s
field. In this way, breeders can target allelic combina-
tions for specific wheat-growing regions and farm man-
agement systems. As the global climate changes, new
allelic combinations may be required for the adaptation
of wheat. For breeders to deliver future adapted culti-
vars, expedited methods of research to understand gene
pathways in relevant environments alongside develop-
ment of markers for selection are required.
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