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Abstract
Heritable epigenetic modifications may occur in response to environmental variation, further altering phenotypes through
gene regulation, without genome sequence changes. However, epigenetic variation in wild plant populations and their
correlations with genetic and phenotypic variation remain largely unknown, especially for clonal plants. We investigated
genetic, epigenetic and phenotypic variation of ten populations of an introduced clonal herb Hydrocotyle vulgaris in China.
Populations of H. vulgaris exhibited extremely low genetic diversity with one genotype exclusively dominant, but
significantly higher epigenetic diversity. Both intra- and inter-population epigenetic variation were related to genetic
variation. But there was no correlation between intra-/inter-population genetic variation and phenotypic variation. When
genetic variation was controlled, intra-population epigenetic diversity was related to petiole length, specific leaf area, and
leaf area variation, while inter-population epigenetic distance was correlated with leaf area differentiation. Our study
provides empirical evidence that even though epigenetic variation is partly under genetic control, it could also independently
play a role in shaping plant phenotypes, possibly serving as a pathway to accelerate evolution of clonal plant populations.

Introduction

In natural ecosystems, plants constantly experiencing
environmental changes often develop various mechanisms
to cope with habitat heterogeneity (Grativol et al. 2012;
Bian et al. 2013; Schulz et al. 2014). In addition to the
adaptation of generating new traits by genetic changes,
phenotypic plasticity provides an alternative regulation
(Boyko and Kovalchuk 2011; Schulz et al. 2014; Banta and
Richards 2018). More recently, epigenetic modification has

been widely considered as another candidate mechanism
between random genetic and environmental variation
accounting for plant phenotypes (Richards et al. 2017).
Epigenetic mechanisms such as DNA methylation, histone
modifications and small RNAs can cause stable alterations
in gene expression without changing underlying DNA
sequences (Verhoeven et al. 2010; Massicotte et al. 2011;
Grativol et al. 2012). Nowadays, the best-studied epigenetic
modification is DNA methylation, which is mostly the
addition of a methyl group deriving from S-adenosyl-L-
methionine to the C5 position of a cytosine residue, cata-
lysed by DNA methyltransferase (Cervera et al. 2002;
Bossdorf et al. 2008). For plants, DNA methylation mainly
occurs in three different sequence contexts, symmetric CG
and CHG sites (H=A, C, T) and asymmetric CHH sites in
transposable elements and repetitive sequences related to
transcriptional repression (Schulz et al. 2014).

Variation in DNA methylation may arise from genetic
control, environmental induction or spontaneous epimuta-
tions, affecting gene expression to regulate plant pheno-
types (Herrera and Bazaga 2011; Richards et al. 2017;
Banta and Richards 2018). Such epigenetically induced
phenotypic variation could be transiently reversible or
transgenerationally heritable due to different stability of
DNA methylation changes, which varies from liable within
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a generation to stably persistent in multiple generations
through meiosis and/or mitosis (Herman et al. 2014). Dif-
ferent from genetic variation, epigenetic variation could be
triggered by environmental cues directly, flexible to rapidly
buffer environmental fluctuations or heritable to be further
shaped by natural selection (Gao et al. 2010; Herman and
Sultan 2016; Richards et al. 2017; Thiebaut et al. 2019).
Thus, epigenetic variation may contribute to plant adapta-
tion, and provides an alternative and accelerated pathway
for ecological and evolutionary processes of plants (Boss-
dorf et al. 2008).

Recently, the role of epigenetic mechanisms in micro-
evolution has attracted much attention, leading to the
increasing number of studies on epigenetic variation and on
epigenetic effects in natural environments, with investigat-
ing DNA methylation patterns of wild populations as the
first step towards revealing the ecological importance of
epigenetic variation (Rapp and Wendel 2005; Bossdorf
et al. 2008; Richards et al. 2010; Herrera and Bazaga 2011;
Hirsch et al. 2013; Busconi et al. 2015). However, different
habitat conditions typically result in extensive genetic
adaptation, complicating estimation of epigenetic effects on
phenotypic responses of plants coping with environmental
variation (Verhoeven et al. 2010). Therefore, another major
concern is the dependence of epigenetic processes on
genetic variation (Massicotte et al. 2011). Some studies
argue that epigenetic variation is absolutely the direct
downstream consequence of genetic changes, while others
suggest that it is partly or completely autonomous from
genetic control to provide an additional inheritance system
for evolution (Riddle and Richards 2002; Richards 2006;
Bossdorf et al. 2008; Richards 2008; Verhoeven et al.
2010).

So far, our understanding of ecological epigenetic effects
on plants mostly originates from sexually reproducing
species (especially a few model organisms such as Arabi-
dopsis thaliana) through carefully controlled experiments
(Bossdorf et al. 2010; Zhang et al. 2013; Schmid et al.
2018). However, in many ecosystems, plants with clonality
is widespread and successfully dominant (Verhoeven and
Preite 2014; Douhovnikoff and Dodd 2015; González et al.
2016). Clonal plants that largely rely on asexual reproduc-
tion often lack variation-generating mechanisms of meiotic
recombination and segregation, leading to genetic mono-
morphism and reduced potential for genetically based
adaptation (Verhoeven and Preite 2014). Therefore, epige-
netic contribution is assumed to be particularly important in
ecological processes of such clonal plants, as clonal pro-
pagation can circumvent some epigenetic resetting during
meiosis, facilitating faithful persistence and transmission of
DNA methylation states (Verhoeven and Preite 2014;
González et al. 2016). Nevertheless, natural epigenetic
variation in clonal plant populations and its relationships

with genetic and phenotypic variation have remained little
studied (Johnson and Tricker 2010; Grativol et al. 2012;
Richards et al. 2012; Latzel et al. 2013).

To explore the role of epigenetic variation in natural
populations of clonal plants, we investigated phenotypic,
genetic and epigenetic variation of ten populations of an
introduced clonal herb Hydrocotyle vulgaris in China by
using amplified fragment length polymorphism (AFLP) and
methylation-sensitive amplified polymorphism (MSAP)
markers. Specifically, we addressed the following ques-
tions. (1) How much genetic and epigenetic variation exist
in H. vulgaris populations? (2) Are intra- and inter-
population epigenetic variations independent from genetic
variations? (3) To what extent do intra- and inter-population
epigenetic and genetic variations contribute to phenotypic
variation?

Materials and methods

The species

Hydrocotyle vulgaris L. (Araliaceae) is a perennial clonal
herb and commonly distributed from semi-moist to wet
conditions (Dong et al. 2015; Haslam 1988). It can form
plagiotropic stems along which each node has the capacity
of producing a ramet consisting of a petiolate leaf and
adventitious roots (Dong et al. 2013). The species relies on
vegetative propagation via stem fragments to form large
clones and spread widely (Dong et al. 2015; Liu et al.
2014). Hydrocotyle vulgaris is native in Europe and was
introduced to China in the 1990s as an ornamental plant
(Liu et al. 2014). Due to high phenotypic plasticity, rapid
clonal reproduction, strong adaptability, and exclusion of
other native species, it is considered potentially invasive in
China (Dong et al. 2015; Liu et al. 2014; Miao et al. 2011).

Sampling

From June to August, 2016, we collected 128 samples of H.
vulgaris from ten sites, with one population for each site
(Table 1). In each population, sampling points were at least
5 m apart. To ensure that all samples were at the same
developmental stage, we selected the mature ramet nearest
to the sampling point and its adjacent four interconnected
ramets as a sample (Appendix 1).

Molecular analysis

DNA extraction

For each sample, the leaf of the mature ramet nearest to the
sampling point was collected and dried by silica gel. Total
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genomic DNA from 30 mg of the dry leaf was extracted
using Dingguo Plant Genomic DNA Kit (Beijing, China).
Then the concentration and purity of the extracted DNAs
were detected via a NanoDrop 2000c UV–Vis Spectro-
photometer (Thermo scientific, MA, USA), and visualised
by 1% agarose gel electrophoresis. After that, the DNAs
were diluted to 20 ng/μL as the starting material for AFLP
and MSAP analyses.

AFLP analysis

AFLP (amplified fragment length polymorphism) genotyp-
ing was carried out according to the original protocol of Vos
et al. (1995) with several modifications (Appendix 2). Six
selective amplification primer pairs (E-AGG/M-CAA, E-
ACA/M-CAA, E-AAC/M-CAG, E-ACT/M-CAC, E-AAC/
M-CTA, and E-AGA/M-CCA) yielded clear polymorphism
and generated about 50 well-separated peaks (for each
primer pair) in 50–500 bp were screened from 120 primer
pairs based on a subset of eight samples (Zhang et al. 2010).
The fragment size of selective PCR products was assessed
by ABI 3100 automated Genetic Analyser (Applied Bio-
systems, CA, USA). To estimate the error rate in AFLP
genotyping, we randomly chose 24 DNA samples to
duplicate the AFLP procedure.

MSAP analysis

MSAP was used to detect differences in DNA methylation
status of samples. MSAP is a modification of the AFLP,
which replaces MseI of AFLP by a pair of isoschizomeric
restriction enzymes, HpaII and MspI, as frequent cutters
(Herrera and Bazaga 2010). Both of these two enzymes
recognise the sequence of CCGG but show different sen-
sitivities to methylation states of external or internal cyto-
sine residues (Cervera et al. 2002; McClelland et al. 1994;

Reyna-Lopez et al. 1997). Similarly, we chose six selective
amplification primer pairs (E-AGT/H-TAT, E-AGT/H-
TTC, E-ATC/H-TGA, E-AAC/H-TCG, E-ATG/H-TGA,
and E-ACA/H-TGA) from 140 primer combinations, using
the same DNA samples for screening AFLP primer pairs.
To estimate the error rate in MSAP genotyping, we ran-
domly chose 24 DNA samples to duplicate the MSAP
procedure.

Scoring

The raw molecular data (including replicates) were impor-
ted into Genemarker software version 2.2.0 (SoftGenetics
LLC®, State College, PA, USA) according to different pri-
mer combinations. We determined bin positions (i.e. locus)
within the fragment-length (size) range of 54–500 bp for
AFLP and 61–500 bp for MSAP analysis, respectively.
Binary matrices that ‘1’ denoted present peaks and ‘0’
denoted absence were generated by the software auto-
matically. After exporting them in Excel 2010 (Microsoft,
WA, USA), we modified each binary matrix by checking it
against the AFLP or MSAP profile by eyes.

For AFLP, the error rate was estimated for each primer
combination by comparing the binary matrix of the
24 samples and their replicates, calculated as 100 × (number
of discordant scores on two independent analyses)/(number
of scored markers × number of individuals) (Bonin et al.
2004; Herrera and Bazaga 2011). For MSAP, the error rate
of HpaII (eHpa) and MspI (eMsp) scores were calculated
separately for each primer combination based on the same
method. Overall, the error rates for AFLP, MSAP with
HpaII and MSAP with MspI were 0.34%, 0.77% and
0.53%, respectively (Appendices 3 and 4).

In the binary matrix of MSAP patterns, presence of both
EcoRI/HpaII and EcoRI/MspI digestions (pattern 1/1)
denoted an unmethylated state of corresponding locus (5′-

Table 1 Location, sample size
and genotypes for the ten
populations of Hydrocotyle
vulgaris

Pop. ID Location Coordinates N G Genotype ID

SZ Shenzhen 22°33′25″N, 114°3′3″E 10 1 G3(10)

WZ Wenzhou 27°58′29″N, 120°45′38″E 15 5 G3(8),G17(1),G18(3),G19(2), G20(1)

LS Lishui 28°23′11″N, 119°49′9″E 10 2 G3(9),G5(1)

TZ Taizhou 28°40′22″N, 121°25′37″E 15 4 G3(12),G13(1),G14(1),G15(1)

CQ Chongqing 29°33′34″N, 106°37′41″E 9 4 G3(6),G1(1),G2(1),G9(1)

NB Ningbo 29°53′50″N, 121°33′32″E 15 4 G3(12),G6(1),G11(1),G12(1)

HZ Hangzhou 30°18′48″N, 120°23′25″E 13 4 G3(10),G4(1),G5(1),G8(1)

WH Wuhan 30°32′55″N, 114°25′10″E 10 3 G3(7),G7(2),G16(1)

JX Jiaxing 30°41′55″N, 120°46′28″E 21 1 G3(21)

SH Shanghai 31°8′58″N, 121°26′30″E 10 1 G3(10)

Genotype ID G1–G20 represent the codes of the 20 different genotypes, numbers in the parentheses means
number of ramets sharing the genotype

N number of ramets sampled in each population, G number of genotypes
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CCGG target), presence of only one of EcoRI/HpaII (1/0)
or EcoRI/MspI (0/1) products was considered as external
cytosine hemimethylated or internal cytosine fully methy-
lated, and absence of both EcoRI/HpaII and EcoRI/MspI (0/
0) products represented an uninformative state (Gao et al.
2010; Pérez Figueroa 2013). Using msap package (Pérez
Figueroa 2013), each locus was classified as either a
methylation-susceptible locus (MSL) or a non-methylated
locus (NML) by estimating whether the observed propor-
tion of discordant HpaII–MspI scores across all samples
exceeded an error rate-based threshold (i.e. ERT; if <ERT,
defined as NML; if >ERT, defined as MSL) (Herrera and
Bazaga 2010). The threshold was specific for each primer
combination, calculated as eHpa+ eMsp− 2 eHpa eMsp, and
ranged from 0.0075 to 0.0227 in this study (Appendix 4).
Due to the fact that the banding pattern of NML depends
exclusively on sequence changes at the restriction target,
NML are used to assess genetic variation and MSL are used
to assess epigenetic variation (Cervera et al. 2002; Pérez
Figueroa 2013). Therefore, we transformed MSL data into a
binary matrix where ‘0’ represented HPA+ /MSP+ and
HPA-/MSP-, and ‘1’ represented HPA+ /MSP- and HPA-/
MSP+ for further analyses.

Phenotypic trait measurement

The two ramets adjacent to the ramet whose leaf was used for
molecular analysis (Appendix 1) were collected to measure
leaf area (LI-3100, Li-Cor, Lincoln, NE, USA), petiole length,
internode length, and leaf chlorophyll content (SPAD-502,
Konika Minolta, Osaka, Japan). Moreover, after drying at
70 °C for 48 h, we weighed biomass of leaf and internode,
respectively. Specific leaf area was calculated as leaf area
divided by corresponding leaf dry mass, and specific inter-
node length as internode length divided by corresponding
internode dry mass. Mean petiole length, internode length,
leaf area, specific leaf area, specific internode length and
chlorophyll content were used as phenotypic traits.

Statistical analysis

Firstly, we determined clonal membership of each sample
with GenoType (Meirmans and Tienderen 2004). After that,
genetic and epigenetic diversity parameters of each popu-
lation were quantified using Popgen32 software as (i) per-
centage of polymorphic loci (PLPgen) and epiloci (PLPepi),
(ii) Nei’s gene diversity (hgen and hepi) and (iii) Shannon’s
information index of diversity (Igen and Iepi). The variation
of phenotypic traits (mean petiole length, internode length,
leaf area, specific leaf area, specific internode length and
leaf chlorophyll content) of each population was estimated
as coefficient of variation (CV= 100 × standard deviation/
mean).

We used regression analyses to test the relationships
between intra-population epigenetic and genetic diversity and
between intra-population genetic diversity and phenotypic
variation using SPSS 19.0 (SPSS, Chicago, IL, USA). We
conducted Mantel tests to explore the correlations between
inter-population epigenetic distance and genetic distance and
between inter-population genetic distance and phenotypic
differentiation with GenAlEx 6.5 (Peakall and Smouse 2012).
For these analyses, data of all 128 samples were used. To
examine the relationships between intra-population epigenetic
diversity and phenotypic variation by regression analysis and
between inter-population epigenetic distance and phenotypic
differentiation by Mantel test, we used a subset of the data
with only 105 samples having the same genotype (dominant
genotype; see Table 1) based on AFLP markers to eliminate
potential effects of genetic variation.

For Mantel tests, we calculated Euclidean distance of
each of the six phenotypic traits (mean petiole length,
internode length, leaf area, specific leaf area, specific
internode length and leaf chlorophyll content) between
populations as measures of inter-population phenotypic
differentiation with NTSYS-pc (version 2.1, Exeter soft-
ware, Setauket, USA). The significance of the correlations
for Mantel tests was determined through the one-tail test
after 999 permutations in GenAlEx 6.5.

Results

Genetic and epigenetic diversity

Based on data of all 128 samples, AFLP analysis revealed
317 markers, of which 25 (7.89%) were polymorphic. The
error rate for the six primer combinations ranged from 0.15
to 0.57%, with the total error rate of 0.34% (Appendix 3).
We distinguished 20 genotypes from all of the 128 indivi-
duals, among which a single widespread clone accounted for
82.03% (n= 105) of the total samples and dominated in all
ten populations, whereas 16 genotypes were each represented
by only one single sample (Table 1). For genetic parameters
of different populations, the percentage of polymorphic loci
(PLPgen) ranged from 0 (SZ, JX and SH) to 2.21% (LS).
Nei’s gene diversity (hgen) ranged from 0 (SZ, JX and SH) to
0.0022 (LS), and Shannon’s diversity index (Igen) ranged
from 0 (SZ, JX and SH) to 0.0045 (LS) (Table 2).

Based on data of all 128 samples, the six primer com-
binations assayed in the MSAP analysis produced 468 clear
and reproducible fragments (‘loci’ hereafter), of which 50
(10.68%) were methylation-susceptible and 418 (89.32%)
were non-methylated. However, polymorphism level of
methylation-susceptible loci (MSL, 46%) was substantially
higher than that of non-methylated loci (NML, 21%)
(Appendix 4). Among populations, the percentage of
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polymorphic MSL (PLPepi) ranged from 4.00% (SZ) to
22.00% (LS). Nei’s diversity index for epigenetic variation
(hepi) ranged from 0.007 (SZ) to 0.096 (LS), and Shannon’s
diversity index for epigenetic variation (Iepi) ranged from
0.013 (SZ) to 0.139 (LS) (Table 2). Our results suggest that
the level of epigenetic diversity is higher than that of genetic
diversity in H. vulgaris populations.

Correlations between intra-population genetic,
epigenetic and phenotypic variation

We found a concave-up relationship between intra-
population genetic diversity and epigenetic diversity (for
PLPepi: R

2= 0.57, P= 0.054; for hepi: R
2= 0.57, P= 0.053;

for Iepi: R
2= 0.66, P= 0.023, Fig. 1), suggesting that epi-

genetic diversity reached a nadir at the intermediate value of
genetic diversity, and increased at higher and lower values.
This pattern still held when the population with excess
epigenetic variation but low genetic variation (the data point
on the top left in Fig. 1) was excluded (Appendix 5).

There was no correlation between intra-population genetic
diversity and phenotypic variation (Appendix 6). When
genetic variation was controlled (i.e. using samples of the
dominant genotype), intra-population epigenetic diversity was
positively correlated with CV of petiole length (for PLPepi: R

2

= 0.71, P= 0.002; for hepi: R
2= 0.61, P= 0.008; for Iepi: R

2

= 0.66, P= 0.005, Fig. 2a–c) and showed a quadratic (con-
cave) relationship with both CV of leaf area (for PLPepi: R

2=
0.62, P= 0.035; for hepi: R

2= 0.49, P= 0.098; for Iepi: R
2=

0.54, P= 0.066, Fig. 2d–f) and CV of specific leaf area (for
PLPepi: R

2= 0.61, P= 0.036; for hepi: R
2= 0.78, P= 0.005;

for Iepi: R
2= 0.74, P= 0.009, Fig. 2g–i).

Correlations between inter-population genetic,
epigenetic and phenotypic distance

Mantel test revealed a marginally positive correlation
between inter-population genetic and epigenetic distance
(r= 0.475, P= 0.068; Fig. 3a). Inter-population genetic
distance had no correlation with phenotypic differentiation

Table 2 Intra-population (A)
genetic, (B) epigenetic and (C)
phenotypic variation of
Hydrocotyle vulgaris

(A) Genetic variation (B) Epigenetic variation

Pop. ID PLPgen (%) hgen Igen PLPepi (%) hepi Iepi

SZ 0 0 0 4.00 0.0074 0.0130

WZ 1.26 0.0016 0.0031 8.00 0.0290 0.0433

LS 2.21 0.0022 0.0045 22.00 0.0964 0.1386

TZ 1.26 0.0012 0.0025 6.00 0.0186 0.0292

CQ 1.58 0.0017 0.0035 8.00 0.0275 0.0412

NB 1.58 0.0010 0.0023 8.00 0.0259 0.0389

HZ 1.58 0.0016 0.0033 16.00 0.0425 0.0666

WH 0.95 0.0018 0.0031 8.00 0.0255 0.0383

JX 0 0 0 16.00 0.0556 0.0832

SH 0 0 0 8.00 0.0096 0.0189

(C) Phenotypic variation

Pop. ID CV of petiole
length (%)

CV of internode
length (%)

CV of leaf
area (%)

CV of
SIL (%)

CV of
SLA (%)

CV of
chlorophyll (%)

SZ 21.69 40.94 45.18 40.58 17.40 7.93

WZ 23.65 25.38 34.78 38.22 17.75 9.21

LS 30.42 41.23 53.10 47.74 24.51 10.30

TZ 27.45 21.03 34.05 52.07 26.63 19.48

CQ 28.82 44.67 17.39 58.18 24.36 12.28

NB 27.61 32.75 48.37 47.41 15.51 6.88

HZ 32.47 30.67 44.04 46.52 17.82 5.89

WH 33.27 15.94 27.92 54.28 12.77 6.93

JX 53.50 33.20 68.16 38.97 39.67 12.59

SH 37.82 48.41 38.40 76.66 21.26 12.85

Population ID is described as in Table 1

PLP (%) percentage of polymorphic loci (PLPgen) and epiloci (PLPepi), h Nei’s genetic diversity (hgen) and
epigenetic diversity (hepi), I Shannon’s information index of genetic diversity (Igen) and epigenetic diversity
(Iepi), SIL specific internode length, SLA specific leaf area
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(Appendix 7). However, when effects of genetic variation
were controlled by using samples of the dominant genotype,
inter-population epigenetic distance was positively corre-
lated with leaf area differentiation (r= 0.405, P= 0.043;
Fig. 3b).

Discussion

Genetic and epigenetic diversity

Our study revealed that genetic diversity of the H. vulgaris
populations in China was very low, and a widespread clone

accounting for 82% of the total individuals dominated in all
ten populations. This result is similar to several highly
invasive clonal plants exhibiting genetic uniformity in their
introduced ranges, such as water hyacinth (Eichhornia
crassipes), alligator weed (Alternanthera philoxeroides) and
Japanese knotweed (Fallopia japonica) (Hollingsworth and
Bailey 2000; Geng et al. 2007; Zhang et al. 2010; Richards
et al. 2012; Zhang et al. 2016). The lack of genetic variation
may be attributed to several reasons such as limited sexual
reproduction, high degree of clonal propagation, successive
nested bottlenecks during invasive expansion, and unfa-
vourable environmental conditions for seed germination
(Vaughn et al. 2007; Zhang et al. 2010).

Fig. 1 Relationships between intra-population genetic diversity and epigenetic diversity using data of all 128 samples (n= 10)

Fig. 2 Relationships between intra-population epigenetic diversity and phenotypic variation of H. vulgaris populations using a subset of the data
with 105 samples having the same genotype (n= 10)
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Our study showed that epigenetic diversity of the H.
vulgaris populations was significantly higher than genetic
diversity, similar to several previous studies (Gao et al.
2010; Herrera and Bazaga 2010; Lira-Medeiros et al. 2010;
Richards et al. 2012). Epigenetic changes are now widely
known to be triggered by different environmental condi-
tions (Cervera et al. 2002; Verhoeven et al. 2010; Richards
2011; Preite et al. 2015). Moreover, there is also another
possible origin for epigenetic changes—spontaneous epi-
mutation, which occurs at higher frequencies than mutations
of DNA sequence when populations undergo a genetic
bottleneck (Richards 2008; Richards et al. 2010; Zhang
et al. 2010).

Correlations between epigenetic and genetic
variation

The relationship between genetic and epigenetic variation in
wild populations is still questionable, attracting the attention
of many researchers (Massicotte et al. 2011; Schulz et al.
2014; Foust et al. 2016). Some studies have revealed that
epigenetic variation is completely uncoupled from genetic
variation, indicating that the population-specific selection
could act on both genetic and epigenetic variation inde-
pendently (Riddle and Richards 2002; Verhoeven et al.
2010; Avramidou et al. 2015). Such independency may be
ascribed to random epigenetic drift-dramatic spontaneous
alterations of epigenetic marks occurring during mitotic
propagation or epimutations (Richards 2008; Banta and
Richards 2018).

In contrast, we found concave-up relationships between
intra-population genetic diversity and epigenetic diversity
of H. vulgaris, and a marginally positive correlation
between inter-population genetic and epigenetic distance.
Similarly, a significant correlation between genetic and
epigenetic variation has been detected in e.g. Hordeum
brevisubulatum, Viola elatior, Arabidopsis thaliana and
Spartina alterniflora, suggesting that epigenetic variation is
at least in part a downstream, subsidiary effect of genetic
variation (Shan et al. 2012; Schulz et al. 2014; Dubin et al.
2015; Kawakatsu et al. 2016; Robertson et al. 2017).

Moreover, methylation-based epigenetic distance of Viola
cazorlensis populations was found to be associated with
adaptive genetic divergence, indicating that epigenetic dif-
ferentiation could be driven by variable selections (Herrera
and Bazaga 2010). Such epigenetic modifications might be
caused by several cis and trans genetic information that
contributes to the acquisition and retention of epigenetic
marks at specific loci (Riddle and Richards 2002; Richards
2008; Herrera and Bazaga 2011; Richards et al. 2017).

Correlations of phenotypic variation with genetic
and epigenetic variation

Classically, DNA sequence variation is considered to
determine phenotypic variation (Grativol et al. 2012; Bian
et al. 2013; Hirsch et al. 2013). An association between
genetic (AFLP) markers and phenotypic traits was detected
in some of previous studies (e.g. Herrera and Bazaga 2008;
Medrano et al. 2014). However, contrary to our expectation,
there is no correlation of intra- or inter- population genetic
variation with phenotypic variation of H. vulgaris. It may be
attributed to the low proportion of the AFLP markers that
are positioned within gene sequences regulating the
expression of some specific traits (Caballero et al. 2013).

More recently, it was found that DNA methylation can
regulate gene expression levels through interfering with
transcription and influencing the formation of tran-
scriptionally silent heterochromatin, further leading to the
changes in phenotypes (Zilberman et al. 2007; Jablonka and
Raz 2009; Herrera and Bazaga 2010; Grativol et al. 2012).
In our study, when we used data of all 128 samples to
investigate the relationship between epigenetic variation
and phenotypic variation, PLPepi was significantly posi-
tively related to CV of petiole length and marginally sig-
nificantly (P < 0.1) related to CV of leaf area (Appendix 8),
while neither hepi nor Iepi was significantly associated with
intra-population variation of any of the six phenotypic traits
measured (data not shown). Moreover, there was no cor-
relation between inter-population epigenetic distance and
phenotypic differentiation (data not shown). After taking
advantage of clonal organisms with a low level of genetic

Fig. 3 Mantel test for the
correlation a between inter-
population epigenetic and
genetic differentiation using data
of all 128 samples, and b
between inter-population
epigenetic distance and
phenotypic differentiation using
a subset of the data with only
105 samples having the same
genotype
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variation by using a subset of the data with 105 samples
having the same genotype (i.e. the dominant genotype)
based on AFLP markers to tease out genetic effects, we
found that intra-population epigenetic diversity was sig-
nificantly associated with phenotypic variation in petiole
length, leaf area and specific leaf area, and inter-population
epigenetic distance was correlated with leaf area differ-
entiation. These results suggest that epigenetic variation
may independently play a role in shaping plant phenotypes,
and genetic effects may act in an additive way with opposite
direction when accounting for epigenetic influences on
phenotypic variation.

According to Medrano et al. (2014), individual traits tend
to be associated exclusively with either AFLP or MSAP
markers involved in genomic regions, and the probability of
such relatedness is roughly triple times higher in MSAP
than in AFLP markers. This may be the reason that indi-
vidual differences in the methylation status are more easily
detected to have a relationship with phenotypic changes
within natural plant populations. There is also a similar
finding in Solanum ruiz-lealii, showing that different flower
phenotypes between individuals were generated through the
changes of cytosine methylation polymorphism rather than
the genetic variation pattern (Marfil et al. 2009). The DNA
methylation differentiation among populations likely results
from different environmental factors in different sites as
specific epiloci may be an important component of response
to different habitats in plants, and previous studies have
indicated phenotypic traits could change through epigenetic
alterations in response to changing environments (Richards
et al. 2012; Medrano et al. 2014; Foust et al. 2016). Such a
mechanism has been proposed to extend the plasticity of a
single genotype to take advantage of a wider ecological
niche (Spens and Douhovnikoff 2016). Moreover, epimu-
tations could trigger phenotypic variation at equilibrium due
to different epigenetic states, with higher frequency of
occurrence than genetic mutations, serving as a faster source
to enhance the adaptive possibilities of asexual or low-
diversity species (Richards et al. 2012; Banta and Richards
2018).

Conclusions

Clonal plants with a low level of genetic diversity (e.g. H.
vulgaris in our study) offer advantages in studying causes
and consequences of epigenetic variation, since confounding
effects of genetic (DNA sequence) variation on plants can be
controlled by clonal identity (Verhoeven and Preite 2014;
Douhovnikoff and Dodd 2015). In this study, H. vulgaris
populations exhibited extremely low genetic diversity but
high epigenetic diversity. Even though epigenetic variation
was partly under genetic control, it might independently

shape phenotypic variation both within and among popula-
tions. Such epigenetically related phenotypic variation may
compensate for shortfalls in genetic diversity and facilitate
the wide distribution of clonality in natural environments,
possibly acting as an additional system to accelerate evolu-
tion of clonal plant populations (Kalisz and Purugganan
2004; Schrey et al. 2012; Douhovnikoff and Dodd 2015).
However, AFLP and MSAP methods only offer a limited
number of anonymous loci, unable to reveal causality
between genetic/epigenetic and phenotypic variation (Paun
et al. 2018). To further acquire insight into functional
characterisation from genetic/epigenetic loci to associated
gene expression effects to phenotypes, greater resolution
methods such as QTL mapping and reduced representation
bisulphite sequencing could be used (Verhoeven and Preite
2014; Foust et al. 2016; Richards et al. 2017).

Data archiving

Data available from the Dryad Digital Repository: https://
doi.org/10.5061/dryad.vk5c064.
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