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Abstract
Infectious diseases have a huge impact on animal health, production and welfare, and human health. Understanding the role
of host genetics in disease spread is important for developing disease control strategies that efficiently reduce infection
incidence and risk of epidemics. While heritable variation in disease susceptibility has been targeted in livestock breeding,
emerging evidence suggests that there is additional genetic variation in host infectivity, but the potential benefits of including
infectivity into selection schemes are currently unknown. A Susceptible-Infected-Recovered epidemiological model
incorporating polygenic genetic variation in both susceptibility and infectivity was combined with quantitative genetics
selection theory to assess the non-linear impact of genetic selection on field measures of epidemic risk and severity.
Response to 20 generations of selection was calculated in large simulated populations, exploring schemes differing in
accuracy and intensity. Assuming moderate genetic variation in both traits, 50% selection on susceptibility required seven
generations to reduce the basic reproductive number R0 from 7.64 to the critical threshold of <1, below which epidemics die
out. Adding infectivity in the selection objective accelerated the decline towards R0 < 1, to 3 generations. Our results show
that although genetic selection on susceptibility reduces disease risk and prevalence, the additional gain from selection on
infectivity accelerates disease eradication and reduces more efficiently the risk of new outbreaks, while it alleviates delays
generated by unfavourable correlations. In conclusion, host infectivity was found to be an important trait to target in future
genetic studies and breeding schemes, to help reducing the occurrence and impact of epidemics.

Introduction

Host genetic diversity affects infectious disease risk and
impact (Keeling 1999; Doeschl-Wilson et al. 2011). Heri-
table genetic variation in susceptibility, i.e. an individual’s
propensity of becoming infected when exposed to infectious
material, is ubiquitous, and many genetic selection schemes
in livestock and plants target reduction in host susceptibility
(Heringstad et al. 2000; Kover and Schaal 2002; Bishop

et al. 2010; Houston et al. 2010; Dos Santos et al. 2016;
Banos et al. 2017). A second host trait affecting disease
spread and severity that has been considered in epidemiol-
ogy is the hosts’ infectivity (Read and Taylor 2001; Geenen
et al. 2004; Keeling and Danon 2009; Brooks-Pollock et al.
2015), which refers to the ability of an individual, once
infected, to transmit infection. In livestock breeding, indi-
vidual variation in infectivity has not yet been exploited for
disease control.

Individual variation in host infectivity has been observed
in cases of super-spreaders, where a small fraction of highly
infectious individuals generates disproportionally many
new infections. Those have been described through the
Pareto principle, where 20% of infected individuals are
responsible for 80% of transmission events (Woolhouse
et al. 1997; Lloyd-Smith et al. 2005). Super-spreading has
been observed on a phenotypic level and is often attributed
to social behaviour or heterogeneous contact structure. For
example, in measles (Paunio et al. 1998), SARS and Ebola
(Shen et al. 2004; Wong et al. 2015) in humans, in Sal-
monella typhimurium infection in mice (Gopinath et al.
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2014), and in RNA-virus infections in bird species (Jan-
kowski et al. 2013). The existence of super-spreaders has
also been inferred in epidemiological models for bovine
tuberculosis in cattle (O’hare et al. 2014). Super-spreading
has often been attributed to characteristics of the pathogens
rather than the hosts, for example in Escherichia coli
infection in cattle (Chase-Topping et al. 2008). However,
emerging evidence suggests that infectivity and super-
spreading may be also partly controlled by host genetics
(Geenen et al. 2004; Doeschl-Wilson et al. 2011, 2018;
Lyall et al. 2011; Raszek et al. 2016; Anacleto et al. 2018).
Those findings imply that individuals can evolve different
disease response types affecting disease spread, and offer
new opportunities for genetic disease control that go beyond
the reduction of disease susceptibility (Doeschl-Wilson
et al. 2018; Tsairidou et al. 2018b). By using individual
genetic risk estimates for infectivity it may be possible to
prevent or mitigate epidemics in livestock populations
through reducing the presence of super-spreaders.

Epidemiological simulation models have shown that
removal of super-spreaders would be an effective means for
reducing epidemic severity (Lloyd-Smith et al. 2005).
However, identification of highly infectious individuals
prior to, or during the early stages of epidemics is extremely
difficult in practice. Hence such models can realistically
only predict the impact of removing super-spreaders as
reactive disease control. In contrast, genetic disease control
schemes are pro-active, i.e. preventive, as individuals can be
selected based on genotypic information that can be col-
lected at any stage, i.e. without the need of being exposed to
infectious material. However, such genetic selection pro-
grammes usually operate on longer time-scales (over gen-
erations of selection) compared to those usually considered
in epidemiological models. In epidemiology, the impact of
realistic, long-term, pro-active genetic disease control,
either alone or in combination with other control strategies,
has rarely been assessed. The epidemiological benefits of
genetic selection for reduced infectivity are thus currently
unknown.

Until recently, estimating host genetic effects for infec-
tivity from epidemiological data was not possible, as stan-
dard genetic evaluation tools routinely used in livestock
industry do not fully capture genetic variance in infectivity
(Lipschutz-Powell et al. 2012a, 2012b; Anche et al. 2015).
Both susceptibility and infectivity are expressed through
interactions between infected and non-infected individuals
and, when subject to heritable variation, represent indirect
genetic effects (IGE) (Lipschutz-Powell et al. 2012a; Anche
et al. 2015; Baud et al. 2017). For IGEs, the phenotype of an
individual depends on its own genetics and on the genetics
of other individuals in the same contact-group. In other
words, for infectious diseases, an individual’s infection
status depends on its own genetic susceptibility and the

genetic infectivity of its infected group-mates (which also
depends on their genetic susceptibility). Hence, infectivity
is not directly observable and on a phenotypic level is
confounded with susceptibility, as both affect the infection
status of group-members. Thus, infectivity and suscept-
ibility are latent traits that need to be inferred through
available, often incomplete, epidemic data. Conventional
IGE models that have proved adequate for production traits
(Bergsma et al. 2008; Bouwman et al. 2010), fail to capture
the dynamic, non-linear nature of disease processes (Lip-
schutz-Powell et al. 2013; Anche et al. 2015; Biemans et al.
2017). However, recent breakthroughs in statistical infer-
ence methods can now provide reliable estimates of genetic
effects for both infectivity and susceptibility from inferred
infection times, without requiring direct observation of an
‘infectivity phenotype’ (Pooley 2014; Anacleto et al. 2015;
Anche et al. 2015; Biemans et al. 2017). This implies that
one can select directly on the traits that drive the epide-
miology rather than on the observed infection status. With
the necessary methodology developed, it is timely and
relevant to consider the potential benefits arising from
adding infectivity as a new disease phenotype into genetic
analyses. In the context of livestock production, the ques-
tion arises whether incorporating this additional phenotype,
would make a sufficiently valuable contribution to current
breeding schemes. In other words, what is the expected
impact of additionally selecting for lower infectivity on
future disease prevalence and possibility of disease
eradication?

Genetic variation in IGEs has been shown to affect the
magnitude and/or direction of response to selection in
breeding schemes (Bijma et al. 2007; Ellen et al. 2007;
Bergsma et al. 2008; Bijma and Wade 2008; Ødegård and
Olesen 2011), and it has been suggested that exploiting
IGEs in animal breeding can substantially increase the rate
of genetic gain in the trait of interest (Ødegård et al. 2011;
Anche et al. 2014b; Sae-Lim and Bijma 2016). However,
the benefits of genetic selection for both reduced suscept-
ibility and infectivity on practical epidemiological field
measures, such as disease prevalence and duration of epi-
demics, that are commonly used for assessing economic
losses and guide the development of effective (often multi-
faceted) disease control strategies, are currently not known.
This is because the relationship between host genetic sus-
ceptibility, infectivity, and the practical field outcomes of
epidemics is non-linear. This non-linearity arises from the
equations underlying the dynamic progression of epidemics
over time, so that for example, a small change in suscept-
ibility and infectivity can result in changing the expectation
whether an epidemic will occur or not (Doeschl-Wilson
et al. 2011). Therefore, the practical impact of combining
both susceptibility and infectivity in selection schemes in
one or more generations cannot be estimated by standard
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index theory, which assumes linearity, and additional epi-
demiological approaches are needed to model the dynamic,
non-linear epidemic processes.

A key epidemiological measure for assessing the impact
of disease interventions on epidemic risk and infection
incidence is the basic reproductive ratio (R0); i.e. the
expected number of secondary cases produced by a typical
infected individual in a completely susceptible population
(Diekmann et al. 1990). R0 has a threshold value of one
which determines whether a disease outbreak can occur:
when R0 is smaller than one, the epidemic will die out,
whereas when R0 is greater than one major outbreaks can
arise (Diekmann et al. 1990). Lipschutz-Powell et al.
(2012a) suggested that selection on breeding values for
direct and indirect effects reduces R0, while Anche et al.
(2014a) theoretically demonstrated for single gene models
that heritable variation in both host susceptibility and
infectivity contribute to and can be utilised for reducing R0.

The aim of this proof-of-concept study was to develop a
quantitative modelling framework that predicts the benefits
of genetic selection for reduced infectivity, in addition to
reduced susceptibility, on epidemic risk and severity, and
how these depend on the genetic variance, selection accu-
racy and intensity. For this purpose, a
genetic–epidemiological model was developed to combine
classical quantitative genetics theory with epidemiological
prediction. Specifically, polygenic genetic variation in sus-
ceptibility and infectivity was incorporated in a stochastic
epidemiological susceptible-infected-recovered (SIR)
model to simulate epidemics in large livestock populations
undergoing artificial genetic selection for lower suscept-
ibility and infectivity, over several generations. The result-
ing model was then used to assess the efficacy of diverse

genetic selection schemes targeting host susceptibility and
infectivity in preventing disease outbreaks and reducing
disease prevalence.

Materials and methods

The effects of selection for lower susceptibility and infec-
tivity on the risk and severity of epidemics were investi-
gated on large simulated, genetically heterogeneous
populations. The simulation process comprised two main
parts (illustrated in Fig. 1): 1. modelling genetic selection
for reduced susceptibility and infectivity, where populations
were simulated for 20 generations based on selection with
assumed accuracies and intensities; 2. modelling the epi-
demiological impact of selection by simulating epidemics in
the populations of each generation generated in part 1, and
assessing their epidemiological characteristics. For each
scenario, 50 replicate simulations were conducted. Indivi-
dual steps of each part are described in detail below:

Modelling genetic selection for lower susceptibility
and infectivity

Simulated populations of N= 10,000 half-sib individuals
were generated in each generation. These were the progeny
of 200 sires, each randomly mated to 50 dams, with all sires
and dams unrelated, and each sire–dam combination pro-
ducing one offspring. This structure is representative of
livestock populations, e.g. dairy cattle population, where
artificial insemination is practiced. Herein, susceptibility is
defined as the propensity of becoming infected upon contact
with an individual with average infectivity. Infectivity is

Fig. 1 Modelling flowchart
showing the different steps of
the simulations. This process
was replicated 50 times. Orange
arrows indicate information flow
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defined as an individual’s ability, once infected, to transmit
infection upon contact with a susceptible individual of
average susceptibility (Anacleto et al. 2015). Susceptibility
and infectivity are thus latent traits.

Latent susceptibility (g) and infectivity (f) were assumed
to follow a log-normal distribution to accommodate the
existence of potential super-spreaders (Lipschutz-Powell
et al. 2013; Anacleto et al. 2015). This is also in line with
existing evidence that disease traits are often skewed, and
log-transformations are commonly used to satisfy the nor-
mality assumptions implied in standard quantitative genetic
models. For consistency, the same distributional assump-
tions were made for susceptibility and infectivity. In parti-
cular, polygenic genetic variation was assumed in
susceptibility and infectivity, to represent complex traits
that are controlled by a large number of genes of small
individual effect (Goddard and Hayes 2009).

Thus, the log-transformed susceptibility of offspring i,
was modelled as

log gið Þ ¼ μg þ Agi þ egi ð1Þ

where μg was the population mean, Agi was the additive
genetic value for susceptibility, and the environmental
effect was drawn from a normal distribution egi �
N 0; σ2Eg

� �
with environmental variance σ2Eg (Table 1).

Similarly, the log-transformed infectivity of offspring i was
modelled as

log fið Þ ¼ μf þ Afi þ efi ð2Þ

where μf was the population mean, Afi was the true additive
genetic value for infectivity and efi � Nð0; σ2Ef Þ (Table 1).

The additive genetic effects Agi and Afi for offspring i
were calculated from the average true breeding value of its
sire and dam, for susceptibility and infectivity as follows:

Agi ¼ ðTBVsiregi
þ TBVdamgi

Þ=2þMSgi ð3Þ

Afi ¼ ðTBVsirefi
þ TBVdamfi

Þ=2þMSfi ð4Þ

where the sire and dam true breeding values for suscept-
ibility (TBVsireg and TBVdamg ) and infectivity (TBVsiref and
TBVdamf ) were simulated from normal distributions with
mean zero and additive genetic variance for susceptibility
σ2Ag, and for infectivity σ2Af (defined in the sections
“Generating the base population” and “Updating suscept-
ibility and infectivity trait values”), and MSgi and MSfi were
the Mendelian segregation terms of individual i sampled
from normal distributions N 0; σ2Ag=2

� �
for susceptibility,

and N 0; σ2Af =2
� �

for infectivity, reflecting the random
sampling of parental alleles. Unless stated otherwise,
susceptibility and infectivity were assumed to have genetic
and environmental correlations of zero.

Generating the base population

In the initial population true breeding values for offspring i
were calculated from Eqs. (3) and (4). Sire and dam true
breeding values were distributed as N 0; σ2Ag

� �
and

N 0; σ2Af

� �
, where σ2Ag and σ2Af were the assumed additive

genetic variances for susceptibility and infectivity (Table 1).
Then the log-transformed susceptibility and infectivity of
offspring i of the base generation were calculated from Eqs.
(1) and (2), where μgbase ¼ 0 and μfbase ¼ 0, and with envir-
onmental effects egi � N 0; σ2Eg

� �
and efi � N 0; σ2Ef

� �
,

Table 1 Simulation scenarios Parameter Basic parameter values Alternative parameter values

N, nsires, ndamspersire, noffspring per sire/dam 10,000, 200, 50, 1 –

tgenerations of selection per replicate, nreplicates 20, 50 –

Genetic variance for susceptibility in baseline population
ðσ2AgÞ

0.5 0.2

Genetic variance for infectivity in baseline population
ðσ2Af Þ

0.5 0.2

Environmental variance for susceptibility ðσ2EgÞ 2 0.8

Environmental variance for infectivity ðσ2Ef Þ 2 0.8

Average effective contact rate (β) 0.02 –

Recovery rate (γ) 0.017

Selection accuracy for susceptibility (rg) 0.7 NA, 0.7

Selection accuracy for infectivity (rf) NA 0.7, 0.5, 0.4, 0.3, 0.2

Selected proportions of sires for susceptibility 0.5 NA, 0.5

Selected proportions of sires for infectivity NA 0.5, 0.8

Selected proportions of dams for susceptibility 1 –

Selected proportions of dams for infectivity 1 –

Contemporary group size 100 20

Basic and alternative parameter values assumed in the simulation scenarios. NA corresponds to selection
only on susceptibility or only on infectivity
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where σ2Eg and σ
2
Ef were the assumed environmental variances

for susceptibility and infectivity respectively (Table 1).

Calculating response to genetic selection in susceptibility
and infectivity

Genetic selection alters trait means and variances over
subsequent generations (Falconer and Mackay 1996).
Response to selection in susceptibility and infectivity, and
change of corresponding population means and genetic
variances of these traits, were calculated over 20 discrete
generations, following standard quantitative genetic theory
as outlined below.

Change of trait means Response to selection per genera-
tion assuming discrete generations, was predicted from Rg

= igrgσAg for susceptibility, and Rf= ifrfσAf for infectivity
(Falconer and Mackay 1996), where rg and rf were the
assumed selection accuracies (Table 1). The intensity of
selection, assuming selection only on the sires, was calcu-
lated as ig ¼ 1=2 igsires þ 1=2 igdams for susceptibility, and if ¼
1=2 ifsires þ 1=2 ifdams for infectivity, with the magnitude of
igsires and ifsires corresponding to the proportion of selected
sires for susceptibility and infectivity respectively (Table 1),
and with igdams ¼ ifdams ¼ 0. For each generation, the genetic
standard deviations of the log-transformed susceptibility σAg
and infectivity σAf were calculated as described in the sec-
tion “Change of trait varainces”.
At generation k, the population means for the log-

transformed susceptibility and infectivity respectively were:

μgk ¼ μgk�1
þ Rg; and μfk ¼ μfk�1

þ Rf

where μgk and μfk at generation k were less than μgk�1
and

μfk�1
at generation k − 1.

Change of trait variances Assuming selection only on the
sires, as is common practice in livestock breeding programmes,
the sire additive genetic variance for susceptibility at generation

k was calculated as σ2Agsirek
¼ 1� r2gkg

� �
ð1=4Þσ2Agk�1

where

kg ¼ ð1=2Þkgsires þ ð1=2Þkgdams , with kgsires ¼ igsiresðigsires �
xgsiresÞ and kdams= 0 (Bulmer 1971); xgsires was the deviation of
the truncation point from the mean for selection on the sires, in
standard deviation units (Falconer and Mackay 1996). Simi-
larly for infectivity, the sire additive genetic variance after

selection at generation k was σ2Afsirek ¼ 1� r2f kf
� �

ð1=4Þσ2Afk�1
.

Offspring genetic variance σ2Agk for susceptibility at
generation k was calculated from the sire additive genetic
variance σ2Agsirek

, the dam additive genetic variance which,
assuming no selection on the dams it was equal to the
population additive genetic variance σ2Ag in generation k −
1, and, the Mendelian sampling variance, which assuming

an infinitesimal genetic model and a large breeding
population, was equal to the assumed additive genetic
variance for susceptibility σ2Ag in the base population (Table
1) (Van Der Waaij et al. 2000):

σ2Agk ¼ 1=4ð Þσ2Agsirek þ 1=4ð Þσ2Agk�1
þ 1=2ð Þσ2Ag

Similarly, the offspring genetic variance σ2Afk for infectivity
at generation k was calculated as

σ2Afk ¼ 1=4ð Þσ2Afsirek þ 1=4ð Þσ2Afk�1
þ 1=2ð Þσ2Af

Updating susceptibility and infectivity trait values

For subsequent generations, offspring true breeding values
were calculated using Eqs. (3) and (4) with Agik �
N 0; σ2Agk

� �
for susceptibility, and Afik � N 0; σ2Afk

� �
for

infectivity, where σ2Agk and σ2Afk were the updated, i.e. post-
selection, offspring genetic variances for susceptibility and
infectivity at generation k, calculated in the section “Change
of trait variances”. Log-transformed susceptibility log(gi)k
and infectivity log(fi)k phenotypes at generation k were
calculated from Eqs. (1) and (2), but using the updated
offspring true breeding values Agik and Afik , and using the
updated trait means μgk and μgk for generation k from the
section “Change of trait means”.

Modelling the epidemiological impact of selection
on susceptibility and infectivity

Within-group epidemic transmission model incorporating
genetic variation in susceptibility and infectivity

To extract measures of epidemic risk and severity, for every
generation, the populations under selection from the section
“Modelling genetic selection for lower susceptibility and
infectivity” were simulated to be undergoing epidemics as
follows:

In each generation k, individuals defined by their sus-
ceptibility and infectivity phenotypes ((gi)k and (fi)k) gen-
erated in the section “Updating susceptibility and infectivity
trait values”, were randomly distributed into 100 groups of
the same size. The group was the epidemiological unit in
which individuals were in direct or indirect (e.g. through
sharing the same infectious environment) contact with each
other, e.g. management groups in cattle or sheep herds,
buildings for broilers in poultry farms, pig pens, or fish-
tanks and ponds in aquaculture. Within each group, infec-
tion was introduced by one randomly chosen infected and
infectious individual; i.e. the index case. Epidemics were
simulated within groups, so that each group was a distinct,
closed unit, where no between-group transmission occurred.
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Representative of a large range of diseases, each epidemic
was simulated as a stochastic compartmental Susceptible-
Infected-Recovered (SIR) model to provide predictions of
epidemic risk and severity. In this model individuals could
progress between three states: ‘Susceptible’ where indivi-
duals were not infected but were susceptible to infection,
‘Infected’ where individuals were infected and infectious,
and ‘Recovered’ where individuals had recovered from
infection. Except for the index cases, all individuals at the
beginning of an epidemic were considered to be ‘Suscep-
tible’. As no demography was assumed (i.e. no birth,
migration or death), each epidemic was simulated until there
were no remaining infected individuals in that group.

Epidemics were modelled as stochastic processes in
which the number of ‘Susceptible’, ‘Infected’ and ‘Recov-
ered’ individuals changed over time, depending on two
types of transition events that could occur: infection of a
susceptible individual, or recovery of an infected individual.
Individual susceptibility and infectivity affected the infec-
tion events in the epidemiological model as follows:
infection was modelled as a Poisson process, where an
individual’s infection rate depended on the susceptibility of
the focal individual and the infectivity of infected group
members (Anacleto et al. 2015). The time-varying indivi-
dual infection rate λj(t) of individual j in a group containing
n(t) infected individuals at time t was modelled as

λj tð Þ ¼ gjβ
XnðtÞ

i¼1

fi ð5Þ

where β was the average effective contact rate (i.e. the
assumed rate of contacts between susceptible and infected
individuals resulting in infection), and gj and fi were the
susceptibility phenotype of individual j and the infectivity
phenotype of individual i respectively, generated in the
section “Updating susceptibility and infectivity trait
values”, where the sum was over all group mates of
individual j that were infected at time t (Anacleto et al.
2015). The above equation for the infection rate demon-
strates that reduction in individual susceptibility or
infectivity reduces individuals’ infection rates and hence
the incidence of infection in the population.

According to this formulation, susceptibility and infec-
tivity are modelled as individual deviations from the
average effective contact rate β. In homogeneous popula-
tions, gj and fi are set to unity, to produce the classical
expression of the density-dependent force of infection λ(t)
= βI(t), where I(t) is the number of infected individuals at
time t (Keeling and Rohani 2008). Recovery events were
assumed to follow an exponential distribution with equal
recovery rate γ for all individuals (Table 1). Simulations of
the epidemics comprised calculations of inter-event times,
corresponding event types, and individual experiencing the

transition to the next SIR compartment. Those were per-
formed using Gillespie’s direct algorithm (Gillespie 1977),
as outlined in more detail in (Lipschutz-Powell et al.
2012a; Anacleto et al. 2015).

Assessing the impact of selection on epidemic
characteristics

Qualitative assessment of SIR profiles SIR profiles that
show proportions of susceptible, infected and recovered
individuals during the course of the epidemics, were pro-
duced to qualitatively assess the changes in the profiles of
the generated epidemics due to selection. The generated
profiles over generations were compared between different
selection schemes including either susceptibility alone or
both susceptibility and infectivity.

Epidemic risk Epidemic risk was assessed over subsequent
generations of selection through the basic reproductive ratio
R0, and through the proportion of epidemics that occurred.
Firstly, estimates of changes in the basic reproductive

ratio R0 over generations of selection were obtained through
stochastic simulations. In those, epidemics were simulated
following the SIR model as described in the section
“Within-group epidemic transmission model incorporating
genetic variation in susceptibility and infectivity”, but with
the difference that in each group only the index case was
allowed to infect other susceptible individuals. This
produced a simulated R0 for every group. Summary R0

values per generation were obtained by calculating the mean
and the median of the simulated R0 values across groups for
each generation. Although the mean R0 is more in line with
the classical definition of R0 (e.g. Diekmann et al. 1990), the
distribution of R0 values over groups was skewed due to the
random allocation of individuals with different (skewed)
susceptibility and infectivity values into groups. Hence the
median over groups of the simulated R0 values, termed
herein ‘realised’ R0, was used as a more appropriate
summary statistic in the present analysis. Finally, the overall
mean of the summary R0 statistic per generation with
standard errors were calculated over 50 replicates. The
overall trends of decline over generations of selection for
the mean R0 were similar to those for the median
(Supplementary Information 1).
Secondly, the mean proportion of epidemics that

occurred, i.e. the proportion of epidemics where the index
case generated secondary cases, was calculated for each
generation. This allowed to explore how often epidemics
with R0 ≥ 1 occur. Presented values are the means with
standard errors over 50 replicates.

Epidemic severity For the groups where epidemics
occurred, i.e. where the index cases generated secondary
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cases, epidemic severity was assessed over subsequent
generations of selection through the proportion of infected
animals, and through the epidemic duration.
Firstly, the mean proportion of infected individuals was

calculated across the groups with at least one secondary
case. Means and standard errors were obtained over 50
replicates, after excluding replicates where all groups had
only the index case infected.
Secondly, the epidemic duration was calculated for each

group as the time-point when there were no remaining
infected individuals in the group. The 33% and 66%
percentiles of the duration of epidemics in the base
generation, after excluding groups where no epidemics
occurred, were used to classify epidemics as ‘short’,
‘medium’ and ‘long’. The changes in the mean proportions
of ‘no’, ‘short’, ‘medium’ and ‘long’ epidemics with
standard errors were assessed over generations.

Simulation scenarios and investigation of parameter
space

Parameters were chosen to represent population structures
and routine genetic evaluations realistic for the livestock
industry, and disease epidemics that may emerge within
livestock production systems, so that both assumed and
predicted values were realistic for those systems, as follows:

Genetic variance in susceptibility and infectivity is a
driving parameter for the genetic gain that can be achieved
in those traits from selection. Furthermore, genetic variance
in susceptibility and infectivity affects epidemic risk and
severity through its effect on the infection rate (see section
“Within-group epidemic transmission model incorporating
genetic variation in susceptibility and infectivity”), hence
driving the resulting R0 (see section “Epidemic risk”).
Therefore, different levels of genetic and environmental
variation were simulated, such that the resulting R0 values
represented mild and severe epidemics, respectively (see
section “Epidemic risk”): σ2Ag ¼ σ2Af ¼ 0:5 and
σ2Eg ¼ σ2Ef ¼ 2; and, σ2Ag ¼ σ2Af ¼ 0:2 and σ2Eg ¼ σ2Ef ¼ 0:8
(Table 1). Those values covered a broad range of genetic
variances, and a realistic spectrum of disease R0 by focusing
on mild epidemics with R0 in the region of 2 (e.g. Charpin
et al. 2012), or severe epidemics with R0 in the region of 7
(e.g. Le Menach et al. 2005). The effect on the infection
rate, and hence on the epidemic, of the genetic variance in
susceptibility and infectivity, is confounded with the effect
of the average effective contact rate β (see section “Within-
group epidemic transmission model incorporatinggenetic
variation in susceptibility and infectivity”), hence β was
fixed to 0.02 and the variances were allowed to vary (Table
1). The above combination of variances for susceptibility
and infectivity allowed to assume heritabilities of 0.2 for
both latent traits (defined on the underlying scale), which

corresponds to a lower heritability on the observed scale
(i.e. binary infection status) within the range reported for
common diseases (Brotherstone et al. 2010; Kemper et al.
2011; Boddicker et al. 2012; Bermingham et al. 2014a;
Tsairidou et al. 2014; Raphaka 2018). In addition, previous
studies have shown that heritability is likely to be under-
estimated in the context of infectious diseases due to
incomplete exposure to infection (Bishop and Woolliams
2010). Hence, the heritability of 0.2 presented here, is a
realistic and rather conservative value.

The recovery rate in the epidemiological SIR model was
calculated as the reciprocal of the infectious period (Keeling
and Rohani 2008) which was assumed ~2 months, corre-
sponding either to the true infectious period, e.g. of a viral
infection, such as PRRS in pigs (Nodelijk et al. 2000), or to
the diagnostic testing intervals in an eradiation scheme, e.g.
the 60-day interval for bovine Tuberculosis testing in GB
(De La Rua-Domenech et al. 2006).

A range of selection accuracies was simulated for
infectivity, given an optimal but realistic accuracy of rg=
0.7 for susceptibility, which corresponds to a reliability for
sire EBVs of 0.5 as reported in Banos et al. (2017) and as
expected from genomic technologies and sequencing data
given sufficiently large populations. In contrast, emerging
evidence from simulation studies suggests that infectivity is
a trait more challenging to measure accurately (Anacleto
et al. 2015; Anche et al. 2015; Biemans et al. 2017), and
therefore, we evaluated accuracies for infectivity ranging
from rf = 0.2–0.7 (Table 1).

Genetic gain achieved through selection is affected by
the applied selection intensity, therefore, the following
proportions of selected sires for susceptibility and infec-
tivity were simulated (Table 1): 50% selection for sus-
ceptibility which corresponds to selection intensity of im=
0.798, but no selection for infectivity; 50% selection for
infectivity, but no selection for susceptibility; 50% selection
for both infectivity and susceptibility; 50% selection for
susceptibility and 80% selection for infectivity corre-
sponding to lower selection intensity im= 0.35 for infec-
tivity. The latter scenario represents a moderate selection
scheme regarding infectivity, that would exploit infectivity
only to identify and remove designated super-spreaders.

Finally, alternative contemporary group sizes were
simulated keeping the population size constant (Table 1).

Results

SIR profiles

Selection for susceptibility alone reduced the number and
severity of epidemics occurring, over generations (Fig. 2).
However, this decline was more prominent and required
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fewer generations, when selection was on susceptibility and
infectivity combined. In addition, combined selection gen-
erated a stronger and quicker decline in the epidemic
severity in most individual epidemics, with a quicker
elimination of longer epidemics compared to selection on
susceptibility alone (Fig. 2). These effects were observed
for both larger (σ2Ag ¼ σ2Af ¼ 0:5) and smaller (
σ2Ag ¼ σ2Af ¼ 0:2) genetic variances simulated (results for
genetic variance of 0.2 are shown in Supplementary Infor-
mation 2).

Epidemic risk

Response to genetic selection in susceptibility and infec-
tivity generated a profile of decline in the mean population
susceptibility and infectivity over generations which was
faster within earlier generations, as expected from selection
using the assumed parameter values (see Supplementary
Information 3). In the base generation before selection, the
mean realised R0 over replicates was 7.64 when assuming a
genetic variance of 0.5, and 1.99 for a genetic variance of
0.2. Over generations, realised R0 declined due to genetic
selection. The selection scheme combining susceptibility
and infectivity, considerably reduced the number of gen-
erations required until realised R0 was <1; i.e. until disease
eradication, compared to selection on susceptibility alone
(Fig. 3). Specifically for the genetic variance of 0.5, selec-
tion on susceptibility required seven generations to bring
the realised R0 from 7.64 to a value below 1 (Fig. 3). In

contrast, combined selection, with the same selection
intensities and accuracies for susceptibility and infectivity,
required three generations to bring the realised R0 below 1
(Fig. 3). Selecting on infectivity alone produced similar
changes in epidemic risk as selecting on susceptibility alone
(Fig.3). For example, both 50% selection on susceptibility
alone, or 50% selection on infectivity alone, reduced the
realised R0 below 1 after seven generations of selection
(Fig.3). For lower genetic variance of 0.2 resulting in lower
realised R0 in the base generation, fewer generations were
generally required until disease eradication, although the
actual rate of decline in R0 was lower compared to that
corresponding to larger genetic variance. For genetic var-
iance of 0.2, there was a one-generation difference between
selection schemes considering susceptibility or infectivity
alone and combined selection including infectivity (Fig. 3).

When applying less stringent selection intensity for
infectivity (80% selection for infectivity corresponding to
removing only designated super-spreaders) and for the
genetic variance of 0.5, selection on both susceptibility and
infectivity with selection accuracies of 0.7 required four
generations to reduce the realised R0 below 1, compared to
three generations required with higher selection intensity.
The biggest difference was observed for selection on
infectivity alone, which, with only 80% selection, required
15 generations to reduce the realised R0 below 1 (Fig. 3).
Even with this less stringent selection scheme for infectiv-
ity, incorporating infectivity in addition to susceptibility
achieved disease eradication within four generations

Fig. 2 SIR profiles for the genetic variances of 0.5. Example from one replicate, of the SIR profiles for genetic variance of 0.5, over generations of
selection: (a) only on susceptibility (upper row) and (b) on both susceptibility and infectivity (lower row), with selection accuracies of 0.7
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compared to seven generations required for selection on
susceptibility alone (Fig. 3).

The change in epidemic risk due to selection was also
assessed by examining the proportion of groups that resul-
ted in an epidemic with at least one secondary case gener-
ated by the index case. In the base generation, for genetic
variance of 0.5, on average 72% of groups had at least one
secondary case (Fig. 4). After seven generations of com-
bined selection for susceptibility and infectivity, the pro-
portion of epidemics occurring was reduced by at least 50%,
while selection on susceptibility alone required 13 genera-
tions to achieve the same outcome (Fig. 4). It required 15
generations of combined selection to reduce epidemic risk
below 5%, whereas with selection only on susceptibility or
only on infectivity, it was not possible to achieve this result
within the 20 generation duration of the selection scheme.
Even with lower selection accuracies for infectivity (e.g.
0.2), a significant reduction of disease risk was achieved
with combined selection (Fig. 4). Similar patterns were
observed for the genetic variance of 0.2, where combined

selection with accuracy of 0.7 for both susceptibility and
infectivity generated a significantly greater reduction in the
proportion of epidemics occurring compared to selection on
susceptibility alone (Fig. 4).

Epidemic severity

In the epidemics that occurred, genetic selection also pro-
duced a non-linear reduction in the proportion of infected
individuals, such that the greatest benefit was observed
within the first few generations. (Fig. 5). For genetic var-
iance of 0.5, after three generations of combined selection
for susceptibility and infectivity with accuracies of 0.7 for
both traits, the average proportion of infected individuals
was reduced by at least 50%. It required six generations of
selection on susceptibility alone, or on infectivity alone, to
reduce this proportion by the same amount. Even when
selection accuracy for infectivity was low (e.g. 0.2), there
was a significant improvement with combined selection
compared to selection on susceptibility, or on infectivity
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Fig. 3 Change in the population realised R0 over generations of
selection. The graphs show the change per generation in the population
realised R0 for different genetic variances and selection intensities
(Table 1). Upper row: 50% selection on sires for both susceptibility
and infectivity, for the genetic variances of 0.5 (left panel) and 0.2

(right panel). Lower row: 50% selection on the sires for susceptibility
and 80% selection on the sires for infectivity, for the genetic variances
of 0.5 (left panel) and 0.2 (right panel). The vertical bars represent the
standard errors over 50 replicates. The red line shows the R0 threshold
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alone (Fig. 5). For smaller genetic variance of 0.2, the
average proportion of infected individuals was lower, and
differences between selection scenarios with respect to
different selection accuracies, were less pronounced (Fig.
5). Nevertheless, two generations of combined selection
were sufficient for reducing the proportion of infected
individuals by at least 50%, while selection on susceptibility
alone, or infectivity alone, required five generations.

Selection reduced the duration of epidemics, with no
long epidemics observed after 10 generations of combined
selection. Notably, selection on susceptibility alone required
20 generations to achieve the same outcome (Table 2).
Similar trends were observed in results for the genetic
variance of 0.2, and those are shown in Supplementary
Information 4.

Discussion

Epidemiological models have proven a powerful tool to
inform national and international disease control pro-
grammes (Kao 2002; Keeling 2005; Feng et al. 2007; Birch
et al. 2018). However, despite the increasing recognition of
the vast potential of genomic approaches (Ibanez-Escriche
and Simianer 2016; 2018), these models rarely incorporate
genetic disease control. Nevertheless, effective imple-
mentation of genomic selection for increased host resistance

to infectious diseases is increasingly becoming one of the
main goals in modern breeding programmes in most
domestic livestock and aquaculture species. One of the
major drawbacks of genetic disease control compared to
non-genetic strategies is that genetics operate on a much
slower time-scale, since the benefits of selection only
accumulate over successive generations. In order for genetic
strategies to offer a viable contribution to disease control
and eradication programmes, within the typically short
timeframes that such programmes operate on, a rapid
reduction in disease incidence as a result of selection is
vital. Selection on host susceptibility alone may not achieve
this desired outcome (Man et al. 2009; Raphaka et al. 2018).
Recent advances in statistical genetics now facilitate esti-
mation of genetic parameters associated with a second host
trait affecting disease transmission, i.e. host infectivity
(Anacleto et al. 2015; Biemans et al. 2017). However,
implementation of this new trait into disease control pro-
grammes requires improved disease monitoring schemes
and experimental designs for data collection, and it would
also affect estimation of economic costs (Janssen et al.
2018). Hence, the impact on disease incidence and epidemic
risk that result from including this novel disease trait into
genetic selection need to be systematically assessed. How-
ever, to date an adequate tool to predict the epidemiological
effects of adding infectivity into genetic selection, and how
those depend on prediction accuracy and selection intensity
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Fig. 4 Proportion of epidemics with at least one secondary case over
generations of selection. The graphs show the proportion of groups
that resulted in at least one secondary case after introduction of an
arbitrary infected index case, assuming a genetic variance of 0.5 (left

panel), or 0.2 (right panel) (Table 1). The vertical bars represent the
standard errors of the means over 50 replicates. The red line denotes
the 50% benchmark
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as the driving parameters for genetic progress, is lacking. In
this study, we developed a genetic-epidemiological predic-
tion model that quantifies the non-linear impact of selection
methods considering genetic susceptibility and infectivity in
livestock on dynamic epidemic processes, and assesses their
impact in terms of practical measures of epidemic risk and
severity used in the field. The code used for the models
presented in this paper is available on GitHub (https://
github.com/SmaragdaT/GenEpi) and can be adapted to
match-specific diseases and population structures. The pri-
mary findings demonstrate that the additional benefits from
capturing both susceptibility and infectivity can be of
practical value even when selection intensity for infectivity
is relatively low, and this conclusion is robust over a range
of selection accuracies.

All measures of epidemic risk and severity were found to
be considerably lower when selecting for infectivity in
addition to susceptibility, so that benefits from selection
were achieved after fewer generations compared to selection
for susceptibility alone. These effects were observed for a
range of accuracies, with a substantial reduction of disease
severity through combined selection, even when selection
accuracy for infectivity was 0.2. As expected, the size of the
observed effects was found to depend on the magnitude of
the genetic variance assumed, with differences between
scenarios being less pronounced for smaller genetic var-
iances. In addition it was found that, depending on the
amount of genetic variation in infectivity, a selection
scheme could be similarly efficient if targeting infectivity

rather than susceptibility. These results show that combin-
ing selection for susceptibility and infectivity can, not only
be more efficient than selection targeting susceptibility
alone, but may also achieve disease eradication in cases
where selection only on susceptibility would not be suffi-
cient for achieving eradication within a reasonable time-
scale (e.g. Fig. 5).

Genetic selection modelling approach

Susceptibility to infectious diseases in livestock has com-
monly been found to be a complex, polygenic trait, for
example, in bovine mastitis (Heringstad et al. 2000) and
bovine tuberculosis (Bermingham et al. 2014b; Tsairidou
et al. 2014), in sea lice infection in Atlantic salmon (Tsai
et al. 2016), and in nematode infections (Kemper et al.
2011; Riggio et al. 2013) and footrot (Mucha et al. 2015) in
sheep. Hence here, latent susceptibility and infectivity were
modelled as quantitative traits, assuming polygenic genetic
variation. In the present study, selection was modelled on
the latent objective traits: i.e. susceptibility and infectivity,
rather than indicator traits based on disease phenotypes.
Selection on these latent traits has the benefit that they
directly affect individual infection rates and hence disease
incidence in the population (Eq. (5)). Uncertainty in the
traits was accounted for by simulating a range of selection
accuracies.

The selection methodology followed in this study is in
line with independent culling levels selection (Tallis 1962;
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Fig. 5 Epidemic severity over generations of selection. The graphs
show the proportion of infected individuals across generations in the
groups where there were secondary cases, assuming a genetic variance

of 0.5 (left panel), or 0.2 (right panel) (Table 1). The vertical bars
represent the standard errors of the means over 50 replicates. The red
line denotes the 50% benchmark
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Vinson 1971), which is commonly practiced in cattle and
sheep breeding and is effective in excluding animals with
particularly poor EBV for a trait of interest. Independent
culling may not be the optimum method, and is less efficient
than a linear index, when the selection goal is a linear
combination of the traits, although this is not the case here.

In the present study, a genetic correlation of zero was
assumed between susceptibility and infectivity, while the
impact of such correlations was explored in Supplementary
Information 5. One might expect a positive phenotypic
correlation between susceptibility and infectivity due to the
dependency of expressing infectivity upon being suscep-
tible and infected. However, that does not imply the sign
and magnitude of the underlying genetic correlation (Rauw
et al. 1998). A strong positive genetic correlation would
indicate that susceptibility to infection and infectivity are
controlled by the same set of genes. However, to the best of
the authors’ knowledge, there is no evidence suggesting that
whether an individual becomes infected is regulated by the
same genetic pathways as those controlling the transmission
of infection. Therefore, susceptibility and infectivity should
be considered as two genetically separable traits.

As expected, with a favourable genetic correlation
between susceptibility and infectivity, combining these
traits generated a smaller additional benefit compared to
selecting only on susceptibility (Supplementary Information
5; Fig. S5 left panel). This is due to the indirect correlated
response arising in infectivity even when selection is on
susceptibility alone. A positive correlation implies that
individuals with lower susceptibility also tend to have lower
infectivity, and selection against these individuals accel-
erates reduction in disease risk and prevalence. Conversely,
when susceptibility and infectivity were antagonistically
correlated, there was a substantial delay in the progress
achieved by the selection scheme considering only sus-
ceptibility. However, considering both susceptibility and
infectivity in the selection scheme helped alleviate this
delay (Supplementary Information 5; Fig. S5 right panel).
Such adverse correlations have been previously observed,
for example, between milk yield and fertility traits in dairy
cattle (Wall et al. 2003), or in cases of competition over
resource allocation (Rauw et al. 1998; Read and Taylor
2001). Therefore, particularly in the case of an unfavourable
genetic correlation between susceptibility and infectivity,
estimating effects for both these traits can be crucial to

Table 2 Proportion of short and long epidemics over generations of selection, for the genetic variance of 0.5

Generation Selection on susceptibility Selection on susceptibility and infectivity

No epidemic se Short se Long se No epidemic se Short se Long se

0 0.28 0.01 0.24 0.01 0.24 0.01 0.28 0.01 0.24 0.01 0.24 0.01

1 0.31 0.01 0.24 0.01 0.24 0.01 0.35 0.01 0.24 0.01 0.23 <10−2

2 0.34 0.01 0.26 0.01 0.23 0.01 0.41 0.01 0.28 0.01 0.18 0.01

3 0.37 0.01 0.25 0.01 0.22 0.01 0.46 0.01 0.30 0.01 0.14 <10−2

4 0.40 0.01 0.27 0.01 0.20 0.01 0.53 0.01 0.32 0.01 0.08 <10−2

5 0.42 0.01 0.28 0.01 0.18 0.01 0.57 0.01 0.33 0.01 0.06 <10−2

6 0.46 0.01 0.29 0.01 0.15 <10−2 0.63 0.01 0.31 0.01 0.03 <10−2

7 0.50 0.01 0.30 0.01 0.11 0.01 0.70 0.01 0.26 0.01 0.02 <10−2

8 0.51 0.01 0.31 0.01 0.10 <10−2 0.74 0.01 0.24 0.01 0.01 <10−2

9 0.54 0.01 0.32 0.01 0.08 <10−2 0.78 <10−2 0.20 <10−2 0.01 <10−2

10 0.57 0.01 0.31 0.01 0.06 <10−2 0.83 <10−2 0.16 <10−2 0.00 <10−2

11 0.61 0.01 0.30 0.01 0.04 <10−2 0.86 0.01 0.13 <10−2 0.00 <10−2

12 0.62 0.01 0.31 0.01 0.04 <10−2 0.89 <10−2 0.10 <10−2 0.00 <10−2

13 0.65 0.01 0.29 0.01 0.03 <10−2 0.91 <10−2 0.09 <10−2 0.00 <10−2

14 0.68 0.01 0.27 0.01 0.02 <10−2 0.93 <10−2 0.07 <10−2 0.00 <10−2

15 0.71 0.01 0.26 0.01 0.01 <10−2 0.95 <10−2 0.05 <10−2 0.00 <10−2

16 0.74 0.01 0.23 0.01 0.01 <10−2 0.95 <10−2 0.04 <10−2 0.00 <10−2

17 0.76 0.01 0.22 0.01 0.01 <10−2 0.97 <10−2 0.03 <10−2 0.00 <10−2

18 0.77 0.01 0.21 0.01 0.01 <10−2 0.98 <10−2 0.02 <10−2 0.00 <10−2

19 0.80 <10−2 0.19 <10−2 0.01 <10−2 0.98 <10−2 0.02 <10−2 0.00 <10−2

20 0.82 <10−2 0.17 <10−2 0.00 <10−2 0.99 <10−2 0.01 <10−2 0.00 <10−2

Proportions of ‘short’, ‘medium’ and ‘long’ epidemics classified on the basis of the 33% and 66% percentiles of the duration of epidemics in the
base generation, for the scenarios of selection on susceptibility alone (with accuracy 0.7), and selection on both susceptbility and infectivity (with
accuracies 0.7)
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avoid an undesirable increase in infectivity, which could
counteract or even outweigh the benefits of selection for
reduced susceptibility.

Epidemiological modelling approach

Compartmental Susceptible-Infected-Recovered models
have been commonly used to represent the spread of a large
class of infections with prolonged immunity (Anderson and
May 1992), and the model presented here directly applies to
many microparasite infections. This modelling approach
can be extended to macroparasite infections, by additionally
modelling the infection severity and reproduction cycle of
the parasite within the host (Bishop and Stear 1999;
Doeschl-Wilson et al. 2008). This model can also be
extended to represent infections featuring more compart-
ments, e.g. a ‘Latency’ compartment, or to accommodate
genetic variation in more traits, in addition to susceptibility
and infectivity, that may also affect the transmission
dynamics. Nevertheless, the benefits arising from combined
selection on susceptibility and infectivity would still be
expected to be substantial.

A further effect observed from the SIR profiles was that
although after generations of selection epidemics were
generally fewer and milder, in some replicates they were
prolonged, ending at a later time-point compared to epi-
demics in the base generation. In epidemiology it is known
that epidemics with lower average transmission coefficient
are less severe but can often be prolonged (Keeling and
Rohani 2008). Here, the same effect was generated by the
change in the infection rate over generations due to selec-
tion reducing susceptibility and infectivity.

Epidemiological group size and family structure

Response to genetic selection for indirect genetic effects,
such as infectivity, has been shown to depend on the size of
the epidemiological groups (Bijma 2010a; Ødegård and
Olesen 2011; Anacleto et al. 2015). Group size is an
important factor in planning livestock management prac-
tices to optimise disease control, and in designing disease
challenge experiments. As shown in Supplementary Infor-
mation 6, combined selection incorporating both suscept-
ibility and infectivity performs better than selection on
susceptibility alone even for a smaller group size. However,
the infectivity of early infected individuals (e.g. the ran-
domly chosen index case in our simulations) has a larger
influence on disease spread in smaller groups, and thus on
the response to selection achieved.

Some studies have suggested that for indirect genetic
effects, within-group and between-group genetic covar-
iance, i.e. relatedness, can increase response to selection
(Bijma 2010a; Ødegård and Olesen 2011; Anche et al.

2014a). The widespread use of artificial insemination in
farmed animal allows popular sires to have a large number
of offspring within and across farms. As a consequence,
benefits in practice may be higher than for the random
allocation assumed here.

The observed response to selection may also be influ-
enced in practice by the reduction of selection accuracy as
disease prevalence declines, and by potential changes in the
covariance between susceptibility and infectivity that may
emerge over generations. Such effects can be minimised by
the use of genomic data and large training datasets to reduce
the role of phenotypes and maintain the statistical power
over generations.

Implications

By employing classic genetic disease control strategies
which only target reduced host susceptibility to disease, it
may not be possible to tackle within a reasonable time-scale
diseases with large R0 and diseases with no or very small
genetic variance in host susceptibility. In diseases with R0

much larger than one, selection on susceptibility alone
might not be sufficient to reduce R0 and achieve disease
eradication within a reasonable number of generations for a
breeding scheme (Mackenzie and Bishop 2001; Bishop
et al. 2010). Similarly, the genetic gain achieved would not
be of practical value if there was very limited genetic var-
iation in susceptibility available for selection. However, the
results of this study reveal that, when subject to heritable
variation, infectivity could complement susceptibility to
accelerate progress in selection schemes, or could be an
alternative disease-related target-trait for genetic disease
control. Infectivity as an indirect genetic effect is likely to
have been under weaker natural selection pressure, com-
pared to direct genetic effects, therefore there might be more
genetic variation in infectivity available for artificial selec-
tion compared to susceptibility (Bijma 2010b).

Infection incidence is expected to evolve also due to
natural selection and not only due to artificial selection as
considered here. The framework of this study could help to
investigate the role of evolution in changing genetic var-
iances and covariances in susceptibility and infectivity,
which drive evolution in disease dynamics. Evolutionary
studies have long recognised that the risk of infection has
different components (Elderd et al. 2008), namely: (a) the
risk of infection given exposure (which encompasses var-
iation in host susceptibility), and (b) the risk of exposure
(which encompasses variation in host infectivity). Further-
more, the Breeder’s equation used in this study to calculate
response to selection in host susceptibility and infectivity
over successive generations, is commonly used in animal
breeding to predict response to artificial selection. However,
in studies considering natural selection, it has been
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previously suggested that the traits of interest might be
correlated with other components, which may have not been
explicitly accounted for, but which may also affect variation
in fitness, and this may have an impact on the response to
selection as predicted by the Breeder’s equation (Morrissey
et al. 2010). For example, the present simulations do not
consider co-evolution between the host and the pathogen,
which likely affects infection risk. Cooperation or compe-
tition between individuals sharing the same social envir-
onment also evolve through natural or artificial selection
and that affects the variance in the target traits (Marjanovic
et al. 2018). In evolutionary biology terms, selection for
lower infectivity may enhance cooperation between the
focal individual and its social partners to avoid or survive
infection, and hence affect variation in infectivity; for
example in plants, selection for less competitive phenotypes
has led to more uniform crops (Austin et al. 1980; Denison
et al. 2003).

The benefits from selection considering infectivity, in
addition to susceptibility, can be particularly strong in the
presence of genetic super-spreaders, which would not be
captured by selection for susceptibility alone unless this trait
is strongly correlated with infectivity. Using genetic infor-
mation, i.e. infectivity breeding values, super-spreaders
could be identified, hence eliminating a major source of
infection for other animals. In zoonotic diseases such as
bovine Tuberculosis or diseases where environmental con-
tamination influences the risk of infection, such as footrot
and nematode infestations in sheep, removing super-
spreaders would reduce the shedding of pathogens to
wildlife disease vectors or into the environment (Doeschl-
Wilson et al. 2011; Tsairidou et al. 2018a).

Conclusions

In conclusion, host infectivity, in addition to susceptibility,
was found to constitute an important trait to target in future
genetic and genomic selection schemes to reduce the impact
of epidemics in livestock populations more efficiently.
Combined selection for reduced susceptibility and infec-
tivity generated a greater reduction in epidemic risk,
severity and duration, and with beneficial outcomes of
selection emerging earlier, compared to selection targeting
susceptibility alone. Advances in genomic technologies and
novel statistical methods make it now feasible to determine
genetic effects for novel traits that have a substantial impact
on infectious disease prevalence but are difficult to measure,
such as host infectivity. Therefore, genetic variation in
infectivity and its potential benefits for genetic evaluations
should be further investigated. The framework proposed
here helps predict the impact of artificial selection on future

disease dynamics and can facilitate investigation of the role
of evolution.

Data archiving

The code used for the analyses presented in this paper can
be accessed on GitHub https://github.com/SmaragdaT/
GenEpi and is available as an R package (GenEpiSim/R
version 3.3.3).
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