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Abstract
In the last years, several genotypic fitness landscapes—combinations of a small number of mutations—have been
experimentally resolved. To learn about the general properties of “real” fitness landscapes, it is key to characterize these
experimental landscapes via simple measures of their structure, related to evolutionary features. Some of the most relevant
measures are based on the selectively acessible paths and their properties. In this paper, we present some measures of
evolutionary constraints based on (i) the similarity between accessible paths and (ii) the abundance and characteristics of
“chains” of obligatory mutations, that are paths going through genotypes with a single fitter neighbor. These measures have a
clear evolutionary interpretation. Furthermore, we show that chains are only weakly correlated to classical measures of
epistasis. In fact, some of these measures of constraint are non-monotonic in the amount of epistatic interactions, but have
instead a maximum for intermediate values. Finally, we show how these measures shed light on evolutionary constraints and
predictability in experimentally resolved landscapes.

Introduction

Fitness landscapes have been a very successful metaphor to
study evolution. Most simply, the idea of Sewall Wright
(1932) to view evolution as a hill-climbing process proved
to be appealing and inspired a vast amount of theoretical
work in phenotypic and molecular evolution (Orr 2005; de
Visser and Krug 2014).

In evolutionary biology, fitness landscapes have been
used to study adaptation. In the classical metaphor, an
evolving population is abstracted into a particle that navi-
gates in the landscape (Orr 2005). In a strong selection weak
mutation regime (Gillespie 1983), populations are restricted

to follow evolutionary paths of increasing fitness, which can
sometimes even be completely deterministic.

The smoothness or ruggedness of the fitness landscape
affect many fundamental features of adaptation and evolu-
tion in the landscape, and especially the repeatability of the
adaptive process (e.g. Kauffman 1993; Colegrave and
Buckling 2005; Chevin et al. 2010; Salverda et al. 2011).
Consequently, it is now clear that several aspects of evo-
lutionary processes directly depend on the structure of the
fitness landscapes on which the organisms are evolving.
Furthermore, Wright’s idea of genotype-fitness landscapes
moved from a metaphor to an object of experimental stu-
dies, as several fitness landscapes were experimentally
resolved (Malcolm et al. 1990; Whitlock and Bourguet
2000; Lunzer et al. 2005; O’maille et al. 2008; Bridgham
et al. 2009; Lozovsky et al. 2009; de Visser et al. 2009; Hall
et al. 2010; da Silva et al. 2010; Tan et al. 2011; Chou et al.
2011; Khan et al. 2011; Flynn et al. 2013; Jiang et al. 2013;
Meini et al. 2015; Mira et al. 2015; Palmer et al. 2015; Bank
et al. 2016), including the seminal work of Weinreich et al.
(2006) on antibiotic resistant mutations (see de Visser and
Krug 2014, for a review). In that regard, characterizing the
structure of experimental and model fitness landscapes is a
key step in our ability to decipher evolution at the finest
scale.

Experimental fitness landscapes make it possible to test
predicted properties of evolutionary trajectories through
evolution experiments, together with sequencing (Achaz
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et al. 2014). Currently available fitness landscapes are based
on mutations in a few loci, typically 4–10 (Szendro et al.
2013; Weinreich et al. 2013). Since the number of geno-
types scales as the product of the number of alleles at all
loci, testing all the combinations of mutations in an
organism (or even in a protein) is beyond the reach of any
reasonable future experiment. However, small landscapes
have been resolved and analyzed. An exciting opportunity
raised by the recent release of these experimental land-
scapes is to find the adequate model(s) that is (are) able to
generate synthetic model landscapes that share similar fea-
tures with the observed ones. In that regard, characterizing
the structure of small fitness landscapes is a key step for our
understanding of evolution in the presence of biological
interactions among mutations. These epistatic interactions
determine the shape of fitness landscapes.

Epistasis is one of the most relevant features of fitness
landscapes. By definition, the (Malthusian) fitness effect of
a combination of multiple non-interacting mutations corre-
sponds to the sum of fitness effects of the individual
mutations. Hence, epistasis can be defined as any departure
from additivity of the fitness effects. Additive landscapes,
i.e. landscapes where the fitness effects of all mutations are
additive, are the only non-epistatic landscapes. In these
landscapes evolution is unconstrained, i.e. populations are
always able to reach the highest fitness peak through a
sequence of beneficial mutations; exchanging the order of
these mutations simply results in another fitness-increasing
path to the peak. Other landscapes show a variable amount
and structure of epistatic interactions, which may act as
evolutionary constraints.

As for other genomic data, the high dimensionality of
fitness landscapes make them almost impossible to visualize

(although some attempts were proposed, see McCandlish
2011; Brouillet et al. 2015). As a consequence, the analyses
of fitness landscapes will mostly rely on measures that
capture important features of their structures. Several mea-
sures were proposed previously and used to analyze
experimental fitness landscapes (reviewed in Szendro et al.
2013; Stadler 2002). The most natural one that was his-
torically used to appreciate the ruggedness of a landscape is
its number of peaks (Weinberger 1991). Intriguingly,
although ruggedness is more adequately represented by
both types of extrema, only little attention has been payed to
the number of sinks (genotypes with only fitter neighbors).
We therefore suggest that peaks and sinks are both adequate
measures of the landscape ruggedness (Fig. 1a). Most
models generate synthetic landscapes with the same mean
number of peaks and sinks; however, small landscapes can
have a different number of peaks and sinks due to random
sampling. Other measures such as r/s ratio (ratio of the
roughness over additive fitness, see Szendro et al. 2013),
fraction of sign epistasis and correlation of fitness effects
(Ferretti et al. 2016), as well as path-based measures, such
as the number of accessible paths to the highest peak
(Weinreich et al. 2006), were also proposed to characterize
the structure of fitness landscapes. As all these represent
direct or indirect measures of epistasis, all these measures
were shown to be pairwise correlated in experimental
(Szendro et al. 2013) and model fitness landscapes (Ferretti
et al. 2016). In that regard, other measures related to evo-
lution but somehow uncorrelated to the amount of epistasis
would be welcome to investigate the nature and the struc-
ture of the interactions in the landscapes.

In this study, we propose two new sets of measures,
related to the short-term predictability of evolutionary
outcomes.

The first set looks at the relation of accessible paths. In
fact, while the number of accessible paths is recognized as a
very important measure of epistasis and constraints
(Weinreich et al. 2006), it contains no information on the
similarity between these paths (Lobkovsky et al. 2011). The
distance between paths is relevant for short-term predict-
ability. In fact, evolution is more predictable when different
paths tend to visit the same genotypes. For this reason, one
natural measure of path similarity is the average fraction of
genotypes visited by both paths (Fig. 1b).

The second set of measures is related to successions
(chains) of obligatory beneficial mutations, that are paths
going through genotypes with a single fitter neighbor. Their
aim is to quantify the amount of evolutionary constraints in
the landscapes. In the limit of strong selection and low
mutation rates, when a hill climbing evolutionary path
reaches a genotype that has a single fitter neighbor, the next
step of the path is essentially deterministic. In this case, only
one of the mutations available in the landscape can improve
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1 peak, 2 sinks 3 direct accessible paths
(pairwise identity 0.58)

2 chains
(4 steps, 3 origins, max depth 2)~ 0.53

Fig. 1 Measures for fitness landscapes. We depict, on an illustrative
fitness landscape with three loci of two alleles, the three sets of
measures used in this study. a Peaks, here in green, are genotypes with
no fitter neighbors whereas sinks, here in red, are genotypes with only
fitter neighbors. In this landscape, γ (the correlation between fitness
effects of mutations in neighboring genotypes) is 0.53. b there are
three direct accessible paths ending at the global peak and starting at its
antipode. All paths pass through four genotypes and share the start and
endpoint; moreover, two paths share another genotype as well, hence
the average fraction of shared genotypes is (2/4+ 2/4+ 3/4)/3= 0.58.
c The two chain trees are composed of four steps (genotypes with a
single fitter neighbor), three origins (two for one chain, one for the
other) and have a maximal depth (the largest number of steps chained
together) of two
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the fitness. If several genotypes with a single way out are
connected together they form a chain of “obligatory”
mutational events that often ends on a peak (Fig. 1c), but
could also end on an intermediate genotype.

Chains form a tree structure of obligatory fitness-
increasing paths, already noticed in Lobkovsky et al.
(2011). We describe several measures on this tree that can
be used to characterize the structure of fitness landscapes
(Fig. 1c). These measures have been chosen for two rea-
sons. First, they have an immediate interpretation in biology
in terms of evolutionary constraints. Second, for small
landscapes, these chain measures are only weakly correlated
with epistasis, hence they can bring independent informa-
tion on the structure of the interactions.

In the following, we will define these evolutionary
measures in detail, then present analytical and numerical
results for experimental and model fitness landscapes and
finally discuss their relations with the existing measures of
epistasis.

Definitions

Similarity between accessible paths

Many fitness landscape measures of epistasis are correlated
across experimental (Szendro et al. 2013) and model (Fer-
retti et al. 2016) fitness landscapes with the amount and
strength of epistasis. However, one could envision that
landscapes with similar measures of epistasis could still be
quite different in terms of their structure of epistatic inter-
actions, as well as their evolutionary properties. New
measures should be sensitive to these differences in land-
scape structure and the corresponding differences in evo-
lution, while being possibly uncorrelated with changes in
fitness effects across different backgrounds or other direct
measures of epistasis. Measures that are directly related to
properties of evolutionary trajectories are the most pro-
mising candidates in this respect.

Here, we focus on a class of statistics that measure the
amount of constraints on the possible evolutionary paths.
These constraints can take different forms. A well-known
example is the reduction in the number of selectively
accessible (i.e. fitness-increasing) paths to the highest peak
from its antipode in the landscape. The number of acces-
sible paths and the number of accessible direct paths
(without any reversion) are classical measures of epistatic
constraints, since all the direct paths are accessible in
additive landscapes, and their number decreases with epis-
tasis (Weinreich et al. 2006). Interestingly, the probability
of finding a direct path has been analytically studied in
some models (Franke and Krug 2012; Schmiegelt and Krug

2014; Hegarty et al. 2014; Berestycki et al. 2016; Hwang
et al. 2017).

However, the number of accessible paths may not tell the
full story. Indeed, one could imagine that epistatic con-
straints decimate paths at random or, on the contrary, only
paths traversing subregions of the genotype space. In the
latter case, the constraints would not only reduce
the number of accessible paths, but also concentrate the
remaining paths across specific genotypes, hence increasing
predictability of the evolution.

For biallelic landscapes, we propose a simple measure of
these constraints, namely the average pairwise fraction of
shared genotypes between two direct accessible paths to the
highest peak from its antipode (Fig. 1b). This is an intuitive
measure of constraints in the landscape as two accessible
paths that often pass through the same genotypes will tend
to explore the same regions of the genotype space. The
larger the identity among selectively accessible trajectories,
the better our ability to predict the steps of an adaptive walk.
This measure is reminiscent of previous approaches based
on path divergence (Lobkovsky et al. 2011) and on path
distances/entropies (Manhart and Morozov 2014), but it is
more focused on local constraints rather than on global
constraints.

This measure can be generalized to multiallelic land-
scapes by taking the average of the biallelic measure over
all biallelic sublandscapes containing the highest peak. Note
that the biallelic measure is undefined when there is either
no path or a single path to the highest peak.

Chains of obligatory steps

Another natural measure of evolutionary constraints is
given by the abundance and structure of maximally con-
strained paths in the whole landscape. To characterize these
paths in a simple and effective way, we focus on genotypes
with only a single beneficial mutation.

All fitness-increasing paths that pass through such gen-
otype will share this mutation. Some landscape have
“chains” of consecutive mutations with this property
(see Fig. 1c). We now examine the abundance and size of
these chains as measures of evolutionary constraints.

We define a chain step as a mutation g→ g′ that is the
only possible fitness-increasing mutation from the genotype
g. Chain steps can occur one after another, forming a linear
path of obligatory mutational steps, that we call a chain.
Several chain steps can lead to the same genotype, but a
genotype can have at most one outgoing chain step. For this
reason, chains can form tree-like structures, that we call a
chain tree. A chain tree is formally the set of all genotypes,
which are forced to evolve along obligatory paths up to a
common final genotype, i.e. a maximal set of connected
chain steps. This definition implicitly assumes a strong
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Fig. 2 Epistasis and chain measures for different landscape models
with L= 5. The landscapes are build from 104 simulations of an
additive component with mean μa and variance σa= μa/10 and an
epistatic component. The epistatic component is: (RMF) an HoC
model with σ2HoC ¼ 1; (IMF) an Ising model with mean incompatibility

cost μc= 1 and variance σ2c ¼ 0:1. We plot the amount of epistasis as
measured by γ and peaks, as well as the number and similarity of direct
accessible paths plus the number of chain steps and their maximum
depth
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selection regime (Gillespie 1983), as there is no fixation for
deleterious or neutral mutations. In an additive landscape,
there is a single chain tree containing only those genotypes
one mutation away from the (single) peak.

Note that other landscapes can contain more than one
chain tree (or none). The set of all chain trees correspond to
the “tree component” of the landscape, i.e. the component
with deterministic evolution, discussed sporadically in the
literature (Lobkovsky et al. 2011; Kauffman and Weinberger
1989). We compute also the number of origins, that corre-
spond to all genotypes that are initial points of a chain
(obviously excluding intermediate steps). Finally, we com-
pute also the maximal depth of all chains in the landscape,

that is, the maximum number of consecutive steps. In an
additive landscape, the depth of the only chain tree is 1.

Model landscapes

Extreme models of epistatic interactions are additive land-
scapes, corresponding to the case of no epistasis, and the
HoC model (Kingman 1978), which corresponds to the case
of strong epistasis. The latter model assigns random
uncorrelated values to the fitnesses of the genotypes; these
values are extracted from a given distribution, e.g. a
Gaussian with variance σ2HoC and mean 0.
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μa for a RMF landscape with σ2a ¼ 0, σ2HoC ¼ 1. Lines represent the
analytical mean values, while dots represent the average over 104

simulations
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We compute the measures on accessible paths and tree
chains on two different biallelic model landscapes:

● The Rough Mount Fuji (RMF) model is a mixture of an
additive component and a random contribution from a
HoC model. The additive component has fitness effects
randomly chosen from a Gaussian distribution of mean
μa and variance σ2a , while the HoC component is
Gaussian with variance σ2HoC. This RMF model is often
used to interpolate between a complete additive land-
scape and a complete random one (Aita et al. 2000). We
consider a fixed strength of the random “House of
Cards” component; hence, the higher the mean additive
effect of mutations μa, the more additive is the model;
consequently, when μa→∞, the model becomes addi-
tive, whereas it converges to an House of Cards model
when μa→ 0.

● The Ising Mount Fuji (IMF) model (Ferretti et al. 2016)
was also introduced to mix an additive component (also
with mean μa and variance σ2a) with a fixed Ising-like set
of interactions in which each pairs of interacting loci
implies a fitness cost if the two loci in the pair do not
have the same allele. This cost is assumed to be
Gaussian distributed with mean μc and variance σ2c and it
could be interpreted biologically as a genetic incompat-
ibility between interacting alleles. In this model, all loci
are located along a sequence and each locus interacts
only with its neighboring loci.

We compute the mean value for the number of peaks, the
number of direct paths and their identity, as well as chain
steps and depth for RMF and IMF models, varying the
additive contribution of the two models. Results are repor-
ted in Fig. 2. We computed also the γ measure of epistasis
(Ferretti et al. 2016), which is defined as the correlation of
fitness effects of mutations before and after a single change
in the genetic background. γ= 1 corresponds to no epistasis
while γ= 0 corresponds to strong epistasis.

Accessible paths

In both models, the number of direct accessible paths is
close to zero for strong random interactions (μa→ 0: HoC
model), but it increases with increasing additive component
μa (i.e. decreasing epistasis) as expected, with a steep slope
where the fitness variance due to the additive component is
comparable to the epistatic one (see Fig. 2).

The similarity of accessible paths increases with the
weight of random interactions (i.e. with epistasis) in both
models. Since the number of direct paths follows the
opposite trend, this suggests an inverse relation between
number and similarity of paths. However, this relation is not
necessarily informative on the structure of the epistatic

interactions, rather it appears to be a common feature of
small landscapes.

Chains

In an additive landscape, all the L genotypes around the
peak are origins of a chain tree that ends at the peak. This
starlike chain tree of depth 1 around the peak is the only
chain tree in these landscapes. In contrast, in a HoC model,
there are many small and slightly deeper chain trees; their
number is of the order of 2L/(L+ 1) (see proof in the
Appendix). Therefore, it would be tempting to conclude that
the number of chain trees (as well as other measures of
chains) are correlated to the amount of epistasis. However,
this is not the case.

For example, in an RMF model with equal additive
contributions, it is possible to derive exact and approximate
theoretical results for the mean of some chain measures—
most relevant, the number of chain trees, chain steps and
origins. Equations are presented in Appendix.

The results are illustrated in Fig. 3, where the mean of
several chains measures are reported as a fraction of addi-
tive component in the RMF model. Furthermore, even
though chain measures for the IMF model cannot be com-
puted analytically, they can be retrieved from simulations
(Fig. 2). Interestingly, several of the chain measures appear
to be non-monotonic with respect to epistasis in the RMF
model and even more so in the IMF model. This non-
monotonicity and the weak correlations suggest that these
statistics depend weakly on epistasis.

Both the number of steps and the chain depth tend to
have a maximum for intermediate values of epistasis, when
the contributions of the additive component and of the
interactions are comparable (Figs. 2 and 3). Interestingly the
type of interaction plays a important role in the structure of
the chains, as only short chains are observed for the RMF
model, whereas long chains are observed for the IMF
model. It is important to notice that the size of the landscape
changes the dependence between epistasis and chain mea-
sures (depth and abundance) (Fig. 3).

Experimental landscapes

We computed the accessible direct paths (number and
similarity) and the chain measure (number of chains, steps
and origins, as well as maximum depth) on 38 experimen-
tally biallelic resolved landscapes (Malcolm et al. 1990;
Whitlock and Bourguet 2000; Lunzer et al. 2005; Weinreich
et al. 2006; O’maille et al. 2008; Bridgham et al. 2009;
Lozovsky et al. 2009; de Visser et al. 2009; Hall et al. 2010;
da Silva et al. 2010; Tan et al. 2011; Chou et al. 2011; Khan
et al. 2011; Flynn et al. 2013; Jiang et al. 2013; Meini et al.
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Fig. 4 Relation between landscape measures in several experimental
biallelic landscapes with different number of loci. Top: Similarity
between accessible direct paths (computed as path similarity minus its
minimum possible value for the landscape) as a function of the fraction

accessible direct paths and of epistasis (defined as 1− γ). Middle and
bottom: Number of chain trees, origins, and maximum chain depth
versus the number of chain steps or 1− γ
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2015; Mira et al. 2015; Palmer et al. 2015). They differ on
their number of loci: 1 landscape has 3 loci, 20 have 4 loci, 9
have 5 loci, and 8 have 6 loci and their general features are
summarized in Weinreich et al. (2017). Results can be seen
in Fig. 4.

We also illustrate explicitly these statistics for two
landscapes. The first landscape is the landscape of antibiotic
(cefotaxim) resistance of β-lactamase mutations in an
Escherichia coli plasmid from Weinreich et al. (2006) (Fig.
5, left). The five mutations have a very strong effect that

together give a 4 × 104 increase in antibiotic resistance and
were therefore selected together. Given the huge selective
advantage of the combined mutations, this landscape is
single-peaked, where the peak corresponds to the five-point
mutant. Furthermore, it also has a single sink, that inter-
estingly does not correspond to the wild type, and is weakly
epistatic (γ= 0.85).

The second is a landscape of deleterious mutations in
Aspergillus niger from Franke et al. (2011) (Fig. 5, right). It
is one of the four L= 5 complete sublandscape (csI) of a

Fig. 5 Epistasis measures and their corresponding illustrations for two
experimental fitness landscapes. The pictures and the statistics were
computed using MAGELLAN (Brouillet et al. 2015). The left column
represents different views from the Weinreich et al. (2006) landscapes,
whereas the right one concerns the csI from de Visser et al. (1997).
a On the top panel, we report the general aspect of the landscapes, as

well as previous measures of epistasis. b On the middle panel, we
depict and report the number of direct accessible paths and their
average pairwise similarity. c Finally, we report four measures con-
cerning chains of obligatory beneficial mutations, on a sky view of the
landscapes
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larger landscape with L= 8 loci (de Visser et al.1997). This
landscape is a combination of unrelated deleterious muta-
tions where epistatic interactions were not filtered by natural
selection. This landscape has 4 peaks and 2 sinks; in fact, at
present it is one of the most rugged among the completely
resolved landscapes (γ= 0.33).

Accessible paths

The results in Fig. 4 show a clear negative trend between
the number of the paths and their similarity, which is
observed across different numbers of loci and both across
direct and indirect paths (not shown). This trend is predicted
by landscape models and suggests that in small landscapes,
epistatic interactions do not block evolutionary trajectories
at random; instead, they constrain whole groups of similar
trajectories in a clustered way, hence reducing the accessi-
bility of the landscape but someway increasing the pre-
dictability of evolutionary trajectories.

The landscape by Weinreich et al. (2006) has 18 acces-
sible direct paths to the highest peak (and a further 9
indirect accessible paths), out of 120 accessible paths for an
additive landscape of the same size. Direct paths share
slightly more than half of their genotypes (0.504 or 0.533
considering indirect paths as well), versus a minimum of
0.333 (i.e., only the extremes). Similarly, the landscape by
de Visser et al. (1997) has 25 accessible paths (all are direct
ones) that share on average 0.542 of their genotypes. Both
landscapes appear to follow the same pattern outlined in
Fig. 4 for the other empirical landscapes.

Chains

The number of chain steps is unrelated to measures of local
epistasis, such as γ (Fig. 4), supporting the arguments for a
weak dependence of chain statistics on epistasis. Interest-
ingly enough, however, this measure of the total size of
chains in the landscape is related to several other chain

Table 1 Correlation coefficients
between landscape measures

peaks sinks γ paths simil_patha steps depth

Experimental landscapes

peaks 1 – – – – – –

sinks 0.45 1 – – – – –

γ 0.55 0.37 1 – – – –

paths 0.38 0.17 0.36 1 – – –

simil_patha 0.10 0.07 0.09 0.47 1 – –

steps <0.01 0.15 <0.01 0.12 <0.01 1 –

depth 0.05 0.14 <0.01 <0.01 <0.01 0.33 1

RMF model

peaks sinks γ paths simil_path steps depth

peaks 1 – – – – – –

sinks 0.57 1 – – – – –

γ 0.76 0.74 1 – – – –

paths 0.67 0.59 0.68 1 – – –

simil_patha 0.63 0.63 0.71 0.85 1 – –

steps 0.09 0.03 <0.01 <0.01 0.02 1 –

depth 0.02 0.13 0.11 0.10 <0.01 0.28 1

IMF model

peaks sinks γ paths simil_path steps depth

peaks 1 – – – – – –

sinks 0.67 1 – – – – –

γ 0.71 0.42 1 – – – –

paths 0.72 0.72 0.72 1 – – –

simil_patha n/a 0.70 0.59 1 1 – –

steps 0.19 <0.01 0.05 <0.01 <0.01 1 –

depth <0.01 0.11 0.04 0.24 0.02 0.70 1

Spearman ρ2 correlation of pairs of measures across 38 experimental landscapes (top panel) or 104 random
realizations of the RMF (medium panel) and IMF models (low panel) with L= 5, σHoC= 1 (for RMF), μI= 1
and σI= 0.2 (for IMF), σa= μa/10 and μa log-uniformly distributed in [0.01, 10]
aSimilarity between paths can only be computed in 25 landscapes for experimental ones, 5108 for RMF and
3242 for IMF, as the other ones have 1 or less accessible paths
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measures, like the total number of chains, origins and the
maximum chain depth, as shown in Fig. 4 (see also Table
1). For a fixed size of the landscape, these measures tend to
increase slightly with the number of chain steps, meaning
that landscapes with larger chain trees tend to have slightly
more chains, and deeper and wider chains as well.

The landscape by de Visser et al. (1997) has a single
chain of depth 2 with 5 origins and 7 steps, i.e. a slightly
larger chain than expected according to the RMF model and
to other empirical landscapes. This is not so surprising
considering the amount of epistasis in this landscape, which
could increase. On the other hand, the landscape by
Weinreich et al. (2006) has a relatively small overall
amount of epistasis, but it contains two chains with a
maximum depth of 3, 6 origins, and 9 steps, revealing one
of the largest chain structures observed in empirical
landscapes.

Correlations between measures

In this section, we discuss the relations existing between the
newly proposed measures and the existing ones.

From a theoretical perspective, the number of chain steps
is a close relative of other measures, such as the number of
peaks and sinks, since they correspond to three different
components of the distribution of beneficial mutations. This
stems from the theory of fitness graphs. Fitness graphs
correspond to a network of genotypes, where each pair of
genotypes related by a beneficial mutation is connected by a
directed link (Weinreich et al. 2005; Crona 2014). The out-
degree of a node is defined as the number of outgoing links,
i.e. the number of beneficial mutations from the corre-
sponding genotype. The out-degree distribution (or
equivalently, the distribution of the number of beneficial
mutations from a genotype) is simply the distribution of the
out-degrees of all nodes. Since there are no fitness-
increasing mutations from a peak, peaks are simply nodes
with out-degree 0. Therefore, the number of peaks is actu-
ally the first bin of the out-degree distribution. Similarly, in
a biallelic landscape, the number of sinks correspond to the
number of genotypes with out-degree L (the last bin of the
out-degree distribution). Chain steps correspond simply to
nodes of out-degree 1. Hence, the number of chain steps is
the second bin of the out-degree distribution of the fitness
graph, and is therefore a natural step further in the char-
acterization of the out-degree distribution and the properties
of fitness graphs.

However, this does not mean that number of peaks and
of chain steps are necessarily correlated. In fact, we suggest
that there is no direct relation between the amount of
epistasis and the number of chains.

To evaluate in a more systematic way the relations
between these and other measures, we perform a correlation
analysis for the 38 experimental landscapes, as well as for 104

random replicates of RMF and IMF model landscapes each.
We select the number of peaks, the number of sinks, γ, as well
as four of the measures discussed in this article: the similarity
of direct accessible paths, plus the number of chain steps and
the maximum chain depth. We compute the Spearman cor-
relation coefficients of all pairs of measures in the experi-
mental as well as in the RMF and the IMF landscapes varying
the model parameters (in particular, the ruggedness).

The pairwise correlations (Table 1) confirm the intuition
that most measures are all strongly correlated, including the
similarity between paths. However, the correlation between
most measures is notably low with both chain measures.
This shows that the chain measures quantify some land-
scape properties that are not simply correlated to the amount
of epistasis.

Interestingly, the lack of correlation of chains with other
measures of epistasis is apparent when we compare them
across different models of epistatic interactions. In Fig. 2,
we depict how the different epistasis and chain measures
depend on the amount of epistasis and the underlying epi-
static model (HoC vs. Ising). The comparison between
measures of epistasis and chains shows clearly that there is
no simple relation between them, as these models of inter-
actions have different behavior. The size of chains in the
landscape depends strongly on the nature of the epistatic
interactions and shows a non-monotonic behavior with the
amount and strength of epistasis, as larger chains are more
probable for intermediate levels of epistasis. Hence chain
measures could provide useful information beyond the
existing measures of epistasis.

Discussion

In this work, we presented two new sets of landscape
measures, which have a simple interpretation and cover a
range of potential applications. Both these measures are
based on the sign of the fitness effects, i.e. on the fitness
graph, hence they are well suited for landscapes where only
fitness ranks or the beneficial/deleterious nature of the fit-
ness effects can be experimentally determined. These
measures and the others discussed here have been imple-
mented in MAGELLAN, a graphical tool to explore small
fitness landscapes (Brouillet et al. 2015).

The first set of measures—the fraction of genotypes
shared between paths—is an interesting and revealing
measure, but has several limitations. The first is precisely
the strong anti-correlation between the number of accessible
paths and their similarity, which reduces the usefulness of

Evolutionary constraints in fitness landscapes 475



the latter as an independent measure, at least for small
landscapes. The second is the impossibility to define path
similarity in any meaningful way in cases where epistasis is
so strong that there are no accessible paths, or just one.
Finally, this measure is restricted to biallelic landscapes or
sublandscapes.

The second set of measures is a more fine-grained
measure of evolutionary constraints, based on genotypes
with a single beneficial mutation available. These genotypes
represent steps in “obligate” fitness-increasing paths on the
landscape, funnelling different evolutionary paths through
the same mutation. Sequences of such beneficial mutations
represent chains of obligatory fitness-increasing mutations.

Chains are a natural choice for a measure of evolutionary
constraints in the framework of fitness graphs. In particular,
chain steps are strongly related to the distribution of bene-
ficial mutations from a genotype, that is the out-degree
distribution of the fitness graph corresponding to the land-
scape. In fact, as discussed before, there is a one-to-one
correspondence between chain steps and genotypes with a
single fitness-increasing mutation. The number of fitness-
increasing mutations from a given genotype is the out-
degree of the genotype in the fitness graph. Therefore, chain
steps are simply nodes of out-degree 1. In this respect, this
statistics is a close relative of one of the most well-studied
measures of fitness landscapes, namely the number of
peaks, which correspond to genotypes without beneficial
mutations (i.e. nodes of out-degree 0).

Both the number of steps and related measures like the
depth of chains have an immediate evolutionary inter-
pretation, in terms of evolvability and constraints, yet they
show peculiar properties. The most relevant one is that they
are often non-monotonic or weakly correlated with the
amount of epistasis (i.e. measured by the number of peaks,
sinks or γ), as we have shown using simulations and ana-
lytically. The lack of correlation between epistasis and
chains shows that these new statistics can be used to obtain
independent information about the nature of the interaction,
instead of their abundance.

Interestingly, the number of chain steps, the chain depth
(Fig. 2) and even the total number of accessible paths
(Szendro et al. 2013) seem to be peaked at intermediate
weight of epistatic interactions. All these measures are
related both to evolvability—deep chains show that fitness-
increasing paths are open—and to constraints—chains
represent obligatory paths in evolution. This suggests an
evolutionary interpretation of these peaks in terms of the
tradeoff between evolvability (higher at low epistasis) and
constraints (stronger with high epistasis). Previous measures
that were shown numerically and by some analytical
approximations to be non-monotonic include the total
number of accessible paths (Szendro et al. 2013) and the

number of exceedances, i.e. the number of available fitness-
increasing mutations after an evolutionary step (Neidhart
et al. 2014), which are also related to evolvability and
constraints. It is worth mentioning that chains and excee-
dance are both related to the out-degree distribution after
one step of increasing fitness. This suggests that beyond the
out-degree distribution, it is perhaps worth characterizing
the sequences of out-degrees, e.g. the out-degree distribu-
tion along evolutionary paths.

Interestingly, many real landscapes tend to have longer
chains than expected according to theoretical landscape
models with random epistasis. This is the case for both
experimental landscapes from Weinreich et al. (2006) and
de Visser et al. (2009). This is especially apparent and
interesting in the former landscape, since it implies some
highly non-random structure of epistatic interactions for this
set of mutations. This result has been found independently
by randomization tests (Weinreich et al. 2013) and cannot
be seen in complex measures of epistasis like the Fourier
spectrum (Stadler 1996; Szendro et al. 2013) or the decay of
correlations γd (Ferretti et al. 2016), however our chain
measures were able to capture this signal. A possible
explanation for this is the heterogeneity between the func-
tional and selective effect of different mutations in real
landscapes.

Chains are natural measures both from the evolutionary
point of view and from the mathematical point of view. For
most small empirical landscapes currently available (bial-
lelic and with L ≈ 4–6 loci), peaks and chains summarize
most of the information about local evolutionary constraints
and especially about the distribution of beneficial mutations.
However, for larger landscapes or multi-allelic ones, other
measures could be more informative about local and global
constraints. This issue is discussed in details in the first two
sections of the Appendix: in the first one we explain the
reasons for the weak dependence of the number of chain
steps on epistasis in terms of the behavior of the distribution
of the number of beneficial mutations, while in the second
we employ this framework to provide a guide to the choice
of measures weakly related to epistasis in large multi-allelic
landscapes. Global constraints can be also summarized by
generalized chains, which are sets of “obligate” genotypes
along evolutionary paths. These generalized chains describe
non-local constraints and represent an interesting and
potentially new source of information on the evolutionary
dynamics in larger landscapes.

We are still far from predicting evolution on real land-
scapes based on their measures, partly because of the
incomplete knowledge of the structure of real landscapes,
and partly because of the lack of measures with a natural
evolutionary interpretation. In the future, we expect to
witness a strong increase in the number of publications of
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new experimentally resolved empirical landscapes. The
measures that we propose here will therefore find applica-
tions in the understanding and classification of these land-
scapes, as well as in studies of model landscapes. The new
chain measures are able to reveal information that is
uncorrelated with the strength or amount of epistasis in the
landscape, hence they will represent useful tools to dis-
criminate and classify fitness landscapes. Chains also
highlight the interplay of constraints and evolvability that
influence evolution on complex landscapes.
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Appendix

Why are chains measures non-monotonic in
epistasis?

One of the most important features of chains is the low
correlation, or non-monotonicity, of the number of chain
steps versus epistasis. There is an intuitive explanation for
this interesting property.

For many biological landscapes, as well as for classical
models (like NK or RMF) the distribution of the number of
beneficial mutations across genotypes (or equivalently, the
out-degree distribution of the fitness graph) is approxi-
mately bell-shaped, with a small number of maxima and
minima (0 and L beneficial mutations respectively) and a
large number of genotypes having as many beneficial as
deleterious mutations.

The behavior of the distribution of beneficial mutations
for the RMF at low, intermediate, and high epistasis is
shown in Fig. 6 (the corresponding analytical formulae can
be found in the next sections). It is easy to notice that the
width of this distribution increases with the amount of
epistasis. It will be shown elsewhere that in fact, the var-
iance of this distribution is always proportional to the
fraction of reciprocal sign epistasis in the landscape [Ferretti
et al., in preparation]. For completely random landscapes
(House of Cards), the distribution becomes flat on average.

Let us focus on genotypes that have few beneficial
mutations (but not zero). Starting with an additive landscape
and increasing the amount of epistasis, genotypes with few
beneficial mutations are rare but increase steadily in num-
ber. At low epistasis, the increase is due to the flux of
genotypes with intermediate numbers of beneficial muta-
tions, which represent the most abundant class of geno-
types. However, at high epistasis, genotypes with few
beneficial mutations are more abundant and they tend to
switch to peaks with increasing epistasis, hence they could
decrease in number (see Fig. 6). Therefore, depending on
the parameters, the number of genotypes with few beneficial
mutations tends to show a non-monotonic behavior with
respect to epistasis.

We are interested in small landscapes like the ones that
have been experimentally resolved at present (biallelic, L ≈
4–6). For these landscapes, the class of genotypes with few
beneficial mutations is represented by the genotypes with a
single beneficial mutation, i.e. chain steps. The total number
of chain steps in the landscape (i.e. the number of genotypes
with a single beneficial mutation) is precisely the second
component of the out-degree distribution, while the first
component is the number of maxima. It is therefore a nat-
ural quantity of interest both mathematically and for its
interpretation in terms of constraints and predictability of
evolution.

Generalizations for large, multi-allelic landscapes

It follows from the arguments of the previous section that
for larger landscapes or with more than two alleles per
locus, the number of chains tends to grow rapidly with
epistasis and the non-monotonicity is lost. The same rea-
soning suggests that a natural generalization of the number
of chain steps is given by the components of the distribution
of beneficial mutations that are non-monotonic in epistasis.
The prediction of the biallelic RMF model for these com-
ponents is shown in Fig. 7a. For not too large biallelic
landscapes, the most non-monotonic component tends to
have around b ≈ L/3 beneficial mutations. However, this
could be model dependent and it is difficult to generalize to
the multi-allelic case. Hence, we present a slightly different
approach to this issue.

0 1 2 3 4 5

γ=1

0 1 2 3 4 5

γ=0.33

Number of beneficial mutations

0 1 2 3 4 5

γ=0

Fig. 6 Distribution of the number of beneficial mutations from random
genotypes. Illustrated for biallelic RMF landscapes of size L= 5 with
increasing levels of epistasis from left (additive landscape) to right
(House of Cards)
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In large multi-allelic landscapes, the size of almost all
components of the distribution of beneficial mutations
tends to differ between no epistasis and strong epistasis by
a combinatorially large (or small) factor. In fact, in the
biallelic case, this factor for the bth component is

2L

ðLþ1Þ L
b

� � :When this factor is very large or very small,

the corresponding component is constrained to have an
exponentially large dependence on epistasis. Hence, the
only components that are not strongly correlated with
epistasis are the ones that show minimal differences
between no epistasis and strong epistasis. These “flattest”
components are shown in Fig. 7b as a function of the size
of the landscape. We find again that chains (i.e. the
component with a single beneficial mutation) correspond
often to the flattest component for small landscapes. More
precisely, they tend to be weakly dependent on epistasis
for small biallelic landscapes of size L= 3–6, as well as
tri-allelic landscapes of size L= 3 and tetra-allelic land-
scapes of size L= 2.

It is possible to find an approximation for the flattest
component in large landscapes. For a general additive
landscape, the outdegree distribution is the one of the sum
of L integers between 0 and A− 1 (which can be approxi-
mated by a normal distribution of mean L(A− 1)/2 and
variance L(A2−1)/12), while for a strongly epistatic HoC
landscape, the distribution is flat with all components of size

1
LðA�1Þþ1. Hence, for L(A− 1) not too small, the “flattest”

components that depend weakly on epistasis will be con-
centrated around

b � LðA� 1Þ
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L A2 � 1ð Þ

12
log

6LðA� 1Þ
πðAþ 1Þ

� �s
ð1Þ

beneficial mutations. The above formula can be used to find
a statistical generalization of the number of chain steps for
landscapes of arbitrary size.

Note that by symmetry, if a component b < L(A− 1)/2 is
non-monotonic, genotypes with L(A− 1)− b beneficial
mutations have similar properties of non-monotonicity with
respect to epistasis, but they are less interesting from an
evolutionary perspective, since they do not correspond to
evolutionary constraints.

Number of chain steps in the HoC model

Given the linearity of expectations, the expected number
of chain steps is given by the number of mutations in the
landscape, L · 2L, multiplied by the probability that the
mutation is a chain step. This is the probability that among
the initial genotype and all its neighbors, the final one is
the most fit and and the initial one is second in the fitness
rank. Since fitness values are random and uncorrelated,
the probability that a value is maximum among L+ 1 is 1/
(L+ 1) and the conditional probability that another value
is second is 1/L, therefore, we have that the average
number of steps is L · 2L/L(L+ 1)= 2L/(L+ 1).
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Fig. 7 Components of the distribution of beneficial mutations that are
weakly dependent on epistasis. a Non-monotonicity (with respect to
epistasis) of the components of the distribution of beneficial mutations,
estimated for Rough Mount Fuji biallelic landscapes of different size
with Gaussian House of Cards component. For a given number of loci
in the landscape (vertical axis), only the colored components (hor-
izontal axis) show some non-monotonicity. For example, for L= 5,
only the number of genotypes with 1 beneficial mutation (i.e. the
number of chain steps) and with 4 beneficial mutations have a non-

monotonic behavior. The amount of non-monotonicity
maxγ2½0;1� cðγÞ�minγ2½0;1� cðγÞ

cð0Þ�cð1Þj j � 1 is defined by the peak values of the com-
ponent c versus its values for no epistasis or for maximum epistasis.
b “Flattest” component (defined as the one with minimal relative
difference cð0Þ�cð1Þj j

cð0Þþcð1Þ between no epistasis and maximum epistasis) as a
function of the number of loci and the alleles per locus A in the
landscape. Intuitively, this component should be the least dependent
on epistasis. (Here we report only the component with less beneficial
mutations.) The lines show the approximation discussed in the text
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Analytical results for chains in RMF

We consider a RMF model with equal additive fitness
contribution s for each mutation, in addition to an HoC
model with distribution p(f) and cumulative distribution
Cðf Þ ¼ R f

�1pðxÞdx.
Sorting the genotypes in order of their additive fitness,

there are
L
k

� �
genotypes at the kth level with L− k muta-

tions with positive additive fitness effect and k with nega-
tive one. The average number of chain steps can be obtained
as the sum over all possible steps of the probability of being
a chain step. This probability depends on the distance k of
the genotype from the peak of the additive contribution.
Given the HoC contribution x to the fitness of the genotype,
the probability can be expressed in terms of the probabilities
that a mutation is beneficial (1−C(x ± s)) and the others are
deleterious (C(x ± s) each), considering all possible combi-
nations of additive fitness effects. This should be integrated
over the HoC contribution x for the given genotype, then

summed over all
L
k

� �
genotypes at distance k and over all

distances from 0 to L, obtaining

#steps¼ PL
k¼0

L

k

� �
k
R
dxpðxÞð1� Cðxþ sÞÞCðxþ sÞk�1Cðx� sÞL�k

h

þðL� kÞRdxpðxÞð1� Cðx� sÞÞCðx� sÞL�k�1Cðxþ sÞk
i

¼ L
R
dxpðxÞ 2� Cðx� sÞ � Cðxþ sÞ½ � � Cðxþ sÞ þ Cðx� sÞ½ �L�1

ð2Þ

The number of origins and of chain trees can be obtained
in a similar way using the Cayley tree/Bethe lattice
approximation. In this framework, we approximate locally
the hypercube by a Cayley tree, i.e. a tree with L branches at
each node. This means that we neglect the overlapping
between the next-to-nearest neighbors of the genotype
considered and we assume them to be (L− 1)2 independent
genotypes instead of L(L− 1)/2.

The probability that a genotype is the origin of a chain is
product of the probability of having out-degree 1 and that
all the other neighbors of lower fitness have out-degree
different than 1:

#origins¼ PL
k¼0

L

k

� �
k
R
dxpðxÞ 1� Cðxþ sÞ½ � Cðxþ sÞ½�

�p�ðx; s; kÞ�L�k Cðx� sÞ � pþðx; s; kÞ½ �k�1

þðL� kÞR dxpðxÞ 1� Cðx� sÞ½ � Cðx� sÞ½
�pþðx; s; kÞ�L�k�1 Cðxþ sÞ � p�ðx; s; kÞ½ �k

o
ð3Þ

where we define the probabilities that a neighbor genotype
is the starting or ending point of a chain step ending at

level k:

pþðx; s; kÞ ¼
Z

dypðyÞCðyþ sÞkCðy� sÞL�k�1 ð4Þ

p�ðx; s; kÞ ¼
Z

dypðyÞCðyþ sÞk�1Cðy� sÞL�k ð5Þ

The probability that a genotype is the endpoint of a chain
is the difference between the probability of being the final
genotype of a chain step and the probability of being an
intermediate point in a chain. The results are

#endpoints ¼
XL
k¼0

L

k

� �
1�

Z
dxpðxÞ 1� pþðx; s; kÞð ÞL�k� 1� p�ðx; s; kÞð Þk

� �

ð6Þ
#intermediates"ðsÞ ¼

PL
k¼0

L

k

� �
ðL� kÞR dxpðxÞð1� Cðx� sÞÞ�

� Cðx� sÞL�k�1Cðxþ sÞk
h

� Cðx� sÞ � pþðx; s; kÞð ÞL�k�1

� Cðxþ sÞ � p�ðx; s; kÞð Þk
i

ð7Þ
#intermediates ¼ #intermediates"ðsÞ �#intermediates"ð�sÞ

ð8Þ
#chain trees ¼ #endpoints�#intermediates ð9Þ

These formulae could be slightly simplified for distribu-
tions, where C(f+ s) can be expressed as a simple function
of C(f): for example the exponential distribution p(f)= e−f

with support f > 0, which has C(f)= 1− e−f and C(f+ s)=
1− e−s(1−C(f)), or the Gumbel distribution
pðf Þ ¼ e� fþe�fð Þ, in which case Cðf Þ ¼ e�e�f

and Cðf þ
sÞ ¼ Cðf Þe�s

(Neidhart et al. 2014).

Distribution of beneficial mutations in RMF models

The full distribution of the number of beneficial mutations
across genotypes in the RMF model can be obtained simi-
larly to the number of chain steps, but with an additional
summation over all possible ways to distribute n beneficial
mutations across k mutations with a positive additive effect
and L− k mutations with a negative additive effect at level
k, then dividing by the number 2−L of genotypes:

pbenðnÞ ¼ 1
2L
PL
k¼0

L

k

� �Pn
j¼0

R
dxpðxÞ k

j

� �
ð1� Cðxþ sÞÞjð1� Cðx� sÞÞn�j

� L� k

n� j

� �
Cðxþ sÞk�jCðx� sÞL�k�nþj

¼ 1
2L

L

n

� �R
dxpðxÞPn

j¼0

n

j

� �
ð1� Cðxþ sÞÞjð1� Cðx� sÞÞn�j

� PL�n

k�j¼0

L� n

k � j

� �
Cðxþ sÞk�jCðx� sÞL�k�nþj

ð10Þ
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and summing the binomials we obtain the simple result

pbenðnÞ ¼
L

n

� �Z
dxpðxÞ 1� Cðxþ sÞ þ Cðx� sÞ

2

� �n Cðxþ sÞ þ Cðx� sÞ
2

� �L�n

ð11Þ

We can also obtain the number of maxima Npeaks= 2Lpben
(0) (Neidhart et al. 2014):

Npeaks ¼
Z

dxpðxÞ Cðxþ sÞ þ Cðx� sÞ½ �L ð12Þ
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