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Abstract
In our previous work, we proposed a genomic prediction method combing identical-by-state-based Haseman-Elston
regression and best linear prediction with additive variance component only (HEBLP|A herein), the most essential
component of genetic variation. Since the dominance effects contribute significantly in heterosis, it is desirable to
incorporate the HEBLP with dominance variance component that is expected to enhance the predictive accuracy as we move
to the further development: HEBLP|AD, a paralleled implementation of genomic prediction compared with genomic best
linear unbiased prediction (GBLUP). The simulation results indicated that when the dominance effects contributed to a large
proportion of genetic variation, HEBLP|AD and GBLUP|AD, having similar accuracy, both outperformed HEBLP|A; but
when the dominance variation was none or little, HEBLP|A, HEBLP|AD, and GBLUP|AD had similar predictability. The
analysis of real data from Arabidopsis thaliana F2 population also demonstrated the latter situation. In summary, HEBLP|
AD performed stable whether a trait was controlled by dominance effects or not.

Introduction

With the rapid development of high-throughput molecular
marker techniques, such as single nucleotide polymorph-
isms (SNPs) and statistical approaches, genomic prediction
first proposed by Meuwissen et al. (2001) has been suc-
cessfully applied to genetic improvement of complex traits
that are controlled by polygenic effects—numerous small-
effect quantitative trait loci (QTL) (Schaeffer, 2006; Hayes
et al. 2009; Jannink et al. 2010; Zhang et al. 2011; Rie-
delsheimer et al. 2012). Compared to the conventional
marker-assisted selection (MAS), genomic prediction is far
more accurate by utilizing all molecular marker information
to estimate the breeding values of each individual in a

candidate population (Heffner et al. 2009; Arruda et al.
2016).

In the early stage of genomic prediction methods, many
models accounted only for additive effects (Meuwissen
et al. 2001; Bernardo and Yu, 2007; Calus et al. 2008;
VanRaden, 2008). However, dominance effects contribute
to heterosis (Hua et al. 2003; Li et al. 2008), and therefore
should be included in the models orienting hybrid breeding.
Recent studies also show that genomic prediction models
including dominance effects can improve the prediction
accuracy (Denis and Bouvet, 2011; Su et al. 2012; Technow
et al. 2012; Denis and Bouvet, 2013; Nishio and Satoh,
2014; de Almeida Filho et al. 2016; Wang et al. 2017; Liu
et al. 2017; Resende et al. 2017).

In our previous study, we developed a fast genomic
prediction approach (namely HEBLP, or HEBLP|A herein)
combining identical-by-state (IBS)-based Haseman-Elston
(HE) regression and best linear prediction (BLP). It can
obtain the total additive genetic variance via a simple HE
linear regression with reduced computation complexity, but
only additive effects are included (Liu and Chen, 2017).
The present study aims to develop the HEBLP with both the
additive and dominance effects (HEBLP|AD) and to eval-
uate its predictive performance in the simulated and a real
Arabidopsis thaliana F2 population.
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Materials and methods

The Arabidopsis thaliana F2 population

We used the phenotype and genotype data of an Arabi-
dopsis thaliana F2 population (namely P19) derived from a
cross between Bay-0 and Lov-5 (Salomé et al. 2011). It
consists of 384 individuals and 245 SNP markers. There are
seven traits including days until visible flower buds in the
center of the rosette (DTF1), days until inflorescence stem
reached 1 cm in height (DTF2), days until first open flower
(DTF3), rosette leaf number (RLN), cauline leaf number
(CLN), total leaf number: sum of RLN and CLN (TLN),
and leaf initiation rate (RLN/DTF1) (LIR1). For more
details about the P19 population please refer to Salomé et al.
2011.

Statistical models

The linear model of a quantitative trait can be written as:

y ¼ Zaaþ Zdd þ e; ð1Þ
in which y is the n × 1 vector for the standardized
phenotypic value of a quantitative trait measured from n

individuals yi ¼ y′i�y
σy

� �
; y′i represents the raw phenotypic

value; y represents the mean value of the phenotypic values;
and σy represents the standard error of the phenotypic
values.); Za is the standardized genotype matrix of n rows
and m columns for additive effects (m represents the number
of markers.). Zd is the standardized genotype matrix n ×m
for dominance effects. In order to keep the additive and
dominance variances orthogonal to each other, the coding
schemes for additive and dominance effects should be tuned
accordingly (Vitezica et al. 2017). For the ith individual at

the kth locus, Za;ik ¼ xik�2pkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkð1�pkÞ

p ; in which xik counts the

number of reference alleles (2, 1, and 0 for AA, Aa, and aa,
respectively) and pk the frequency of the reference allele A

at the locus. Zd;ik ¼ δik�2pk
2pkð1�pkÞ, in which δik is coded 0, 2pk,

and (4pk−2), respectively for AA, Aa, and aa genotypes,
respectively. F2 population the expected pk is 0.5, and the
frequency for AA, Aa, and aa are 0.25, 0.5, and 0.25,
respectively, under the Hardy-Weinberg equilibrium. The
additive and dominance effects of the causal loci were
represented by a and d, respectively; the additive effects
follow N 0; σ2d

� �
; the dominance effects follow N 0; σ2d

� �
;

and e is the residual error, following N 0; σ2e
� �

. Therefore,

varðyÞ ¼Ωaσ2a þ Ωdσ2d þ Iσ2e , in which Ωa ¼ zaz′a
m is the

additive genetic relationship matrix and Ωd ¼ zdz′d
m is the

dominance genetic relationship matrix.

For HEBLP|A and HEBLP|AD methods, we estimated
total additive σ2a

� �
and dominance σ2d

� �
genetic variance in

the training population via Haseman-Elston regression (HE)
as below

Y ¼ b0 þ baωa þ bdωd þ ε; ð2Þ
in which Y is a vector of n n�1ð Þ

2 elements for the squared
difference between a pair of individuals and Yij= (yi-yj)

2;
ωa is the additive genetic relatedness between a pair of
individuals i and j, as found in the ith row and the jth
column entry in Ωa; ωd is the dominance genetic
relatedness between a pair of individuals i and j, similarly
as found in the ith row and the jth column entry in Ωd.
Alternative to HE, linear mixed model can be employed to
estimate the additive and dominance variance components
via restricted maximum likelihood (REML) algorithm. Of
note, the difference between HE and linear mixed model
are as below. HE is based on least squares, and it allows the
analytical result for ba and bd, respectively. In contrast,
REML is a model-based approach and the exact structure
of the estimated variance, regardless of additive or
dominance, remains elusive. Furthermore, as discussed in
our previous study (Liu and Chen, 2017), the computa-
tional complex for HE is Oðn2Þ, proportional to the square
of sample size, but for REML Oðn3Þ. The computational
advantage of HE is important especially when the sample
size is large.

Analytical results for the Haseman-Elston regression

The least-squares framework exists analytical results for the
regression coefficient. Although, Eq 2 is a linear model of
two regression coefficients, E bað Þ ¼ covðY ;ωaÞ

varðωaÞ and E bdð Þ ¼
covðY ;ωdÞ
varðωdÞ because ωa and ωd are orthogonal for each locus.
The general principal for deriving the analytical solution for
E(ba) can be found in Chen’s study (Chen, 2014). For E(ba),
cov Y ;ωað Þ ¼ E Yωað Þ � E Yð ÞE ωað Þ ¼ EðYωaÞ because E
(Y)= 0.

E Yωað Þ ¼ 1
m

X
xik

X
xjk

ωa;ikωa;jk E yijxikð Þ � E yjjxjk
� �� �2

p xikð ÞpðxjkÞ;

in which E(yi|xik) is the conditional probability of the
phenotype given its genotype, ωa,ik as defined above. p(xik)
takes value of 0.25, 0.5, and 0.25, respectively, given xik=
AA, Aa, and aa. In quadric form

E Yωað Þ ¼ 1
m
βTIA

Xm
k¼1

Mk

( )
IAβ;

in which the general form of βT ¼ ½β1 þ p1 � q1ð Þd1; β2 þ
p2 � q2ð Þd2; ¼ ; βm þ pm � qmð Þdm� the vector for additive
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effects and IA an identity matrix with IA;kk ¼
ffiffiffiffiffiffiffiffiffiffiffi
2pkqk

p
. For

F2 populations, as pi= 0.5 the dominance effect di will be
eliminated out from β.

Mk ¼

ρ21;k ρ2;kρ1;k
ρ1;kρ2;k ρ22;k

� � � ρm;kρ1;k
� � � ρm;kρ2;k

..

. ..
.

ρ1;kρm;k ρ2;kρm;k

. .
. ..

.

� � � ρ2m;k

0
BBBB@

1
CCCCA,

a symmetric matrix, indicating how the kth marker tags
QTLs; for instance the entry at the ith row and the jth
column ρi,k,ρj,k represents the joint LD of the ith and the jth
QTLs tagged by the kth marker.

The denominator var(ωa) can be written as
1
m2

Pm
k1¼1

Pm
k2¼1 ρ

2
k1k2

, understood as the averaged linkage
disequilibrium between each pair of markers—including a
marker with itself (see Appendix for the definition of
effective number of markers me). Alternatively, var(ωa) can
be expressed in quadric form

var ωað Þ ¼ 1
m2

1T

1 ρ22;1

ρ21;2 1

� � � ρ21;m

� � � ρ22;m

..

. ..
.

ρ21;m ρ22;m

. .
. ..

.

� � � 1

0
BBBBB@

1
CCCCCA1;

in which 1T ¼ ½1; 1; ¼ 1� a vector for 1.
So, in quadric form

E bað Þ ¼ �2m

βTIA
Pm

k¼1

ρ21;k ρ2;kρ1;k

ρ1;kρ2;k ρ22;k

� � � ρm;kρ1;k
� � � ρm;kρ2;k

..

. ..
.

ρ1;kρm;k ρ2;kρm;k

. .
. ..

.

� � � ρ2m;k

0
BBBBB@

1
CCCCCA

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
IAβ

1T

1 ρ22;1

ρ21;2 1

� � � ρ21;m

� � � ρ22;m

..

. ..
.

ρ21;m ρ22;m

. .
. ..

.

� � � 1

0
BBBBB@

1
CCCCCA1

:

Similarly, for E(bd), we had
E Yωdð Þ ¼

1
m

P
xik

P
xjk

ωd;ikωd;jk E yijxikð Þ � E yjjxjk
� �� �2

p xikð ÞpðxjkÞ and its

quadric form

1
mD

TID
Pm
k¼1

ρ41;k ρ22;kρ
2
1;k

ρ21;kρ
2
2;k ρ42;k

� � � ρ2m;kρ
2
1;k

� � � ρ2m;kρ
2
2;k

..

. ..
.

ρ21;kρ
2
m;k ρ22;kρ

2
m;k

. .
. ..

.

� � � ρ4m;k

0
BBBB@

1
CCCCA

8>>>><
>>>>:

9>>>>=
>>>>;
IDD

in which D ¼ ½d1; d2; ¼ dm� the vector for dominance
effects and ID an identity matrix with ID,kk= 2pkqk.

The denominator is var ωdð Þ ¼ 1
m2

Pm
k1¼1

Pm
k2¼1

ρ4k1k2 , and in
quadric form

var ωdð Þ ¼ 1
m2

1T

1 ρ42;1

ρ41;2 1

� � � ρ41;m

� � � ρ42;m

..

. ..
.

ρ41;m ρ42;k

. .
. ..

.

� � � 1

0
BBBBB@

1
CCCCCA1:

So,

E bdð Þ ¼ �2m

DTID
Pm

k¼1

ρ41;k ρ22;kρ
2
1;k

ρ21;kρ
2
2;k ρ42;k

� � � ρ2m;kρ
2
1;k

� � � ρ2m;kρ
2
2;k

..

. ..
.

ρ21;kρ
2
m;k ρ22;kρ

2
m;k

. .
. ..

.

� � � ρ4m;k

0
BBBBB@

1
CCCCCA

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
IDD

1T

1 ρ42;1

ρ41;2 1

� � � ρ41;k

� � � ρ42;k

..

. ..
.

ρ41;m ρ42;k

. .
. ..

.

� � � 1

0
BBBBB@

1
CCCCCA1

;

Although, E(ba) and E(bd) resemble each other, E(ba) has
its kernel related to squared correlation ρ2, which is a term
associated to the additive variance (Hill and Robertson,
1968), while E(bd) related to ρ4. In particular, the numerator
involves the LD between a pair of markers and the
denominator the LD between a pair of markers.

Of note, there are two kinds of F2 populations, the
conventional F2 that is derived from F1 but not completely
reproducible in term of genotypes, and in contrast there is
“immortalized F2” (IF2), which can be reproduced
accordingly. The IF2 can often be realized in two ways: via
double haploid population (DH) (Liu et al. 2017) and from
recombination inbred lines (RIL) (Hua et al. 2003). The LD
differs upon F2/IF2 is used in practice. Between the kth1 and
kth2 markers, for a conventional F2 and DH-derived F2 the

squared correlation is ρ2k1;k2 ¼ 1� 2ck1;k2
� �2

but ρ2k1;k2 ¼
1�2ck1 ;k2
1þ2ck1 ;k2

� �2
for RIL-derived F2. For example, given the

recombination of 0.1 between a pair of markers, their ρ2=
0.64 for F2 and DH-derived F2 but 0.44 for RIL-derived F2.
For dominance-associated terms, ρ4= 0.41 for F2 and DH-
derived IF2, and 0.2 for RIL-derived IF2.

For simplicity, we only consider the typical polygenic
trait that the QTLs are randomly distributed along the
genome, and, under this assumption, σ2a ¼ � ba

2 and
σ2d ¼ � bd

2 , respectively. A computer program that estimates
additive and dominance heritability using Haseman-Elston
regression is available from authors.
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Best linear prediction (BLP)

BLP method was used to predict the genotypic value of
each line of the candidate population.

ĝ2 ¼ σ̂2aΩa21 þ σ̂2dΩd21
� �

V�1y1; ð3Þ

in which ĝ2 is the predicted genotypic values in the
candidate population; y1 is the phenotypic values in the
training population; Ωa21 and Ωd21 represent the additive and
the dominance genetic relationship matrix between the
candidate and the training population respectively; σ̂2a and
σ̂2d represent the estimated additive and dominance var-
iances respectively; the inverse of the V matrix is computed
using V�1 ¼ σ̂2aΩa11 þ σ̂2dΩd11 þ σ̂2e I

� ��1
, in which Ωa11 and

Ωd11 represent the additive and the dominance genetic
relationship matrix for the training population respectively.

Results

Estimates of the heritability and predictability in the
simulated F2 population

We simulated a quantitative trait from F2 experimental
population. In the simulated F2 population, we assumed that
1001 equal-frequent biallelic markers were evenly dis-
tributed in one chromosome [the recombination rate was c
between the ith and the (i+ 1)th markers]. All markers were
defined as QTLs whose additive and dominance effects
follow a normal distribution. Each simulation scenario
included 20 replications.

In order to assess the unbiasedness of estimating herit-
ability via the three methods (HE|A, HE|AD, and REML|
AD), we performed a Monte Carlo simulation experiment
for a F2 population. When the simulated parameters were
set as population size (n= 500), additive heritability (
h2a ¼ 0:3), dominance heritability (h2d ¼ 0:2), and recombi-
nation rate (c= 0.01), the results showed that ĥ2a ¼
0:271 ± 0:075 (via HE|A), ĥ2a ¼ 0:271 ± 0:075 and ĥ2d ¼
0:193 ± 0:039 (via HE|AD), and ĥ2a ¼ 0:296 ± 0:048 and
ĥ2d ¼ 0:226 ± 0:052 (via REML|AD) (Fig. 1). It indicated
that all three methods could obtain unbiased estimates of
parameters under the typical polygenic model.

Moreover, we evaluated the prediction accuracy of
HEBLP|AD, HEBLP|A, and GBLUP|AD under five envir-
onments in the simulated F2 population (Fig. 2). The size of
both the training (nT) and the candidate population (nC) were
500 and 100 in all simulations. The squared correlation
coefficient (r2) between the phenotypes and the predicted
genotypic values was defined as the prediction accuracy.

In scenario 1 (h2a ¼ 0:4, h2d ¼ 0, and c= 0.01), the pre-
diction accuracies were HEBLP|AD= 0.333 ± 0.066,

GBLUP|AD= 0.314 ± 0.096, and HEBLP|A= 0.335 ±
0.067. In scenario 2 (h2a ¼ 0:40, h2d ¼ 0:05, and c= 0.01),
the prediction accuracies were HEBLP|AD= 0.351 ± 0.065,
GBLUP|AD= 0.355 ± 0.066, and HEBLP|A= 0.334 ±
0.065. The results of these two simulations indicated that
the three methods had a similar predictive ability in the case
of no or very small contribution of dominance effects to
genetic variation. In scenario 3 (h2a ¼ 0:40, h2d ¼ 0:1, and c
= 0.01), the prediction accuracies were HEBLP|AD=
0.388 ± 0.065, GBLUP|AD= 0.391 ± 0.066, and HEBLP|
AD= 0.334 ± 0.067. In scenario 4 (h2a ¼ 0:4, h2d ¼ 0:2, and
c= 0.01), the prediction accuracies were HEBLP|AD=
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Fig. 1 The estimated heritability of additive and dominance based on a
fixed population size (500) via HE|A, HE|AD, and REML|AD in
20 simulations when additive and dominance heritability was set at 0.3
and 0.2, respectively, and recombination rate (c) was set as 0.01. Here
the HE|A only was used to estimate additive heritability. The vertical
bar represents the standard deviation for 20 simulations
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Fig. 2 Predictive ability based on a training population with a fixed
population size (500), a candidate population with a fixed sample size
(100), and a fixed recombination rate (c= 0.01) using HEBLP|A,
HEBLP|AD, GBLUP|AD methods in 20 simulations. The value after
capital letter A represents additive heritability and that after capital
letter D represents dominance heritability (for example, A0.4_D0.0
represents h2a ¼ 0:4 and h2d ¼ 0:0). The squared correlation coefficient
(r2) between the phenotypes and the predicted genotypic values were
defined as the prediction accuracy. The vertical bar represents the
standard deviation for 20 simulations
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0.471 ± 0.063, GBLUP|AD= 0.475±0.064, and HEBLP|A
= 0.335 ± 0.070. In scenario 5 (h2a ¼ 0:1, h2d ¼ 0:6, and c=
0.01), the prediction accuracies were HEBLP|AD= 0.553
± 0.063, GBLUP|AD= 0.569 ± 0.067, and HEBLP|A=
0.079 ± 0.048. It indicated a similar predictability between
HEBLP|AD and GBLUP|AD, and a significantly better
performance than HEBLP|A in the case of a large con-
tribution of dominance effects to genetic variation.

Comparison of computational time of HE|AD and
REML|AD

We simulated F2 population based on 20 replications to
evaluate the computational time of HE|AD and REML|AD.
In this case, the parameters were set as population size (n=
500), additive heritability (h2a ¼ 0:2), dominance heritability
(h2d ¼ 0:6), marker number (M= 3001), and recombination
rate (c= 0.01). The result showed that ĥ2a ¼ 0:183 ± 0:064
and ĥ2d ¼ 0:568 ± 0:068 (via HE|AD), and ĥ2a ¼
0:20 ± 0:032 and ĥ2d ¼ 0:636 ± 0:084 (via REML|AD), and
that HE|AD and REML|AD took an average of 304 s and
3487 s in each simulation, respectively, demonstrating a
significant computational advantage of HE|AD over REML|
AD.

Comparison of heritability and predictability
between F2 and IF2 derived from RIL using HEBLP|
AD

We simulated F2 and IF2 derived from RIL population to
evaluate HEBLP|AD. In this case, we simulated 1001
markers, among which 100 markers were sampled as QTLs.
When we estimated the heritability and prediction accuracy,
the markers representing QTLs were excluded. Each
simulation scenario included 20 replications.

When the simulated parameters were set as training
population size (nT= 500), candidate population size (nC=
100), additive heritability (h2a ¼ 0:5), dominance heritability
(h2d ¼ 0:25), and recombination rate (c= 0.01), the results
of the simulated F2 population showed ĥ2a ¼ 0:458 ± 0:170,
ĥ2d ¼ 0:244 ± 0:111, and the predictability r2= 0.614 ±
0.061 in the simulated F2 population; for the simulated IF2
populations, ĥ2a ¼ 0:480 ± 0:129, ĥ2d ¼ 0:230 ± 0:075, and
the predictability r2= 0.544 ± 0.071 in the simulated IF2
population derived from RIL population. As RIL-derived
IF2 undergoing multi-generation selfing, its decayed LD
resulted a much lower r2 than that of F2.

Approximation of prediction accuracy

To further understand the study, in the Appendix, we
derived a formula of prediction accuracy including additive
and dominance variance components. This derived result

could be considered as an extension to those previously
established by Daetwyler et al. (2008) and Goddard (2009).

r2 ¼ H2 H2

H2 þ me:aþme:d
nT

: ð4Þ

The result showed that H2 was the upper bound of the
prediction accuracy, and was further upon (1) the broad
heritability (H2 ¼ h2a þ h2d), (2) the effective number of
markers (me.a), (3) the effective number of markers of
dominance heritability (me.d), and (4) the sample size of the
training data. As me.a and me.d were determined by the
recombination, when the markers were dense, the prediction
accuracy could be further approximated as

r2 � H2 H2

H2 þ 6l
nT

; ð5Þ

in which l is the length of the chromosome (Morgan). Both
Eq 4 and Eq 5 indicated that the upper bound of prediction
accuracy was H2 when the sample size nT became infinite.
Having evaluated the utility of the approximation, we found
that the expected and observed prediction accuracy was
consistent via HEBLP|AD under different recombination
rates based on 10 simulations for F2 population (Table 1).
Eq 4 and Eq 5 gave similar prediction for r2 when the
markers were dense, and the accuracy of Eq 5 was reduced
when the markers were sparse. The sample size of the
candidate population could only influence the statistical
power of the prediction accuracy because r2 followed χ21
under the null hypotheses.

Genomic prediction of 7 traits in the Arabidopsis
thaliana F2 population

The 7 traits, including DTF1, DTF2, DTF3, RLN, CLN,
TLN, and LIR1 from a Arabidopsis thaliana F2 population
were used to assess the prediction performance of HEBLP|
A, HEBLP|AD, and GBLUP|AD.

We first analyzed the 7 traits via HE|A, HE|AD, and
REML|AD, obtaining the estimated additive heritability
varying from 0.080 to 0.582 (HE|A), 0.080 to 0.582 (HE|
AD), and 0.158 to 0.731 (REML|AD), and the estimated
dominance heritability varying from 0.009 to 0.052 (HE|
AD), and 0.018 to 0.106 (REML|AD). The results demon-
strated that dominance effects only accounted for a little
proportion of genetic variation for these traits (Table 2).

Based on 100 replications, we found that the predict-
ability of HEBLP|A, HEBLP|AD, and GBLUP|AD was
similar for all traits (Table 3). For example, the prediction
accuracies for DTF1 were 0.466 ± 0.028, 0.459 ± 0.032, and
0.440 ± 0.088 via HEBLP|A, HEBLP|AD, and GBLUP|AD,
respectively. It indicated that, as is in the simulations,

200 Hailan Liu and G-B Chen



HEBLP|A, HEBLP|AD, and GBLUP|AD showed similar
predictability in the case of a very small contribution of
dominance effects to the genetic variation.

Discussion

The impact of the dominance heritability on
predictive accuracy

The wide utilization of heterosis in the animals and plants,
such as maize, rice, and cattle has significantly increased
their productivity. In this study, we extended our previous
method of HEBLP|A to HEBLP|AD. The simulation results
demonstrated that (1) HEBLP|AD and GBLUP|AD are
superior to HEBLP|A when the dominance effects can
explain a significant proportion of genetic variation; (2)

HEBLP|AD, GBLUP|AD, and HEBLP|A have a similar
predictive ability when the dominance effects can only
explain a small proportion of genetic variation. Further-
more, the real data from Arabidopsis thaliana F2 population
was used to evaluate the three methods, and since the
estimated heritability showed a small contribution of the
dominance effects to genetic variation, the result was sup-
portive to the second case in the simulation. de Almeida
Filho et al. (2016) indicated that when the dominance
effects consisted of only a small proportion in the total
genetic variation, incorporating them into BayesA, BayesB,
BL, and BRR would decrease the prediction accuracy.
However, it is safe and stable to include dominance effects
into HEBLP model under this circumstance. In addition, not
limited to the F2 population as was demonstrated, HEBLP|
AD is applicable as long as the populations promise the
estimation of additive and dominance variance components
(such as natural population of random mating).

In addition, we also provided an approximation of pre-
diction accuracy for F2 population (Appendix). The genetic
length of the chromosome, the density of markers, H2, and
the sample size of the training population were key factors
that would influence the prediction accuracy. The method
presented in Appendix was general and could be applied to
other populations. In this simulation, we simulated extre-
mely long and single chromosome, which was unrealistic,
and we will consider incorporating the real marker density
into further study. We considered typical polygenic model
only at present, but the interplay between genetic archi-
tecture will be included in our further studies.

Table 2 The estimated variance proportion (ĥ2a and ĥ2d) for the 7 traits
in the Arabidopsis thaliana F2 (P19) population

Trait HE|A HE|AD REML|AD

ĥ2a ĥ2a ĥ2d ĥ2a ĥ2d
DTF1 0.511 0.511 0.020 0.603 0.018

DTF2 0.403 0.402 0.025 0.544 0.022

DTF3 0.582 0.582 0.009 0.524 0.023

RLN 0.411 0.411 0.048 0.731 0.106

CLN 0.450 0.449 0.047 0.378 0.045

TLN 0.473 0.473 0.052 0.676 0.088

LIR1 0.080 0.080 0.036 0.158 0.040

Table 1 Prediction accuracy (r2)
under different recombination
rates (c) based on 10 simulations
in F2 population when h2a ¼ 0:3,
h2d ¼ 0:5, marker number=
1001, and the candidate sample
size was 100

r2

nT= 250 nT= 500

c l(Morgan) E(me.a)
a E(me.a)

b E(r2)c E(r2)d r̂2e E(r2)c E(r2)d r̂2e

0.05 52.68 105.57 208.34 0.312 0.39 0.309 (0.051) 0.448 0.448 0.497 (0.070)

0.1 111.57 220.21 419.67 0.192 0.184 0.208 (0.058) 0.304 0.30 0.326 (0.060)

0.2 255.41 471.45 771.51 0.112 0.096 0.091 (0.046) 0.192 0.168 0.232 (0.084)

0.3 458.15 725.10 951.08 0.088 0.054 0.078 (0.023) 0.152 0.104 0.183 (0.066)

0.4 804.72 924.07 997.81 0.075 0.032 0.077 (0.053) 0.136 0.077 0.171 (0.051)

0.499 3107.30 1000.99 1001.00 0.073 0.008 0.096 (0.044) 0.136 0.021 0.143 (0.062)

The squared correlation coefficient (r2) between the phenotypes and the predicted genotypic values was
defined as the prediction accuracy.
aE(me,a) is calculate from A2. me:a ¼ m2

mþ
Pk

i¼1

Pk

i≠j
e�4dij

, in which dij is the genetic distance (Morgan) between
marker i and j.
bE(me.d) is calculated from A3. me:d ¼ m2

mþ
Pk

i¼1

Pk

i≠j
e�8dij

.

cThe expected r2 was calculated using Eq 4 (or A1) that r2 ¼ H2 H2

H2þme:aþme:d
nT

.

dThe expected r2 was calculated using Eq 5 (or A4) that r2 ¼ H2 H2

H2þ 6l
nT

, a further approximation when
markers were dense.
er̂2 represents the mean of the observed values based on 10 simulations and the values in parentheses
represent the corresponding standard deviation.
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Application of the genomic prediction in hybrid
breeding of crops

The traditional strategy to cultivate hybrid crosses is to
perform a large number of cross experiments between the
inbred lines and furthermore select desirable hybrids. This
process can be accelerated via combining genomic predic-
tion approaches with immortalized F2 (IF2) population
constructed by the doubled haploid (DH) population. Hua
et al. (2003) first constructed IF2 population, which had the
same genetic architecture as the conventional F2 popula-
tion, can be generated via randomly permutated intermating
of recombinant inbred lines (RILs) or DH population at
present. In a hybrid breeding program, when sample size (n)
of RIL or DH population is large and all crosses nðn�1Þ

2

h i
between inbred lines from the RIL or DH population need
to be evaluated in the field trials, it will occupy large
resources. To reduce the cost of genetic improvement,
genomic prediction can be used to IF2 population to select
hybrid crosses with high-hybrid performance. Guo et al.
(2013) applied genomic prediction to an IF2 population
derived from RIL population in maize, and Xu et al. (2014)
did that in rice. Liu et al. (2017) has applied genomic pre-
diction to IF2 population based on rapeseed DH population.
However, construction of RIL population is time-consum-
ing, and therefore the procedure of GP+IF2 (DH) will be a
more efficient choice to pick out superior hybrids and
potential lines with high-specific combining ability or
general combining ability.
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Appendix

Factors influence prediction accuracy for F2
population

In this note, we try to outline the factors that influence the
prediction accuracy for an F2 population.

For the training population, its phenotype can be
expressed as

y ¼ μþ
Xm
j¼1

bajxaj þ
Xm
j¼1

bdjxdj þ ε:

Here, we assume every marker is causal and has small
effects, a typical polygenic trait. xaj and xdj are the ortho-
gonal coding of the jth marker for the additive and dom-
inance effect. var(y)= Vp the phenotypic variance, and

var
Pm
j¼1

bajxaj þ
Pm
j¼1

bdjxdj

 !
¼ h2A þ h2D ¼ H2.

According to linear regression theory, for the additive

effect for the jth marker can be estimated as b̂aj ¼
covðy;xaj Þ
varðxaj Þ

and rewritten as baj þ σb̂aj
, in which σb̂aj

¼ σ2e
NTσ2xaj

the sam-

pling variance of the estimate; for the dominance effect,

b̂dj ¼
covðy;xdj Þ
varðxdj Þ , and σb̂dj

¼ σ2e
NTσ2xdj

. NT is the sample size of the

training population, and m is the number of markers.

For the candidate population, the phenotype can be
expressed as yC ¼ aþPk

j¼1 baj~xaj þ
Pk

j¼1 bdj~xdj þ εT ,
while the predicted genotypic values
ŷC ¼Pk

j¼1 b̂aj~xaj þ
Pk

j¼1 b̂dj~xdj . It is easy to derive the
variance and covariance terms below.

Var yCð Þ ¼
Xk
j¼1

b2ajσ
2
xaj

þ
Xk
j¼1

b2djσ
2
xdj

þ σ2eT ¼ VG þ VeC ;

Table 3 Prediction accuracy of
the 7 traits in the Arabidopsis
thaliana F2 (P19) population
based on 100 simulations

Trait Training Candidate HEBLP|A HEBLP|AD GBLUP|AD

DTF1 100 281 0.466 (0.028) 0.459 (0.032) 0.440 (0.088)

DTF2 100 281 0.363 (0.030) 0.356 (0.032) 0.342 (0.071)

DTF3 100 277 0.501 (0.031) 0.494 (0.036) 0.485 (0.067)

RLN 100 277 0.397 (0.033) 0.403 (0.034) 0.393 (0.069)

CLN 100 277 0.335 (0.036) 0.331 (0.038) 0.324 (0.062)

TLN 100 277 0.437 (0.033) 0.444 (0.034) 0.429 (0.078)

LIR1 100 277 0.037 (0.022) 0.033 (0.021) 0.032 (0.022)

The values in parentheses represent standard deviation. The squared correlation coefficient (r2) between the
phenotypes and the predicted genotypic values was defined as the prediction accuracy.
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Var ŷCð Þ ¼
Xk
j¼1

b2ajσ
2
xaj

þ
Xk
j¼1

b2djσ
2
xdj

þ me:a

nT
þ me:d

nT

	 

σ2e

¼ VG þ Ve
me:a

nT
þ me:d

nT

	 

;

Cov ŷT ; yTð Þ ¼
Xk
j¼1

b2ajσ
2
xaj

þ
Xk
j¼1

b2djσ
2
xdj

¼ VG:

The prediction accuracy is

r2 ¼ Cov ŷT ;yTð Þ2
Var yTð ÞVar ŷTð Þ ¼

V2
G

VGþVeTð Þ VGþVe
me:a
nT

þme:d
nT

� �h i
¼ H2 H2

H2þ 1�H2ð Þ me:a
nT

þme:d
nT

� �h i � H2 H2

H2þme:aþme:d
nT

:

For genetic value

yG ¼ μþ
Xk
j¼1

bajxaj þ
Xk
j¼1

bdjxdj ;

VðyGÞ ¼ VG:

The prediction accuracy between the true genotypic
values and the predicted genotypic values can be written as
squared Pearson’s correlation

r2G ¼ V2
G

VG VG þ Ve
me:aþme:d

nT

h i ¼ H2

H2 þ me:aþme:d
nT

:

This equation is an extension of the one as derived by
Daetwyler et al. (2008), but here we include the dominance
component. In practice, the prediction accuracy is more
relevant to the effective number of loci, which can be
understood as quasi-independent segment of the whole
genome. So, the prediction accuracy is approximated as

r2 ¼ H2 H2

H2 þ me:aþme:d
nT

¼ H2r2G; ðA1Þ

in which me,a and me,d are the effective number of markers
coded for additive and dominance effects.

me:a ¼ m2

mþPk
i¼1

Pk
i≠j r

2
ij

: ðA2Þ

As for markers not on the same chromosome, the LD is
nearly zero, so me:a ¼ m2

mþ
Pk

i¼1

Pk

i≠j
r2ij

me:d ¼ m2

mþPk
i¼1

Pk
i≠j r

4
ij

: ðA3Þ

If the recombination is based on Haldane map function,
for F2 r2ij ¼ exp �4 di � dj

�� ��� � ¼ e�4dij , in which di,j= |di
−dj| is the genetic distance (Morgan) between a pair of loci,
and r2ij ¼ e�8dij . Obviously, when there is no LD between
markers, r2ij ¼ 0, and me,a=m, me,d=m. As r4ij � r2ij, we
have me:a � me:d � m.

Further approximation for the prediction accuracy

For the additive component,

Pk
i¼1

Pk
i≠j r

2
ij

m2
¼ l

0
l
0
e�4jdx1�dx2 jdx1dx2 ¼

1
2l2

l� c2l
2

� �

and for the dominance component,

Pk
i¼1

Pk
i≠j r

4
ij

m2
¼ l

0
l
0
e�4jdx1�dx2 jdx1dx2 ¼

1
4l2

ðl� c2l
2
Þ

in which c2l is the recombination fraction given the genetic
distance of 2l.

So, me:a ¼ 1
m þ l1�c2l

2ð Þ
2l2

� �1

, if the markers are dense, and

m>>l1 (m is often greater than 10,000 along a single chro-
mosome), me:a � 2l; similarly, me:a � 4l. So, the prediction
accuracy can be further approximated as

r2 � H2 H2

H2 þ 6l
nT

: ðA4Þ

when the density of markers is high.
So the expectation of the prediction accuracy is upon the

training sample size, but the statistical significance of r2

depends on the sample size of the candidate sample size.
Under the null distribution r2 follows χ21, so the non-
centrality parameter for the statistical test of r2 is λ ¼ nCr2

1�r2,
in which nC is the sample size of the candidate population.

In genomic prediction, the additive genomic relationship
matrix can be used to estimate me.a. Given A, an nT × nT
matrix, the additive genomic relationship matrix, if we

estimate variance, σ2Ao
, of the nT nT�1ð Þ

2 off-diagonal elements,

and m̂e:a ¼ 1
σ2Ao

; similarly, we can have m̂e:d ¼ 1
σ2Do

for the

dominance effective number of markers.
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