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Abstract
Heritability is a fundamental parameter in genetics. Traditional estimates based on family or twin studies can be biased due
to shared environmental or non-additive genetic variance. Alternatively, those based on genotyped or imputed variants
typically underestimate narrow-sense heritability contributed by rare or otherwise poorly tagged causal variants. Identical-
by-descent (IBD) segments of the genome share all variants between pairs of chromosomes except new mutations that have
arisen since the last common ancestor. Therefore, relating phenotypic similarity to degree of IBD sharing among classically
unrelated individuals is an appealing approach to estimating the near full additive genetic variance while possibly avoiding
biases that can occur when modeling close relatives. We applied an IBD-based approach (GREML-IBD) to estimate
heritability in unrelated individuals using phenotypic simulation with thousands of whole-genome sequences across a range
of stratification, polygenicity levels, and the minor allele frequencies of causal variants (CVs). In simulations, the IBD-based
approach produced unbiased heritability estimates, even when CVs were extremely rare, although precision was low.
However, population stratification and non-genetic familial environmental effects shared across generations led to strong
biases in IBD-based heritability. We used data on two traits in ~120,000 people from the UK Biobank to demonstrate that,
depending on the trait and possible confounding environmental effects, GREML-IBD can be applied to very large genetic
datasets to infer the contribution of very rare variants lost using other methods. However, we observed apparent biases in
these real data, suggesting that more work may be required to understand and mitigate factors that influence IBD-based
heritability estimates.

INTRODUCTION

The proportion of phenotypic variance due to additive
genetic variation, termed narrow-sense heritability (h2), is
perhaps the most fundamental aspect of a trait’s genetic
architecture and has both medical and evolutionary sig-
nificance (Visscher et al. 2008; Tenesa and Haley 2013).
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Traditionally, h2 has been estimated from family based
studies (h2PED), which have suggested that for many com-
plex traits, much of the phenotypic variance is due to
additive genetic variance (Polderman et al. 2015). However,
h2PED estimates may be biased by factors shared by close
relatives, such as non-additive genetic and common envir-
onmental effects (Eaves et al. 1978; Coventry and Keller
2005; Yang et al. 2010; Zuk et al. 2012; Tenesa and Haley
2013).

Recently, methods have been developed to estimate the
phenotypic variance explained by all genotyped single-
nucleotide polymorphisms (SNPs) simultaneously in unre-
lated individuals, bh2SNP (Yang et al. 2010; Speed et al. 2012;
Bulik-Sullivan et al. 2015). Most of these approaches use a
genetic relatedness matrix (GRM) that reflects allele sharing
or the average correlation between individuals i and j across
genotyped SNPs with entries:

Aij ¼
Xk¼m

k¼1

xik � 2pkð Þ xjk � 2pk
� �

2pk 1� pkð Þ ð1Þ

where m is the number of SNPs, xjk is the genotype (coded
as 0, 1, or 2) of individual j at the kth locus, and pk is the
minor allele frequency (MAF) of the kth locus. The
variance–covariance of the phenotype is

var yð Þ ¼ Aσ2v þ Iσ2e ð2Þ
where the variance explained by the SNPs (σ2v) and error
variance (σ2e) are estimated using restricted maximum
likelihood (REML) (Lynch and Walsh 1998). The method,
termed GREML, is implemented in packages such as
GCTA (Yang et al. 2011). We refer to matrix A (of
dimension n × n and with elements Aij) as the “SNP-GRM.”
The proportion of the variance explained by all SNPs is an
estimate of “SNP-based heritability” (bh2SNP = σ2v / (σ

2
v+σ

2
e)).

By using unrelated individuals, these approaches avoid the
confounding of non-additive genetic and environmental
effects that can occur in family or twin-based studies, and
by estimating all marker effects jointly, the contribution
from variants with small effect sizes is captured. Using
marker-based approaches, bh2SNP estimates using imputed
data have approached h2PED for some complex traits, such
as height, suggesting that little of the heritability remains
missing (Yang et al. 2015). For other traits, such as BMI,
schizophrenia, and neuroticism, bh2PED estimates remain
larger than bh2SNP, and a substantial amount of the heritability
remains “still missing” (Lee et al. 2012; Yang et al. 2015).

Advances on the original approach by Yang et al. (2010)
have better captured the effects of rare CVs or account for
linkage disequilibrium (LD) of markers across the genome,
leading to increased bh2SNP estimates (Yang et al. 2015; Speed
et al. 2017). However, even with the best-performing
methods such as MAF-stratified and LD-stratified GREML
(GREML-LDMS) and large imputation reference panels,

downward bias is likely. Imputation quality declines at low
MAF, resulting in a downward bias when causal variants
are very rare (MAF < 0.0025) and for diverse populations
underrepresented in sequencing panels (Yang et al. 2015;
Evans et al. 2017). The underestimation of variance due to
rare CVs may partly explain why bh2SNP remains below h2PED
for many traits, in addition to factors that may inflate h2PED
described above. Thus, developing alternative and better
methods to estimate the variation caused by very rare var-
iants while excluding possible confounding factors of close
relatives is an important goal.

One such alternative is to leverage information on the
proportion of the genome shared identical-by-descent (IBD)
between pairs of individuals in a sample (Visscher et al.
2006; Hayes et al. 2009; Zuk et al. 2012; Browning and
Browning 2013a), and use a GRM whose elements are the
estimated proportions of IBD between all pairs of indivi-
duals (IBD-GRM) to drive and estimate of heritability,
which we term bh2IBD. This is in some ways similar to clas-
sical family based estimates of heritability, which are based
on the expected proportion of the genome shared IBD
between close relatives (Falconer and Mackay 1996; Lynch
and Walsh 1998; Visscher et al. 2006). However, rather
than using close relatives, an appealing alternative is to
estimate pairwise IBD segments directly between all pairs
of unrelated (or technically, distantly related) pairs of
individuals in a sample, and then to use these estimated
relationship values to estimate the additive genetic varia-
tion. Such an IBD-based approach should capture additive
genetic variation due to all but the rarest CVs and, so long
as close relatives have been removed from the sample, the
IBD-based h2 estimate should be uncontaminated by con-
founding factors shared by close relatives.

Here, we use “IBD” to denote two homologous chro-
mosomal segments that came from the same common
ancestor without intervening recombination, such that the
sequence identity of the two segments is identical except at
sites where new mutations arose since the last common
ancestor. The probability that such mutations arose is a
function of the number of generations since the last com-
mon ancestor and the number of sites, and therefore a
function of the length of the shared IBD segment (when its
age is unknown) (Wakeley 2009). When two haplotypes
match on a sufficiently long stretch of SNPs, the segments
are likely to have been inherited intact from a common
ancestor. A pair of very long IBD segments is more likely to
be found between pairs with a very recent common ances-
tor, while a pair shorter segments is more likely for two
sequences with a more distant common ancestor (Wakeley
2009). Common, and therefore older, alleles are likely to be
shared on both long and short IBD segments, but rare
variants, which are likely to have arisen more recently, will
be captured more frequently on long IBD segments, as

IBD-based heritability estimation 617



those segments are more likely to be shared by individuals
with a more recent ancestor (Browning and Thompson
2012). Thus, IBD-GRMs calculated from increasingly long
IBD thresholds (i.e., minima) should capture sharing at
increasingly rare CVs.

Such IBD-based GRMs have been used in several
instances to estimate heritability. Price et al. (2011) and
Zaitlen et al. (2013) used IBD segments in an Icelandic data
set with close relatives to estimate heritability in quantita-
tive and disease traits, leveraging the known familial rela-
tionships within the Icelandic cohort to identify IBD
segments. While they demonstrated that IBD could be used
for heritability estimation, using close relatives leads to
possible confounding of shared environmental or non-
additive genetic effects, as noted above. Indeed, Zaitlen
et al. (2013) found higher heritability estimates using closer
relatives, consistent with confounding from non-additive
genetic and/or shared environment effects. Using simulated
data, Zuk et al. (2012) demonstrated that the slope estimated
from regressing phenotypic similarity (defined as the stan-
dardized phenotypic product of individuals i and j, Zi × Zj)
on the IBD-GRM elements from long IBD segments—
known as Haseman–Elston (H–E) regression—provides an
unbiased estimate of the additive genetic variance in iso-
lated founder populations. Browning and Browning 2013a
estimated IBD tracts in a Finnish cohort of 5400 indivi-
duals, and used the resulting IBD-GRM in both H–E
regression and GREML to estimate bh2IBD for nine quantita-
tive metabolic traits. bh2IBD was higher than bh2SNP for only five
of the nine traits, and never significantly so. The most
notable result of their study was the over two-fold higher
standard errors for bh2IBD (~0.17) compared to bh2SNP (~0.07),
due to the lower variation in the off-diagonal elements of
the IBD-GRM compared to the SNP-GRM, suggesting that
very large sample sizes are required to obtain meaningful
results in non-founder populations.

Several important questions about IBD-based heritability
estimation remain in light of these findings. First, how well
do IBD-based approaches estimate the heritability due to
very rare CVs? Previous studies (e.g., Browning and
Browning 2013a; Zaitlen et al. 2013) have simulated CVs
from SNPs present on genotyping arrays, which are more
common, have generally higher LD, and are more likely to
be shared across ancestry groups than whole-genome
sequence (WGS) variants. Thus, such simulations do not
provide an accurate picture of how h2 estimation methods
perform when CVs do not share these same properties, and
so it remains unclear whether bh2IBD estimates are unbiased
estimates of h2 due to rare CVs. Second, the studies men-
tioned above utilized isolated founder populations that were
both more homogeneous and more related than non-founder
populations. To what extent does stratification within a
sample bias bh2IBD, and how feasible are such IBD-based

methods in samples from non-founder populations, which
are much more readily available? Third, environmental
factors can be passed from parents to offspring (called
“vertical transmission”), which can increase phenotypic
similarity across extended pedigrees (Coventry and Keller
2005), leading to the possibility of confounding with IBD
sharing. To what extent do environmental effects shared
across distant relatives bias estimates of bh2IBD?

To address these questions, we used thousands of
recently sequenced whole genomes from the Haplotype
Reference Consortium (McCarthy et al. 2016) to simulate
phenotypes under a range of conditions, including various
genetic architectures and levels of stratification, then esti-
mated narrow-sense heritability (bh2IBD) using an IBD-GRM,
either alone or in combination with various SNP-based
GRMs. By simulating CVs from whole-genome sequences
rather than commercial array SNPs, our study was able to
examine the role of all but the rarest frequency classes of
CVs in the genome under realistic genomic conditions. We
then estimated bh2IBD for height and BMI in the UK Biobank
with over 120,000 individuals.

Materials and methods

Samples and population structure

We tested the bh2IBD estimation method using simulated
phenotypes derived from Haplotype Reference Consortium
(HRC) whole-genome sequence data (McCarthy et al.
2016). Briefly, this resource comprises roughly 32,500
individual whole-genome sequences from multiple
sequencing studies, with phased genotypes with a minor
allele count of at least 5 at all sites. This large sequence
dataset allowed us to simulate CVs across all MAF classes
down to ~0.0003 with real patterns of LD (within and
among chromosomes). It also allowed us to simulate SNP
markers available on existing commercial genotyping arrays
in order to mimic the process of IBD detection in SNP data.
We obtained permission to access the following HRC
cohorts (recruitment region & sample size): AMD (Europe
& worldwide; 3,189), BIPOLAR (European ancestry;
2,487), GECCO (European ancestry; 1,112), GOT2D
(Europe; 2,709), HUNT (Norway; 1,023), SARDINIA
(Sardinia; 3,445), TWINS (Minnesota; 1,325), 1000 Gen-
omes (worldwide; 2,495), UK10K (UK; 3,715) (see
McCarthy et al. (2016) for additional details of the HRC).
This set of cohorts, which included isolated subpopulations
of European descent, allowed investigation into the effects
of stratification on estimates. The subset totaled 21,500
whole-genome sequences comprising 38,913,048 biallelic
SNPs. This is the same set of individuals and simulated
phenotypes used in Evans et al. (2017) to compare SNP-
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based heritability methods. Below, we briefly describe our
approach.

Our goal was to assess the accuracy and potential bias of
the bh2IBD estimation method using data similar to those
collected for a typical GWAS analysis and bh2SNPestimation.
In order to mimic this kind of data, we first extracted variant
positions corresponding to a widely used commercially
available genotyping array, the UK Biobank Affymetrix
Axiom array. We then identified individuals of primarily
European ancestry, using principal components analysis
with 133,603 MAF-pruned and LD-pruned markers (plink2
(Chang et al. 2015) command: --maf 0.05 --indep-pairwise
1000 400 0.2) to identify a grouping associated with the
1000 Genomes European individuals in the HRC. This data
set comprised 19,478 individuals including Finnish and
Sardinian samples (Fig. S1).

From within this European ancestry data set, we identi-
fied clusters that contained different levels of genetic het-
erogeneity within them (Fig. S2). The most structured group
contained all samples (N= 19,478). The somewhat struc-
tured group excluded Sardinian and Finnish samples (N=
14,424). The low structure group contained northern/wes-
tern European samples (N= 11,243), and the least struc-
tured was a subset of mainly British Isles samples (N=
8,506). We used GCTA (Yang et al. 2011) with LD-pruned
and MAF-pruned SNPs to estimate relatedness and remove
the minimal number of individuals from pairs with relat-
edness >0.1 within each of the four samples. In the most
homogeneous and smallest sample with no genetic struc-
ture, this left 8,201 individuals. In order to eliminate the
influence of varying sample size in our comparison across
the range of stratification, we randomly chose 8,201 of the
unrelated individuals from within each of the other three
stratification subsamples. We similarly tested a lower
relatedness cutoff of 0.05 within each group (leaving 7,792;
8,115; 8,129; and 8,186 individuals for the four sub-
samples), and used both subsets later to examine how a 0.1
or 0.05 relatedness cutoff influences bh2IBD estimates.

Simulated phenotypes using whole-genome
sequencing data

We performed two types of simulations to determine how
the IBD-based heritability method performed across a range
of genetic architectures. First, we used forward-time simu-
lations with the GeneEvolve program, from which we
obtained the true IBD segments (Tahmasbi and Keller
2016). As input, we used WGS data from chromosomes
16–22 from 1000 randomly drawn individuals from the
“low” stratification subsample described above. We used
only these seven chromosomes rather than all autosomes
due to computational constraints. We simulated six gen-
erations of random mating, with population size increasing

by 5000 each generation, and phenotypes derived from
1000 CVs, randomly chosen from all common (MAF >
0.05) or, separately, very rare (MAC > 5 and MAF <
0.0025) sequence SNPs, and a true h2= 0.5. These simu-
lations allowed us to calculate both true and estimated IBD-
GRMs (see Estimating IBD-GRMs below) to determine
how inaccuracies in IBD segment calls impacts bh2IBD. These
simulations also allowed us to test whether environmental
differences between extended families could bias estimates
of bh2IBD. To investigate this, we ran simulations using
GeneEvolve with h2= 0.5 and f2= 0.3, where f2 is the
proportion of the phenotypic variance due to vertical
transmission—environmental effects passed from parental
phenotype to offspring environment—which increases
phenotypic similarity within extended pedigrees due to
environmental similarity. Thus, this set of simulations
served as a test of the robustness of IBD-based heritability
estimation to potential confounding by environmental fac-
tors that can create similarity within extended pedigrees. We
performed 70 replications of each simulation set, using a
relatedness cutoff of 0.05 when estimating heritability.

Second, we simulated phenotypes using the 8201 whole-
genome sequences within each of the four stratification
subsets. This larger sample incorporates complexities of real
genomes in a realistically sized sample, which the forward-
time simulations did not. We simulated phenotypes from
CVs drawn randomly from five MAF ranges: common
(MAF > 0.05), uncommon (0.01 <MAF < 0.05), rare
(0.0025 <MAF < 0.01), very rare (MAC > 5 and MAF <
0.0025), and all variants randomly drawn with MAC > 5.
Phenotypes were generated with 1000 or 10,000 CVs from
the model yi= gi+ ei, where gi= ∑wikβk, wik is the genotype
(coded as 0, 1, or 2) of individual i at the kth CV, and βk is
the kth allelic effect size, drawn from (0,1/[2pk(1−pk)]),
where pk is the MAF of allele k within each of the four
samples, which assumes larger additive effects for rarer
variants. The gi’s were standardized (~N (0,1)) and residual
error was added as ~N (0,(1−h2)/h2) for a simulated h2 of
0.5. A total of 400 replications were performed for each CV
MAF range and for each of the four stratification subsets.

Mixed models for heritability estimation

We estimated heritability for each simulation using GCTA
(Yang and Lee et al. 2011). We tested different models to
assess our IBD-based GREML method (GREML-IBD).
First, we used the single IBD-GRM with GREML to esti-
mate bh2IBD. Second, to partition the genetic variance into that
tagged by common SNPs and that tagged by haplotype
sharing, presumably from rarer CVs, we used a two GRM
model (GREML-IBD+ SNPs) with the IBD-GRM and a
common SNP-GRM derived from Axiom array positions
with MAF > 0.01. Here, bh2Total = bh2IBD + bh2SNP, where bh

2
SNP is
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defined as above and bh2IBD¼ bσ2IBD
bσ2IBDþσ2e

, where bσ2IBD is the esti-

mated variance due to the IBD-GRM). Last, we estimated
genetic variances due to LD-stratified and MAF-stratified

imputed variant SNP-GRMs (bh2SNP) as well as the IBD-

GRM (bh2IBD) in the same model, which we term GREML-
IBD+LDMS. From previous work, we knew that GREML-
LDMS underestimates variance attributable to the rarest
CVs when using imputed data. We therefore wished to
determine if the IBD-GRM could capture that missing
heritability. To do this, we estimated 16 SNP-GRMs stra-
tified into the above 4 MAF categories and 4 LD score
quartiles using imputed genome-wide variants, and included
these plus the IBD-GRM in the model (17 GRMs total). To
determine if the IBD-GRM captured the genetic variance
due to the rarest CVs, we also tested a model with 12 SNP-
GRMs, removing the rarest MAF category described above,
for a total of 13 GRMs in the analysis (three MAF cate-
gories × four LD score quartiles+ 1 IBD-GRM). To
impute, we first phased SNP data using SHAPEIT2 (Dela-
neau et al. 2013), imputed using minimac3 (Das et al.
2016), and retained variants with imputation R2 ≥ 0.3 (Yang
et al. 2015). We used the HRC sequence data as our
imputation reference panel after removing all target (8201
unrelated+ relatives) individuals in the HRC reference
panel, thereby assuring ~independence (no relatedness)
between the target and reference panels. Additional details
of the imputation procedure can be found in Evans et al.
(2017). We estimated LD scores for the LD stratification
using GCTA. In all cases we included 20 principal com-
ponents (PCs; 10 from worldwide PC analysis and 10 from
the specific subsample PC analysis) as continuous covari-
ates, with sequencing cohort as a categorical covariate. We
used unconstrained GREML (--reml-no-constrain option),
which ensured unbiased estimation of the parameters (σ2G
and σ2E), even if the true value is close to 0 by allowing
estimates to be negative (Yang et al. 2017).

Estimating IBD-GRMs

The process of IBD segment identification is itself chal-
lenging, and several excellent discussions of the topic exist
(Browning and Browning 2012, 2013b, 2013c; Bjelland
et al. 2017), but here we focus on applying IBD information
to estimate heritability, bh2IBD, using established IBD esti-
mation methods. To mimic computationally phased SNP
data with realistic phase errors, we first un-phased the
sequence data for each data subset and then re-phased the
Axiom array positions using SHAPEIT2 (Delaneau et al.
2013). We then used FISHR2 (Bjelland et al. 2017) to
identify shared haplotype segments that are putatively IBD
across all pairs of individuals within each of our four

structure samples. FISHR2 first uses a modified version of
GERMLINE (Gusev et al. 2009) to find candidate IBD
segments. It then improves the accuracy of the segment
endpoints by comparing an observed moving average of
haplotype mismatches (potential phase or SNP call errors)
for a given candidate IBD segment to (a) the distribution of
haplotype mismatches in segments that are almost certainly
IBD (the middlemost sections of very long IBD segments)
and (b) the distribution of haplotype mismatches in seg-
ments that are almost certainly non-IBD (between random
pairs of individuals at matched locations). FISHR2 trun-
cates candidate segments when this moving average
becomes more consistent with non-IBD than IBD. FISHR2
is more accurate than leading competitors at detecting long
(>3 cM) IBD segments and is the only software that gives
unbiased estimates of the true length of IBD segments
(Bjelland et al. 2017). The parameters we used for FISHR2
were stringent (command line -err_hom 4 -err_het
1 –min_snp 128 –min_cm_initial 1 –min_cm_final
1 –window 50 –gap 100 -h_extend -w_extend –homoz
-emp-ma-threshold 0.06 -emp-pie-threshold 0.015 -count.
gap.errors TRUE), chosen to minimize false-positive IBD
detection (Bjelland et al. 2017). We used an initial length
threshold of 1 cM, but because longer IBD segments are
more likely to share rare variants, we also identified seg-
ments of length greater than 2, 3, 4, 6, 9, and 12 cM. The
FISHR2 parameters we used should lead to consistently low
false-positive rates (<0.05) at all threshold lengths, and
should lead to a sensitivity that increases as a function of the
length of the true IBD segments, with a predicted sensitivity
>.90 for IBD segments >3 cM (Bjelland et al. 2017). To
reduce the influence of low recombination regions artifi-
cially extending segments (e.g., due to one or a few
matching IBS SNPs that are far from the termini of true IBD
segments), we windsorized genetic map positions by setting
the maximum distance between adjacent markers to 0.2 cM,
and used an initial 1 cM minimum IBD segment length
threshold. To test how different IBD-identification methods
would perform, we also applied IBDseq (Browning and
Browning 2013c), which estimates the likelihood of IBD for
individual markers between pairs of individuals, to a small
subset of simulations as a comparison.

We then summed the length in Mb of all segments shared
between each pair of individuals and divided by twice the
length of the genome. This IBD-GRM then represents the
estimated proportion of the genome, Dij, shared IBD
between individuals i and j in the sample, similar to the Aij

elements of the SNP-GRM. We created IBD-GRMs for
each minimum segment cM length threshold. As recombi-
nation rate varies throughout the genome, we also tested
whether an IBD-GRM based on the summed cM length of
segments influences heritability estimates within the mod-
erate and low stratification subsamples.
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Investigations into population stratification effects

Population stratification refers to allele frequency differ-
ences between subpopulations in a sample. It is well known
that when environmental factors cause mean differences
between subpopulations, environmental variance can be
misattributed to genetic variance, which can be mitigated or
eliminated by including ancestry PCs as fixed effects in
association or GREML analyses (Price et al. 2006; Yang
et al. 2010). However, even in the absence of envir-
onmentally driven mean differences between subpopula-
tions, such ancestry-level population stratification can lead
to long-range (e.g., across chromosome) LD between rare
CVs that biases estimates of h2 (Evans et al. 2017). We
investigated this by estimating bh2IBDacross the four samples
that varied by degree of ancestry stratification found across
Europe (see Samples and Population Structure above)
where no environmental effects based on ancestry were
simulated.

Because we observed biases in bh2IBD in the two most
stratified samples (see Results section), we performed four
additional tests to understand the cause and potential ways
to mitigate these biases. First, to test whether bias observed
in stratified samples was due to inadequate control of
structure, we ran K-means clustering on the somewhat
stratified subsample for K= 2 clusters, then ran PC analysis
within each of the two clusters. We included the first 35 PCs
within each cluster, for a total of 90 PCs (the original 20
plus 35 from each cluster). Because PC analysis was run
within each cluster separately, we set the PC scores for the
alternate cluster to 0 (the mean).

Second, we tested, within the stratified subsample,
whether including 10 additional PCs from very rare variants
could correct for the upward bias (Mathieson and McVean
2012). We used 150,000 randomly selected very rare SNPs
from the WGS data and pruned for LD (plink2 command:
--indep-pairwise 1000 400 0.2), leaving 129,710 variants
for the PCA. As a comparison, we also estimated herit-
ability with no covariates included.

Third, we estimated bh2IBD for phenotypes in which all
CVs were drawn from odd chromosomes using IBD-GRMs
estimated only from the even chromosomes. The presence
of uncontrolled cryptic relatedness or population structure
can lead to cross-chromosome LD that inflates h2 estimates
(Yang et al. 2011). We estimated the correlation of off-
diagonal GRM elements between the IBD-GRMs from even
chromosomes and those from odd chromosomes. We also
examined the correlation between the off-diagonal elements
from IBD-GRMs and the off-diagonal elements from GRMs
built from very rare (MAC > 5 and MAF < 0.0025) and
common (MAF > 0.05) sequence variants. This tested
whether correlations between even and odd chromosome
IBD-GRMs were stronger in more stratified subsamples,

and whether the correlation with very rare variants was
stronger with increasing minimum cM length of the IBD-
GRM.

Finally, simultaneously fitting GRMs derived from each
chromosome protects against cross-chromosome correla-
tions induced by stratification or cryptic relatedness because
the estimates of variance explained by one GRM are con-
ditional on the other GRMs (Yang et al. 2011). However,
because the variances of the off-diagonal elements in the
IBD-GRMs were so small, models with 22 IBD-GRMs
would not converge. Instead, we tested a two GRM model
with one IBD-GRM estimated from the odd-numbered
chromosomes and a second from the even-numbered chro-
mosomes, which should partially address the effects of
long-range LD (Speed et al. 2012).

Heritability of complex traits in the UK Biobank

We applied the IBD-based approaches to height and body
mass index (BMI) data in the UK Biobank, a very large
resource of ~500 K adults from the UK, genotyped using
the Affymetrix Axiom array (Sudlow et al. 2015). The
initial release includes ~150 K genotyped individuals,
imputed using the combined UK10K/1000 Genomes
reference panels. We used this resource previously, and full
details on quality control can be found in Evans et al.
(2017). We identified putative IBD segments as described
above using FISHR2 and then calculating IBD-GRMs with
minimum cM thresholds of 2, 3, 4, 6, 9, and 12 cM. We
applied a relatedness cutoff of 0.05, and used individuals of
European ancestry, resulting in a final sample size of
~120 K individuals included in the analysis (Fig. S2). We
used GCTA to estimate variance components and included
sex, UK Biobank assessment center, genotype measurement
batch, and qualification (highest level of educational
attainment) as categorical covariates, and the Townsend
deprivation index, age at assessment, age at assessment
squared, and the 15 PC scores from the UK Biobank as
quantitative covariates. We compared these models using
Akaike information criterion with sample size correction
(AICc) (Burnham and Anderson 2002), and used this to
determine if additional information was added by using an
IBD-GRM.

Results

Simulated phenotypes—GREML-IBD

In our simulated genome sequence data, we found that 95%
confidence intervals (CIs) of bh2IBD estimates overlapped the
true h2 when no vertically inherited shared environmental
variance was present and when using the true IBD segments
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to construct the IBD-GRM (Fig. 1), suggesting unbiased
estimates in this scenario. Using FISHR2-estimated IBD
segments, with a 1 cM IBD length threshold, bh2IBD under-
estimated the true h2, but increasing the length threshold led
to unbiased estimates, where the 95% CI overlapped the
simulated h2. This unbiasedness likely stemmed from the
very low rate of false-positive long IBD segments, but also
suggests that false negative IBD segments, which have a
higher rate at long cM thresholds (Bjelland et al. 2017), do
not influence bh2IBD. However, the presence of non-genetic,
familial environmental variance led to drastically over-
estimated bh2IBD whether using the true or FISHR2-estimated
IBD segments to construct the IBD-GRM (Fig. 1).

In our simulations using real WGS data and FISHR2-
estimated IBD segments, bh2IBD estimates varied greatly when
using a single IBD-GRM depending on the MAF range of
the CVs in simulated phenotypes and the amount of strati-
fication in the subsample (Fig. 2). In the two more homo-
geneous subsamples, bh2IBD was at first underestimated, but
increased and then stabilized with increasing IBD segment
length threshold, similar to what we observed in simulated

genome data. The 95% CI overlapped the true heritability
(0.5) for all IBD thresholds >4 cM and for all CV MAF
classes, suggesting that GREML-IBD produces unbiased
estimates of h2 in relatively homogeneous samples when
removing short, likely false-positive IBD segments. Results
were similar for different relatedness thresholds (Figs S3 &
S4) and for larger numbers of CVs (Fig. S5), although bh2IBD
appeared to be biased upwards in phenotypes with 10,000
common CVs and long IBD length thresholds in the low
stratification subsample (Fig. S5). Precision of the estimates
declined with longer IBD cM length thresholds, as shown
by larger standard errors (Figs. S3-S5) and larger root mean
square error (Fig. S6). We note that in tests of a different
IBD detection method, IBDseq, the estimates were biased
downward compared to those using FISHR2 (Fig. S7). This
suggests that an alternative IBD detection method would
not correct for the downward bias observed at shorter IBD
length thresholds using FISHR2.

In the two most stratified samples, we observed under-
estimates at short cM IBD thresholds, but upward biases at
long cM IBD thresholds, particularly for the rarest CVs (
bh2IBD > 1). This bias remained when using higher or lower
relatedness thresholds (Figs. S3–4), and with 10,000 CVs
(Fig S5). Controlling for 70 additional PCs or with addi-
tional PCs from very rare variants did not correct for the
upward bias in very rare CV phenotypes, though inclusion
of PCs did correct for bias in common CV phenotypes (Fig.
S8). Furthermore, this bias was not mitigated by summing
genetic length (cM) of IBD segments for calculating the
GRM rather than physical length (Fig. S9) nor when using a
two GRM model, with one IBD-GRM calculated from
even-numbered chromosomes and the second from odd-
numbered chromosomes (Fig. S10-S11). Fitting a larger
number of IBD-GRMs (e.g., one per chromosome) would
better capture all the long-range correlations and might
better mitigate the bias, but this approach is impractical for
GREML-IBD in real data because the low variance of Dij

creates estimation problems. Thus, stratification has strong
impacts on GREML-IBD estimates of heritability that we
were unable to control for.

To explore why stratification had such strong influences
on bh2IBD, we first examined the correlations of off-diagonal
GRM elements between the odd chromosome GRMs and
even chromosome GRMs. Stratification clearly led to
stronger long-range correlations, as did, in most sub-
samples, longer IBD thresholds for the GRM (Fig. S12). In
the two least stratified subsamples, the correlation of even
chromosome IBD-GRMs with odd chromosome WGS
SNP-GRMs, estimated from either common or very rare
WGS variants, was weak, and did not change drastically
with increasing cM thresholds. There were stronger corre-
lations overall in the two most stratified subsamples, espe-
cially between even chromosome IBD-GRMs and odd

Fig. 1 Estimates of IBD-based heritability from forward-time simu-
lated phenotypes, with GREML-SC using GRMs computed from the
true IBD segments or FISHR2-estimated IBD segments with varying
cM length thresholds. Mean and 95% CI shown from 70 replicates.
Relatedness cutoff of 0.05 used. Shown are two sets of simulations,
with and without non-genetic, vertically inherited shared environ-
mental variance (f2), with either common (MAF > 0.05) or very rare
(MAF < 0.0025) causal variants
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chromosome GRMs built from either IBD segments or from
very rare WGS variants. Thus, stratification increased long-
range correlations between Dij’s, such that Dij for a pair of
individuals at one chromosome predicted rare variant
sharing at other chromosomes, which can presumably lead
to over-estimation of bh2IBD due to rare CVs being redun-
dantly tagged by IBD sharing.

In simulations with odd chromosome CVs and IBD-
GRMs calculated from even chromosomes only, we
observed upward biases in bh2IBD estimates for long IBD
thresholds that were particularly severe in stratified samples

with rare odd-chromosome CVs (Fig. S13). This pattern of
results was similar to the pattern observed in our primary
simulations (Fig. 2), consistent with the explanation that the
upward biases in bh2IBD for rare CVs we observed at long IBD
thresholds was due to long-range, redundant tagging of CVs
in stratified samples. Note that the simulated h2 for the even
chromosomes was 0. Because there is more recent common
ancestry within than between subpopulations, there is more
sharing of long IBD segments—and importantly more
sharing of rare (recently arisen) causal variants. Conse-
quently, due to stratification, long, shared IBD segments at

Fig. 2 GREML-SC using an
IBD-GRM. bh2IBD estimates
(mean ± 95% CI from 400
replicates). X axis indicates the
IBD-shared haplotype length
threshold for the IBD-GRM.
Phenotypes with 1000 CVs
randomly drawn from the MAF
range specified in each panel.
Different colors indicate degree
of stratification in the sample.
Relatedness cutoff of 0.05 used
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one genomic location indicate sharing of rare variants
across the genome. This redundant tagging of rare causal
variants across the genome in stratified samples presumably
leads to inflated bh2IBD. The same phenomenon has been
described for bh2SNPin the context of stratification (Yang et al.
2011; Speed et al. 2012), although the bias is less extreme
and, because the variance of Aij elements is much greater
than the variance of Dij, is more easily alleviated by fitting
multiple GRM models.

Simulated phenotypes—GREML-SNPs+ IBD

The second model we tested was GREML-SNPs+ IBD,
which included a common SNP-GRM and the IBD-GRM.
For phenotypes with 1000 or 10,000 CVs, the total herit-
ability (bh2IBD + bh2SNP=bh

2
Total) was unbiased when using long

IBD cM thresholds in the two least stratified subsamples
regardless of the CV MAF range (Fig. S14, S15). However,
bh2Total was underestimated at shorter cM IBD thresholds, and

Fig. 3 GREML-LDMS+ IBD
model. This model had 13
components, 12 LD and MAF-
stratified GRMs using imputed
genome-wide variants, and one
GRM from IBD-shared
haplotypes. Total h2 estimates
are shown (mean ± 95% CI from
400 replicates). X axis indicates
the different IBD-shared
haplotype length thresholds for
the IBD-GRM. Phenotypes with
1000 CVs randomly drawn from
the MAF range specified in each
panel. Different colors indicate
degree of stratification in the
sample. Relatedness cutoff of
0.05 used

624 Luke M Evans et al.



increasingly overestimated with longer thresholds in the two
most stratified samples for very rare CV phenotypes. As
expected, partitioning the variance to each of the GRMs,
GREML-SNPs+ IBD attributed more of the phenotypic
variance to the common SNP-GRM when the CVs were
common, and more of the variance to the IBD-GRM when
the CVs were rarer (Figs. S16-S17). For common CV
phenotypes, the variance attributable to the common SNP-
GRM was overestimated by ~20%, which is consistent with
previous findings for a common SNP-GRM based on the

Axiom array positions and occurs because CVs in the
common bin have higher average MAF than the SNPs on
the Axiom array (Evans et al. 2017). Interestingly, this
overestimate was balanced by a negative variance estimate
attributed to the IBD-GRM, such that the total estimated
heritability was unbiased at ~0.5 at long cM IBD thresholds
(Figs. S14-S17). Nevertheless, for very rare CV pheno-
types, bh2IBD was again underestimated, then overestimated in
structured samples as the cM IBD threshold length was
increased.

Fig. 4 GREML-LDMS+ IBD.
This model had 13 components,
12 LD and MAF-stratified
GRMs using imputed genome-
wide variants, and one GRM
from IBD-shared haplotypes.
Separate h2 estimates for each
component are given by the
symbols (mean ± 95% CI from
400 replicates). Note that the
“Imputed LDMS” symbol
represents the sum of the
imputed LDMS GRM variance
estimates. X axis indicates the
different IBD-shared haplotype
length thresholds for the IBD-
GRM. Phenotypes with 1000
CVs randomly drawn from the
MAF range specified in each
panel. Different colors indicate
degree of stratification in the
sample. Relatedness cutoff of
0.05 used
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Simulated phenotypes—GREML-LDMS+ IBD

Our third model included 16 imputed variant GRMs that
were MAF-stratified and LD-stratified, and the IBD-GRM.
We found that across subsamples, GREML-LDMS+IBD
produced generally unbiased bh2Total with either 1000 CVs or
10,000 CVs across all CV MAF ranges when IBD thresh-
olds >4 cM were applied (Figs. S18-S19). Partitioning the
variance among GRMs revealed that for the rare and very
rare CV phenotypes, the IBD-GRM explained a small
amount of the variance, but was near-zero otherwise (Figs.
S20-S21).

When we excluded the rarest MAF bin from the model,
leaving 12 imputed variant GRMs plus the IBD-GRM,
GREML-LDMS+ IBD also produced generally unbiased
bh2Total with either 1000 CVs or 10,000 CVs across all CV
MAF ranges in subsamples with little or no stratification
(Fig. 3, S22). However, with increased stratification, bh2Total
was again overestimated for very rare CV phenotypes in the
context of stratification. Partitioning the variance into that
attributable to the LDMS imputed variant GRMs and the
IBD-GRM showed that, in unstratified samples, most of the
genetic variance was attributable to the LDMS GRMs for
CV MAF ranges >0.0025 while the IBD-GRM captured the
genetic variance for very rare CV MAF ranges (MAC > 5 to

MAF < 0.0025) (Fig. 4, S23). While the variance attributed
to the LDMS GRMs was never overestimated, that attrib-
uted to the IBD-GRMs at longer IBD thresholds was
overestimated, resulting in total heritability estimates >1 for
the rarest CV phenotypes in the presence of stratification
(Fig. 4)

Real phenotypes from the UK Biobank

Using GREML-IBD, bh2IBD for height (but not for BMI)
increased with longer minimum shared haplotype length,
did not stabilize at longer segment thresholds, and appeared
upwardly biased, similar to what we observed in stratified
samples in our simulations (Fig. 5a, Table S1). The 95%
CIs increased with longer minimum IBD length, as expec-
ted given the lower variance in Dij at longer segment
thresholds. For comparison, bh2SNP estimates from approaches
using only SNPs are also presented in Table S1.

Using either GREML-SNPs+ IBD or GREML-LDMS
+ IBD, we found similar patterns of increasing bh2IBD esti-
mates with longer minimum IBD length for height, but the
pattern was less extreme, and 95% CIs were generally
smaller (Fig. 5b, Table S1). Results for GREML-LDMS+
IBD either including the rarest MAF category or excluding
it were similar: height bh2IBD estimates increased from 0.75 to
1.1 across the range of minimum IBD lengths we examined.
This increase in bh2IBD was due to increasing estimates of
variance attributable to the IBD-GRM rather than to the
imputed variant SNP-GRMs (Fig. S24, Table S1). BMI bh2IBD
were again ~0.2–0.3, though at longer minimum IBD length
thresholds the standard errors were large, and the 95% CI
overlapped 0 (Table S1).

Interestingly, inclusion of the IBD-GRM in addition to
the SNP-GRM or LDMS GRMs often improved model fit
(Table S1). Likelihood ratio tests of GREML-SNP vs.
GREML-SNP+ IBD and GREML-LDMS vs. GREML-
LDMS+ IBD suggested that model fit when analyzing
height, but not BMI, was improved by including the IBD-
GRM. Furthermore, comparing AICc across all the models
and thresholds, the lowest AICc was often found with
shorter IBD minimum length thresholds. For instance, for
height, the minimum AICc was found when using all LD-
stratified and MAF-stratified imputed variant GRMs and the
IBD-GRM with a 3 cM minimum IBD length threshold
(Table S1), while AICc increased with longer length
thresholds. Thus, while increasing the minimum length
threshold led to unreasonable and uninterpretable total
heritability estimates, at shorter IBD length thresholds, the
inclusion of the IBD-GRM accounted for additional var-
iance explained over using only GREML-SNP or GREML-
LDMS. This may have reflected the effect of CVs that are
not well captured by imputed variants.

Fig. 5 Total heritability estimates for three continuous traits in the UK
Biobank. a GREML-IBD, which had a single IBD-GRM. b GREML-
LDMS+ IBD for two continuous traits in the UK Biobank. This
model had 13 components, 12 LD and MAF-stratified GRMs using
imputed genome-wide variants, and one GRM from IBD-shared
haplotypes. Total h2 estimates are shown (±95% CI). X axis indicates
the different IBD-shared haplotype length thresholds for the IBD-
GRM. Relatedness cutoff of 0.05 used. Dashed lines represent, for
comparison, the SNP-based estimates, using either GREML-SC (a) or
GREML-LDMS (b). See Supplementary Table 1 for estimates
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Discussion

We present here the most thorough assessment to-date of an
IBD-based heritability estimation approach. The interest in
using IBD information in classically unrelated samples to
estimate heritability arises from the potential to estimate the
full narrow-sense heritability without the confounding of
effects shared within families that can bias estimates when
close relatives are used, and without the downward bias in
estimation when CVs are rare or poorly tagged by SNPs.
We demonstrated that GREML-IBD can produce unbiased
heritability estimates in realistic whole-genome SNP data so
long as there is little genetic stratification in the sample and
with estimated IBD length thresholds >4 cM to account for
IBD estimation errors.

While IBD-based approaches are appealing in principle,
our study highlights three important drawbacks. First,
stratification can bias heritability estimates upward,
depending on the allele frequencies of CVs. The effect of
stratification is strong when CVs are very rare, and is not
controlled by inclusion of a large number of PC covariates,
the typical approach to controlling such effects (Price et al.
2010), or even PCs derived from very rare variants
(Mathieson and McVean 2012). Similar overestimates have
been observed in a related method that used sharing at
predefined, segregating haplotypes (Bhatia et al. 2016).
Overestimates appear to stem from redundant tagging by
long IBD segments across the genome in stratified samples,
and from non-genetic shared environmental variance. Pre-
vious studies using IBD-based approaches (Zuk et al. 2012;
Browning and Browning 2013a) used isolated, homo-
geneous populations, which should mitigate this source of
bias. Our simulation results suggest somewhat less homo-
genous samples, such as those of general northern/western
European ancestry, can be used to derive unbiased herit-
ability estimates so long as there are no additional con-
founding factors.

Second, non-genetic shared environments can strongly
bias bh2IBD estimates upwards. Because long IBD segments
identify pairs of individuals with relatively recent shared
ancestry, shared environmental influence within families
can be confounded with IBD sharing, driving up bh2IBD. In
our simulations, we excluded closely related individuals
(relatedness < 0.05), demonstrating that this confound is not
alleviated by using only nominally unrelated individuals.

Third, the standard error (SE) and RMSE of bh2IBD is large
due to the very low variance in IBD sharing among unre-
lated individuals in large, non-founder populations. For
example, for height in the UK Biobank when using
GREML-LDMS+ IBD, total heritability SE ≥ 0.053 for
minimum IBD lengths ≥ 6 cM, largely due to the IBD-GRM
variance component SE. However, using just the imputed
variant GREML-LDMS approach SE= 0.015. Thus, while

the GREML-LDMS+ IBD may have accounted for more
of the genetic variance, it did so with substantially lower
precision. Very large sample sizes will be required to reach
high levels of precision. Taken together, it seems unlikely
the increased variance explained, arising from capturing
rare CVs with IBD-based GRMs, outweighs the very large
increase in standard errors and the increased potential for
bias due to stratification or shared environmental variance.

Heritability of real complex traits

Our results from real UK Biobank data for height demon-
strate the potential for additional biases of an IBD-based
approach that were not captured in our simulation. The
estimates of total heritability for height increased with
minimum IBD cM length, and were much greater than other
reported estimates (e.g., Yang et al. 2015; Evans et al.
2017). This was unexpected given that the stratification of
the UK Biobank sample was similar to the unstratified
subsets in our simulations, suggesting that stratification in
the UK Biobank sample is not the cause of the upward bias
in height bh2IBD.

Alternatively, vertically transmitted non-genetic effects,
shared common environmental effects, and assortative
mating may also confound estimates of bh2IBD. Estimates of
bh2PED using close relatives can be altered by these factors
(Eaves et al. 1978; Martin et al. 1978; Coventry and Keller
2005; Zuk et al. 2012). Common environmental effects,
which can induce similarity across extended pedigrees,
would be confounded with IBD sharing, and are therefore a
potential source of bias in IBD-based estimates. As
demonstrated in our first set of forward-time simulations, f2

can indeed bias bh2IBD estimates, and this is a potential
explanation for why height bh2IBD is unrealistically high. It is
possible BMI does not have a similar influence of f2, which
is why we observed reasonable BMI bh2IBD estimates. Further
work will be required to test this hypothesis, such as
including various environmental matrices, sensu Xia et al.
(2016). The use of lower relatedness thresholds may alle-
viate the problem, but lower relatedness thresholds would
decrease the sample size and variance of IBD sharing and
therefore further exacerbate the already high standard errors
of these estimates. Rare variants are more differentially
confounded by stratification than common variants, and
typical approaches using PCA may not fully correct for
such confounding (Mathieson and McVean 2012). Extre-
mely rare SNPs, as with long IBD segments, will co-
segregate along extended pedigrees, and future work must
focus on the role of confounding between familial and
environmental effects and rare variants or long IBD
segments.

While we cannot conclude with certainty which factors
led to the apparent bias in height bh2IBD, estimates of bh2IBD for
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BMI were more stable and also in line with previous
reports. They suggest that BMI h2 is roughly 0.25–0.3, with
up to 5% of the total phenotypic variance due to very rare or
otherwise poorly imputed variants that are captured by the
IBD-GRM (see Table S1). As estimates from classical twin
design studies range from 0.4–0.8, this suggests that much
of the family based estimates are due to shared environ-
ment, assortative mating, or non-additive genetic variance,
supported by extended twin design variance estimates
(Coventry and Keller 2005; Keller and Coventry 2005).
This also suggests that little unexplained variance remains
for BMI, as estimates of BMI bh2SNP from recent studies range
from 0.21 (Locke et al. 2015) to 0.27 (Yang et al. 2015).

Our findings may also offer context to the observed
heritability estimates reported by several other studies that
used haplotype-based approaches. Browning and Browning
(2013a) reported bh2IBD for BMI of 0, with standard error of
0.16 (height was not measured), although their upper 95%
CI estimate is not inconsistent with a true h2 of 0.25–0.3.
This low estimate may simply be due to sampling variance,
arising from the small number of individuals (5,402) in the
Finnish sample they used, or to true heritability differences
among populations. Zaitlen et al. (2013) used IBD among
close relatives to derive estimates of bh2IBD of 0.69 for height
and 0.42 for BMI. As discussed by the authors, these esti-
mates may be upwardly biased due to common environ-
mental and non-additive genetic effects.

Conclusions

Identical-by-descent haplotypes in common between a pair
of chromosomes capture sharing at all variants that existed
along their length in the last common ancestor. The ability
to estimate such IBD segments using SNP data means that
there is potential to estimate narrow-sense heritability of
traits. We conclude that IBD-based estimates can be used to
obtain estimates of the near full narrow-sense heritability.
However, IBD-based estimates are imprecise, very sensitive
to stratification, and can be confounded by shared envir-
onmental variance, even in unrelated samples. Moreover,
when we estimated bh2IBD in real data, we observed biases
that appeared similar to those that we had observed due to
stratification and shared environments, which suggests that
there are biases in real data that we were not able to ade-
quately control. Taken together, these factors diminish the
appeal of IBD-based approaches for estimating heritability,
especially when compared to approaches that use imputed
variants, such as GREML-LDMS. Nevertheless, until
whole-genome sequence data is feasible for the large sam-
ple sizes required for h2 estimation from genotype data,
IBD-based estimates may be able to capture the rarest CVs
better than imputation. In particular, though larger and more

diverse reference panels are becoming available, IBD-based
approaches offer a method to capture rare genome-wide
variants not represented in imputation reference panels and
structural variation that remains difficult to capture even
with whole-genome sequencing (Auton et al. 2015). Fur-
thermore, isolated, homogeneous populations may also be
the most advantageous for IBD-based heritability estimation
due to the larger variance in IBD sharing, though extremely
large sample sizes would be required to offset the lower
precision in heritability estimates.

Data archiving

Data are from the Haplotype Reference Consortium
(http://www.haplotype-reference-consortium.org/) and the
UK Biobank (http://www.ukbiobank.ac.uk/).
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