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Treatment of ARS deficiencies with specific amino acids
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Arnaud Wiedemann5, Marie Canton5, François Feillet5, Tom J. de Koning6,7, Megan Boothe8, Joy Dean8, Rachel Kassel9,
Elise A. Ferreira2,3, Margreet van den Born2, Edward E. S. Nieuwenhuis10, Holger Rehmann11, Suzanne W. J. Terheggen-Lagro12,
Clara D. M. van Karnebeek2,3,13,14✉ and Sabine A. Fuchs 1,2,14✉

PURPOSE: Recessive cytosolic aminoacyl-tRNA synthetase (ARS) deficiencies are severe multiorgan diseases, with limited treatment
options. By loading transfer RNAs (tRNAs) with their cognate amino acids, ARS are essential for protein translation. However, it
remains unknown why ARS deficiencies lead to specific symptoms, especially early life and during infections. We set out to increase
pathophysiological insight and improve therapeutic possibilities.
METHODS: In fibroblasts from patients with isoleucyl-RS (IARS), leucyl-RS (LARS), phenylalanyl-RS-beta-subunit (FARSB), and seryl-
RS (SARS) deficiencies, we investigated aminoacylation activity, thermostability, and sensitivity to ARS-specific amino acid
concentrations, and developed personalized treatments.
RESULTS: Aminoacylation activity was reduced in all patients, and further diminished at 38.5/40 °C (PLARS and PFARSB), consistent
with infectious deteriorations. With lower cognate amino acid concentrations, patient fibroblast growth was severely affected. To
prevent local and/or temporal deficiencies, we treated patients with corresponding amino acids (follow-up: 1/2–2 2/3rd years), and
intensified treatment during infections. All patients showed beneficial treatment effects, most strikingly in growth (without tube
feeding), head circumference, development, coping with infections, and oxygen dependency.
CONCLUSION: For these four ARS deficiencies, we observed a common disease mechanism of episodic insufficient aminoacylation
to meet translational demands and illustrate the power of amino acid supplementation for the expanding ARS patient group.
Moreover, we provide a strategy for personalized preclinical functional evaluation.

Genetics in Medicine (2021) 23:2202–2207; https://doi.org/10.1038/s41436-021-01249-z

INTRODUCTION
Aminoacyl-tRNA synthetases (ARS) facilitate loading of transfer
RNAs (tRNAs) with their cognate amino acids [1], a pivotal
process in translating messenger RNA (mRNA) to protein. ARS
function in the cytosol (encoded by ARS1), mitochondria
(encoded by ARS2), or both (encoded by GARS1, KARS1, QARS1).
Autosomal recessive ARS1 variants cause severe symptoms in
various organs, especially during the first year of life and
infectious episodes, and may lead to premature death [2],
putatively through loss of aminoacylation activity [3]. To
improve care for the increasingly recognized group of ARS-
deficient patients, we further investigated the disease mechan-
ism for four different ARS deficiencies, and developed a
personalized treatment strategy.

MATERIALS AND METHODS
In silico analyses
Protein structure visualizations were based on pdb entries 1ile, 1ffy, 3l4g,
4rge, and 6lfp, using molscript, Raster3D, and Bragi [4–6].

Fibroblast cultures
Fibroblasts were obtained via skin biopsy and cultured in F-12 with 10%
FBS and 1% penicillin–streptomycin (PS). For amino acid sensitivity
experiments, amino acid free DMEM/F-12 with HEPES and NaHCO3 was
supplemented with 1% PS, 1% GlutaMAX, 10% dialyzed FBS, and all amino
acids except the tested amino acid. Amino acid concentrations were
related to average plasma concentrations (L-isoleucine: 57 µM; L-leucine:
100 µM; L-phenylalanine: 58 µM; and L-serine: 136 µM).

Aminoacylation activity
IARS, LARS, FARS, SARS, and GARS activities were measured in fibroblast
lysates, incubated at 37 °C in reaction buffer (50mM Tris buffer [pH 7.5], 12
mM MgCl, 25 mM KCl, 1 g/l bovine serum albumin, 0.5 mM spermine, 1 mM
ATP, 0.2 mM yeast total tRNA, 1 mM dithiothreitol, 0.3 mM [13C6,

15N]
isoleucine, 0.3 mM [13C2] leucine, 0.3 mM, [2H5] phenylalanine, 0.3 mM
[13C3,

15N] serine, and 0.3 mM [2H2] glycine). Aminoacyl-tRNA was
precipitated with trichloroacetic acid (TCA). Labeled amino acids were
detached from tRNAs with ammonia. [13C, 15N] glycine was added as
internal standards. Labeled amino acids were quantified by liquid
chromatography–tandem mass spectrometry. Analyses were performed
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in triplicates. To determine thermolability, lysates were incubated at 37 °C,
38.5 °C, and 40 °C.

Amino acid sensitivity
Patient and age-matched control fibroblasts were seeded in triplicates
(E-Plate 96 PET, 3,000 cells/well). After 24 hours, medium with the desired
L-isoleucine, L-leucine, L-serine, or L-phenylalanine concentrations was
applied. Proliferation of fibroblasts was evaluated by continuous impe-
dance analysis over three days using a real-time cell analyzer (xCELLigence
MP, ACEA Biosciences). Per donor, impedance at 72 hours was normalized
against 100% amino acid concentration.

Medical treatment
Based on the genetic diagnoses and in vitro functional studies, we
developed personalized intervention and monitoring protocols for
objective safety and outcome parameters (Table S1) as n= 1 studies with
parents as partners in care [7, 8].
We treated PIARS and PLARS with high doses of L-isoleucine (35–70mg/

kg/day in three doses), and L-leucine (35–100mg/kg/day), respectively,
and natural protein fortification (2.5 g/kg/day; during illness 3.5 g/kg/day).
PFARSB and PSARS received L-phenylalanine (40–100mg/kg/day), and L-
serine (85.7–97.5 mg/kg/day), respectively (Table S2). Similar amino acid
dosages were safely used for other disorders [8, 9].

RESULTS
Patient fibroblasts
We studied fibroblasts from the following:

1. PIARS (and PIARS-2 with similar phenotype): compound hetero-
zygous IARS1-variants (NM_002161.5): c.1305G>C p.Trp435Cys
and c.3377dup p.Asn1126fs (OMIM 600709) [2, 10–12],
previously described as P2 and P1, respectively [2].

2. PLARS: compound heterozygous LARS1-variants
(NM_020117.10): c.1503+ 3A>G p.? and c.1292T>A
p.Val431Asp (OMIM 151350) [2].

3. PFARSB: compound heterozygous FARSB-variants
(NM_005687.5): c.3G>T p.Met1? and c.1118G>C p.Gly373Ala
(OMIM 609690) [13–15].

4. PSARS: homozygous SARS1-variant (NM_006513.3): c.638G>T
p.Arg213Leu (OMIM 607529) [16].

In silico analyses
For all variants, we predicted pathogenicity using protein structure
analyses (Supplementary Text, Figure S1).

Fibroblast studies
We confirmed pathogenicity of the variants with decreased
aminoacylation activity in patient-derived fibroblasts to 23% and
21% IARS activity in PIARS and PIARS-2, respectively, 27% LARS
activity in PLARS, 28% FARS activity in PFARSB, and 45% and 50%

SARS activity in two siblings of PSARS with the same homozygous
variants (Fig. 1a). Because patients deteriorate during infections [2],
we investigated thermostability of the affected enzymes. At 38.5 °C
and 40 °C, LARS activity of PLARS decreased to 5%, and FARS activity
of PFARSB to 0% at 40 °C (Fig. 1g, h). Corresponding ARS activities
in fibroblasts from PIARS, PIARS-2, PSARS, and controls, and GARS
activity (internal control) were the same at 37 °C, 38.5 °C, and 40 °C
(Fig. 1f, i, S2).
Based on severe symptoms at young age and during infections,

reflecting periods of increased translation and decreased amino
acid availability, we tested if patient fibroblasts were sensitive to
ARS-specific amino acid concentrations. Indeed, patient fibroblast
proliferation was normal at high concentrations, but decreased in
a dose-dependent manner at lower concentrations of isoleucine
for PIARS and PIARS-2, leucine for PLARS, and phenylalanine for PFARSB

(Fig. 1b–d), when compared to controls. Fibroblasts from PIARS and
PLARS died upon combined amino acid deprivation (data not
shown). Serine deprivation did not affect fibroblasts from PSARS’
two siblings (Fig. 1e). As serine is nonessential, effects may have
been compensated by biosynthesis from glycine and glucose in
our culture media.

Patient treatment
PIARS was an 8-year-old boy with a history of dysmaturity (Fig. 2e),
failure to thrive requiring duodenal tube feeding, global
developmental delay, autism spectrum disorder, interstitial lung
disease (ILD, Figure S3) requiring oxygen treatment, and repeated
(intensive care) admissions for respiratory and circulatory
insufficiency during infectious episodes (Fig. 2a). Within weeks
after treatment initiation, oral intake increased, vomiting
decreased, and pulmonary function improved. After three weeks,
isoleucine supplementation was stopped for two weeks due to
pharmacy delivery problems. Vomiting, mucus production, and
respiratory distress all increased. Upon reinitiation, symptoms
improved. Similarly, during gastroenteritis and reduced amino
acid intake, laboratory markers (albumin, coagulation) deterio-
rated (Table S3; T= 32 months). During treatment, PIARS

experienced no infections requiring hospital admission, com-
pared to five admissions two years prior. Growth improved
(height: −2.1ZNL to −1.0ZNL; weight: −1.0ZNL to +0.1ZNL), and
tube feeding could be stopped after 16 months (Fig. 2a, e).
Periods without oxygen therapy increased in frequency and
duration. Upon treatment, progression of ILD ceased as con-
firmed by computed tomography (CT) scans (Figure S3). PIARS

became more energetic, interaction increased, and expressive
speech and language skills improved according to professionals
at school. Behavioral abnormalities became more apparent, and
hindered repeat psychological testing. Although incomplete,
Dutch Wechsler Intelligence Scale for Children, fifth edi-
tion (WISC-V-NL) [17] evaluation showed a disharmonic profile:
fluid reasoning and processing speed were stronger (fluid

Fig. 1 Enzyme activity is decreased but not absent in all patients, and IARS, LARS, and FARSB patient fibroblasts are increased sensitive
to isoleucine, leucine and phenylalanine deprivation, respectively. (a) Enzyme activity is decreased but not absent in all patients.
Aminoacylation activity in fibroblasts of PIARS, PIARS-2, PLARS, PFARSB, and two siblings with the same homozygous variant as PSARS, presented as
percentage of age-matched controls. GARS activity was measured as an internal control. All measurements were performed in triplicate (n= 3),
except IARS controls (n= 6) and GARS controls (n= 12). Error bars show standard deviation. Unpaired t-test: ns p ≥ 0.05, *p < 0.05, **p < 0.01, ***p
< 0.001, ****p < 0.0001. (b–e) IARS, LARS, and FARSB patient fibroblasts are sensitive to isoleucine, leucine, and phenylalanine deprivation,
respectively. Seventy-two hours proliferation of fibroblasts of PIARS, PIARS-2, PLARS, PFARSB, and two siblings with the same homozygous variant as
PSARS, compared to age-matched control fibroblasts, exposed to decreasing concentrations of isoleucine (b: PIARS/PIARS-2), leucine (c: PLARS),
phenylalanine (d: PFARSB), or serine (e: two siblings of PSARS), shown as normalized impedance, measured with an xCELLigence MP. Amino acid
concentrations were compared to average plasma concentrations. Every donor was measured once (a; n= 1 each) or twice (b–d; n= 2 each). Two
(a–c) or three (d) controls were measured once (n= 1 each). Error bars show standard deviation. Unpaired t-test: ns p ≥ 0.05, *p < 0.05, **p < 0.01,
***p < 0.001. (f–i) LARS and FARS activity deteriorate in LARS and FARSB patient fibroblasts, respectively. Aminoacylation activity in fibroblasts of
PIARS and PIARS-2 (f), PLARS (g), PFARSB (h), and two siblings with the same homozygous variant as PSARS (i) at 37 °C, 38.5 °C, and 40 °C. Data are
presented compared to the enzymatic activity at 37 °C. All measurements were performed in triplicate (n= 3). Error bars show standard deviation.
Unpaired t-test: ns p ≥ 0.05, *p < 0.05, **p < 0.01.
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reasoning index [FRI]: 82), compared to verbal understanding and
working memory (verbal comprehension index [VCI]: 50).
PLARS was a 5-year-old girl with a history of pre/dysmaturity

(Fig. 2f), failure to thrive requiring tube feeding, global develop-
mental delay, anemia requiring repeated transfusions, neonatal
cholestasis, liver disease, and frequent hospital admissions during
infections (Fig. 2b). During nine months of protein fortification and
erroneous isoleucine supplementation, she was not admitted to
hospital, and was more energetic. Her weight improved, but not
height (further deviation), nor head circumference (stable). Within
one month after switching to leucine, her oral intake increased.
Tube feeding became unnecessary after six months. Height
increased from −3.1ZCDC to −2.7ZCDC, weight further increased
from −2.4ZCDC to −1.6ZCDC, and microcephaly resolved from
−2.3ZNL to −1.6ZNL (Fig. 2b, f). Liver transaminases, bilirubin,
immunoglobulins, and liver ultrasound normalized. Teachers
reported more interaction and an accelerated speech/language
development; on neurologic examination, gross motor skills
normalized, fine motor skills improved and muscle mass, tonus,
and strength increased. Recently, she suffered COVID-19 with flu-
like symptoms, without derailing. Repeat neuropsychologic testing
was delayed due to COVID-19 restrictions.
PFARSB was an 11-month-old boy. Pregnancy was complicated by

intrauterine growth restriction and placental abruption. His pheno-
type was dominated by pre/dysmaturity (Fig. 2g), failure to thrive

requiring nasogastric tube feeding and parenteral nutrition,
hypoalbuminemia (with edema, ascites) requiring frequent albumin
infusions, progressive liver failure, and lung disease (Fig. 2c). After
starting treatment, liver function initially improved, as did growth in
height (−4.5ZWHO to −3.2ZWHO), head circumference (−2.9ZWHO to
−2.4ZWHO), and parental perception of psychomotor development
(Fig. 2c, g). After three months, he developed esophageal variceal
bleeding. Bleeding was stopped via octreotide and sclerotherapy,
but hepatic encephalopathy and respiratory failure shortly ensued.
His death was attributed to disease progression.
PSARS was a 5-year-old boy, fourth of five children born to

consanguineous parents (first cousins). Symptoms involved
dysmaturity (Fig. 2h), progressive sensorineural deafness, and
moderate developmental delay (Fig. 2d). Three siblings with the
same SARS1 variants died following infections. One sibling
without SARS1 variants is clinically well. Before treatment,
height, weight, and head circumference standard deviations of
PSARS gradually decreased with age. After six months of
treatment, height improved from −2.2ZFR to −0.2ZFR and
microcephaly resolved from −3.2ZFR to −1.4ZFR (Fig. 2d, h).
Development improved. Pretreatment, he had significant
difficulties in receptive and expressive language, and none of
the primary Wechsler Preschool and Primary Scale of Intelli-
gence, fourth edition (WPPSI-IV) [18] subtests could be
completed. After one year of treatment, the six primary and
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five additional subtests of the WPPSI-IV could be completed.
While he scored below average on tests requiring sustained
attention and working memory and exhibited attentional
difficulties in everyday life (CBCL) [19], he scored within normal
limits on tasks assessing spatial visualization and constructive
skills, as well as logic and perceptual reasoning.
Figure 2a–d summarizes treatment effects. In all patients,

treatment was well tolerated, and safety parameters remained
stable (Tables S3–6).

DISCUSSION
We report how clinical observations led to targeted studies in
patient-derived fibroblasts, providing insight in the disease
mechanism and a personalized treatment strategy. Based on
pronounced symptoms during the first year of life and episodes of
intercurrent illness, we hypothesized that patient aminoacylation
may suffice for cellular functions under normal conditions, but not
during periods of increased translation (temporally and spatially
controlled tissue formation, rapid growth in early life, illness) or
decreased amino acid availability (starvation, vomiting), in
particular when the cognate amino acid is essential. Indeed,
patient fibroblast studies showed increased sensitivity to ARS-
specific amino acid deprivation. Further contributing to deteriora-
tion during infections [2], we evidenced strongly decreased
aminoacylation activity for LARS and FARSB at feverish tempera-
tures (38.5–40 °C). Variants that decrease protein stability decrease
the temperature at which the protein unfolds. It is not possible to
predict whether these variants result in unfolding of the protein
around body temperature (as for PLARS and PFARSB). The effect of
temperature on proteins with variants affecting dimerization
(PSARS) and/or specific protein domains (PIARS) is even less
predictable.
Motivated by these studies and because protein folds typically

stabilize when bound to substrates, we initiated supplementation
of the ARS-specific amino acid for individual patients with IARS,
LARS, FARSB, and SARS deficiencies, with protein fortification for
PIARS and PLARS. To prevent the ARS proteins from irreversible
processes of unfolding, aggregation and degradation, we
intensified treatment during infections, and advised strict
antipyretic treatment. Furthermore, we provided an emergency
protocol for triggers such as fasting, fever, and infections. This
approach is radically different from the “high glucose, no protein”
emergency treatment to avoid metabolic decompensations for
other inherited metabolic diseases.
Overall, we found strikingly beneficial effects and good

tolerance and safety. Most consistent was the improvement in
growth (including head circumference) quickly after initiation of
treatment (Fig. 2), leading to independency from tube feeding,
improved development, and coping with infections. In addition,
for PIARS, oxygen dependency decreased and previously progres-
sive pulmonary abnormalities stabilized, and for PFARSB, liver
function improved. The instable FARS protein, as evidenced by
severely reduced enzyme activity upon minimal increase over
physiological temperature (Fig. 1h), may have contributed to the
detrimental disease course in PFARSB.
Because ARS deficiencies were only recently discovered, it is

difficult to relate treatment effects to the natural disease course.
One FARSB-, two IARS-, and two SARS-deficient patients reached
adulthood and retained severe growth retardation, moderate-to-
severe intellectual disability (IARS/SARS), restrictive lung disease
(FARSB), and liver dysfunction (IARS/FARSB) [10, 14, 16]. While
protein fortification alone caused some improvements, the need
for treatment with the corresponding amino acid was evidenced
by improved effects after leucine instead of erroneous isoleucine
supplementation in PLARS, and by transient clinical deterioration
during two-week delivery failure of isoleucine in PIARS.

Concordantly, total parenteral nutrition improved liver function of
one MARS-deficient patient [20], as did protein fortification in
LARS deficiency [21]. One IARS-deficient patient thrived better
upon high-caloric feeding, and isoleucine supplementation
decreased susceptibility to infections [10]. Recently, protein
fortification with methionine supplementation resulted in
improved growth, pulmonary function and neurodevelopment
in two MARS-deficient patients [22]. These effects for different ARS
deficiencies, and prompt onset after initiation suggest a true
treatment effect.
In conclusion, we provide therapeutic recommendations for

ARS deficiencies based on in vitro and in vivo evidence of
beneficial effects of amino acid and protein supplementation (up
to 2 2/3rd years) in single patients. This affordable, accessible, and
safe strategy holds the potential to improve outcomes for the
expanding group of severe, often progressive, multiorgan ARS
deficiencies. Although further research and validation for other
ARS deficiencies are necessary, our in vitro studies in patient-
derived cells may guide personalized therapeutic strategies.
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