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Reducing Sanger confirmation testing through false positive
prediction algorithms
James M. Holt 1✉, Melissa Kelly1, Brett Sundlof1, Ghunwa Nakouzi1, David Bick1 and Elaine Lyon1

PURPOSE: Clinical genome sequencing (cGS) followed by orthogonal confirmatory testing is standard practice. While orthogonal
testing significantly improves specificity, it also results in increased turnaround time and cost of testing. The purpose of this study is
to evaluate machine learning models trained to identify false positive variants in cGS data to reduce the need for orthogonal
testing.
METHODS: We sequenced five reference human genome samples characterized by the Genome in a Bottle Consortium (GIAB) and
compared the results with an established set of variants for each genome referred to as a truth set. We then trained machine
learning models to identify variants that were labeled as false positives.
RESULTS: After training, the models identified 99.5% of the false positive heterozygous single-nucleotide variants (SNVs) and
heterozygous insertions/deletions variants (indels) while reducing confirmatory testing of nonactionable, nonprimary SNVs by 85%
and indels by 75%. Employing the algorithm in clinical practice reduced overall orthogonal testing using dideoxynucleotide
(Sanger) sequencing by 71%.
CONCLUSION: Our results indicate that a low false positive call rate can be maintained while significantly reducing the need for
confirmatory testing. The framework that generated our models and results is publicly available at https://github.com/
HudsonAlpha/STEVE.
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INTRODUCTION
Clinical next-generation sequencing (NGS) is widely used to
identify a molecular diagnosis in patients with suspected genetic
disorders.1,2 Unfortunately, NGS pipelines are known to have both
random and systematic errors at sequencing, alignment, and
variant calling steps of the pipeline.3,4 Because the reported
variants can impact patient care, the American College of Medical
Genetics and Genomics (ACMG) and the College of American
Pathologists (CAP) recommend orthogonal confirmation (e.g.,
Sanger sequencing) for reported variants to reduce the risk of false
positive results.3,4 Unfortunately, orthogonal confirmation
increases both the cost and turnaround time of the NGS test.
Furthermore, the total number of variants that are candidates for
clinical reporting is steadily increasing, as demonstrated by the
growth in public databases such as ClinVar and OMIM.5,6

Orthogonal confirmation of all reported variants will cause the
effective cost of NGS to steadily increase due to an increase in the
number of variants sent for confirmation.
To address this issue, other studies have questioned the

necessity of orthogonal testing, especially when the variant call
is of sufficiently high quality for the particular NGS assay.7–10 Most
of these studies involved a relatively small sample size (<8,000
variants), with the notable exception of the work by Lincoln et al.,
which examined approximately 200,000 variants, identifying 1,662
as false positives.10 Lincoln et al. used a combination of reference
samples characterized by the Genome in a Bottle Consortium
(GIAB)11–13 along with orthogonal test results from over 80,000
clinical tests from two different laboratories. Briefly, their method
involved manual selection of candidate thresholds for quantitative
metrics that were then converted into flags. Then, these flags were
provided as input to a heuristic algorithm to classify variant calls

as high-confidence true positive calls or candidate true positive
calls (requiring confirmation testing). The exact set of flags was
notably different for single-nucleotide variants (SNVs) and
insertions/deletions (indels). The authors establish a 100% capture
rate (lower bound on confidence interval 98.5–98.9% for SNVs,
99.1–99.8% for indels) for false positive calls while maintaining
relatively low rates of true calls that were incorrectly flagged using
their approach (4.1–13.2% for SNVs, 6.7–15.4% for indels).10

Despite the success of the Lincoln et al. approach, there are
some drawbacks that make broad application challenging. First,
their data were gathered from custom hybridization-based assays,
limiting the scope to targeted regions of the genome. This led to
relatively few false positive variant calls (1,662 of 200,000 variants)
across their entire data set, and likely contributed to the wide
confidence intervals for some of the false positive capture rates
(SNVs in particular). This also limited the variants they could use
from GIAB truth sets requiring the study to rely on a relatively
large number of orthogonally confirmed results performed by the
laboratory as part of their clinical testing (>80,000). For many labs,
this is impractical due to costs, especially when developing a new
test where orthogonal results are not already known. Second, the
selection of flags from quality metrics is a manual step in their
process that also reduces the information content of the metrics.
Reduction to flag values (e.g., a Boolean flag value) due to the use
of discrete thresholds can reduce the ability of the algorithm to
detect complex interactions between quality metrics, especially
when those interactions are based on multiple different thresh-
olds/ranges across multiple different quality metrics. While multi-
ple thresholds could be used (as Lincoln et al. did), this still
results in a loss of information compared with the unaltered
quantitative metric.

1HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA. ✉email: jholt@hudsonalpha.org

www.nature.com/gim

© The Author(s) 2021

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41436-021-01148-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41436-021-01148-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41436-021-01148-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41436-021-01148-3&domain=pdf
http://orcid.org/0000-0001-6411-9236
http://orcid.org/0000-0001-6411-9236
http://orcid.org/0000-0001-6411-9236
http://orcid.org/0000-0001-6411-9236
http://orcid.org/0000-0001-6411-9236
https://github.com/HudsonAlpha/STEVE
https://github.com/HudsonAlpha/STEVE
mailto:jholt@hudsonalpha.org
www.nature.com/gim


To address difficulties associated with Lincoln’s approach, we
applied an automated machine learning approach14,15 that uses
the entirety of the GIAB truth sets as the training and testing sets
as is fitting for our application of clinical genome sequencing
(cGS). The benefits of this approach are threefold: (1) automation
of quality metric evaluation on non-Boolean values (i.e., no
manually identified flags), (2) a substantial increase in the number
of true positive and false positive variant calls available for training
and testing (~3.2–3.5 million true positives per sample) due to our
use of cGS, and (3) elimination of orthogonal testing results in
algorithm training due to the abundance of data from the clinical
genome. This framework, Systematic Training and Evaluation of
Variant Evidence (STEVE), allows for the development of lab-
specific models applicable to specific tests while permitting
customization of the false positive capture rate settings to suit the
requirements of the test.

MATERIALS AND METHODS
Overview
We performed cGS on the following GIAB Consortium samples with
published truth sets: HG001–HG005.11–13 These sequence data were
processed using two different secondary pipelines: Illumina’s Dragen
Germline Pipeline16 and a pipeline consisting of alignment with Sentieon17

and variant calling with Strelka2.18 Each pipeline performed both
alignment and variant calling to produce a Variant Call Format (VCF) file.
Each VCF file was compared with the corresponding truth set to classify
each variant call as a true positive call or a false positive call. Quality
metrics for each variant call were extracted directly from the VCF file and
converted into machine learning features. The variant calls were divided
into six distinct data sets based on the variant type and genotype of the
call. The six data sets were (1) SNV heterozygotes, (2) SNV homozygotes, (3)
SNV complex heterozygous (two different nonreference alleles), (4) indel
heterozygotes, (5) indel homozygotes, and (6) indel complex heterozygous
(two different nonreference alleles). Each data set was used separately for
training and testing of a machine learning model for that particular data
type leading to six distinct models per pipeline, for a total of 12 models
with the two pipelines we evaluated.
For each data set, we generally followed standard machine learning

practices to create our models. For a primer on machine learning
terminology in a medical context, we recommend Liu et al.14 We tested
multiple freely available algorithms to train our models. The process
included splitting the data set into training and testing sets, cross-
validation, hyperparameter tuning, and a final evaluation on the testing
set.14,15 We developed a set of clinical criteria required to pass a model,
and developed a tie-breaking scheme when multiple models for a single
data set were acceptable. Subsequently, we performed a retrospective
analysis on a collection of variants identified through cGS that were
previously orthogonally confirmed. Finally, we report on the clinical
application of these models for nonactionable variants.

Data set generation
All training and testing data sets for the machine learning models were
derived from five, well-studied GIAB samples.11–13 Briefly, these samples
consist of NA12878 (HG001), a well-studied female of European ancestry;
HG002-004, a trio (son and parents) of Ashkenazi Jewish ancestry; and
HG005-007, a trio (son and parents) of Chinese ancestry. HG006 and HG007
were only used for final testing. GIAB provides benchmark call regions,
variants within those regions, and genotype calls for each variant for each
of these five samples. Each benchmark region set covers 80–90% of
reference genome hg38 and contains approximately 3.2–3.5 million,
nonreference variant genotypes for the corresponding sample.13 We used
the benchmark regions and variant calls from GIAB release v3.3.2.
DNA was purchased from Coriell or NIST (see Supplemental Materials)

and sequenced with the Illumina NovaSeq 6000 sequencing platform. The
DNA was sonicated, ligated to Illumina flowcell-specific unique dual-index
adapters, and amplified using six cycles of polymerase chain reaction (PCR)
and i5/i7 primers. The prepared library was then quality checked for
adequate yield through fluorescence methods and quantitative PCR, as
well as for appropriate library size and profile using bioanalysis. Libraries
were clustered onto Illumina NovaSeq 6000 flowcells and sequenced using
standard Illumina reagents and protocols. The output of this protocol was

paired-end 150-bp reads in FASTQ format with a mean coverage of at least
30× and passing stringent quality control metrics.
The data were aligned to the human reference genome (hg38) and

variants were called using Illumina’s Dragen Germline Pipeline (version
07.011.352.3.2.8b).16 Alignment and variant calling was also performed
using a separate pipeline consisting of alignment with Sentieon (version
201808.07) and variant calling with Strelka2 (version 2.9.10).17,18 The
output of each pipeline consisted of a single VCF file. These VCF files were
matched with the corresponding GIAB benchmark regions and call sets
and evaluated using the Real Time Genomic (RTG) vcfeval tool.19 RTG’s
vcfeval can accept differences in variant representation and genotype
differences while restricting the evaluation to only the benchmark regions.
The final output consists of two VCF files per sample–pipeline combination,
one containing the variants labeled as true positive calls and one
containing the variants labeled as false positive calls.
We then converted the VCF files into machine learning labels and

features. First, labels were assigned based on the RTG vcfeval output file.
All variants in the true positive file were labeled as true positives, and all
variants in the false positive file were labeled as false positives. Features
were extracted directly from the VCF files as well. Generally, these were
numerical values corresponding to quality metrics generated by the
upstream pipeline. Importantly, the set of quality metrics available from
each pipeline were different and shared metrics may be calculated
differently due to implementation differences. Thus, the data from each
pipeline were handled independently to create pipeline-specific models.
We detail the precise set of features extracted for each pipeline in the
Supplemental Material.
For each pipeline data set, we stratified all of the labels and features into

one of six machine learning data sets based on the variant type and
genotype combination. We used two categories for variant type (SNV or
indel) and three categories for genotype (heterozygous, homozygous, and
complex heterozygous [two different nonreference alleles]). Each of the six
data sets was handled independently using an identical process that is
detailed in the following section.

Model training and testing
Our primary goal was the accurate identification of false positive variant
calls. We also sought to minimize the number of true positive calls that
would be labeled incorrectly as false positive calls. Since false positive
variant calls (variants called by the pipeline but absent from the truth set)
are the primary target, they are labeled as positives (binary label “1”) when
passed to the machine learning algorithms. Similarly, true positive variant
calls passed to the machine learning algorithm are labeled as negatives
(binary label “0”). The goal of machine learning in this application is to
create a model with high “capture rate” (sensitivity in our machine learning
context), meaning that few or no false positive variant calls will be missed
by the model and allowed onto the final patient report. The model should
also have a low true positive flagging rate (“TP flag rate,” false positive rate
in our machine learning context), meaning that the fewest true positive
variant calls will be flagged by the model to be sent for confirmatory
testing.
In general, we followed the machine learning guidelines recommended

by Scikit-Learn (sklearn).20 The variants from each sample were divided
into equal sized training and testing data sets such that the number of
false positive and true positive variant calls were balanced. The testing
data set was set aside for use in the final evaluation.
We selected four algorithms for model generation that each conformed

to the sklearn paradigm: AdaBoost, EasyEnsemble, GradientBoosting, and
RandomForest.21–24 We also selected hyperparameters for each model that
were automatically evaluated during cross-validation (see below). See the
Supplemental Material for further details concerning the hyperparameters
evaluated.
We performed a leave-one-sample-out cross-validation using the

training data.14 Given S samples, the models are trained on (S-1) samples
then evaluated using the left-out sample to simulate receiving a “new”
sample. This was performed a total of S times (each sample is left out
once), leading to a sevenfold, leave-one-sample-out cross-validation in our
analysis. As noted earlier, hyperparameters were automatically tested
during the cross-validation process and the best performing hyperpara-
meters (based on area under the receiver–operator curve) were used
during the final training process.
Additionally, each model was evaluated at eight different capture rates

in the range of 99–100%. These “evaluation” capture rates represent
different thresholds that a clinical laboratory might select as a requirement
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for their test. Ninety-nine percent represents a capture rate that is likely at
the lower end of acceptable practice (i.e., 1/100 false positive calls are
missed) whereas 100% capture rate (i.e., no false positive calls missed)
represents a clinical goal that is desirable but rarely achievable in practice.
With six variant/call combinations, seven leave-one-sample-out cross-
validation evaluations, and 45 model/hyperparameter combinations, a
total of 1,890 models were trained during this process.
In the final step of the process, the models were retrained using only the

best hyperparameters for each model and the full training set. Once
trained, the models were then evaluated on the testing data set that was
previously set aside. As noted earlier, each of these models was evaluated
at eight different evaluation capture rates, leading to a total of 32
candidate hypertuned models for each variant/genotype data set.

Clinical application
After the algorithms were trained, we developed a set of criteria to identify
an algorithm to introduce into clinical practice. Given the results from the
sevenfold cross-validation, we calculated both mean and standard
deviation of each model’s capture rate. We defined the lower bound of
capture rate as two standard deviations below the mean (-2 SD).
We then selected both a minimum acceptable capture rate and a target

capture rate (i.e., the desired capture rate). Given those two values, two
criteria were required for a model to pass: (1) the lower bound of the cross-
validation capture rate (-2 SD) must be greater than or equal to the
minimum acceptable capture rate and (2) the final testing capture rate
must be greater than or equal to the lower bound of the cross-validation
capture rate (-2 SD). The first requirement provides confidence that the
trained models are consistently performing above the minimum accep-
table capture rate. The second requirement provides confidence that the
final trained model is consistent with the results from cross-validation and
helps reject final models that are suffering from overfitting or underfitting.
Because we had multiple evaluation capture rates, several models passed
these two criteria. To break ties, we developed a modified F1 score that
incorporates both the capture rate and specificity of the models to choose
a single model for clinical use. Details of this implementation along with
results from the trained models can be found in the Supplemental
Material.
Given a set of accepted clinical models (one per variant/genotype

combination), we used the models to perform a retrospective analysis of
orthogonally confirmed variants that had been previously reported by the
HudsonAlpha Clinical Services Lab (CSL). All variants were chosen from cGS
cases reported by the CSL between 2 October 2019 and 11 December
2019. The variants chosen contained a mixture of primary findings,
actionable secondary findings, carrier status findings, and pharmacoge-
nomic findings. Each variant is associated with a VCF file that was
generated using an identical process as the VCFs used in the model
training. Finally, we report the results of this approach in clinical practice,
applied to carrier status findings and pharmacogenomic findings. Variants
that were primary findings or actionable secondary findings were sent for
confirmatory testing regardless of the model’s predictions. Carrier status
findings and pharmacogenomic findings were sent for confirmatory
testing when the model predicted the variant to be a false positive,
indicating that the trained model did not have high confidence in the
variant call.

RESULTS
Variant collection
HG001 (NA12878) was sequenced with three replicates and HG002
through HG005 were each sequenced once. The number of
variants called across all samples was greater than 24 million true
positive calls with 137 thousand false positive calls using the
Dragen pipeline. Details of these counts by sample, variant type,
and genotype along with a detailed description of the pipeline
and RTG vcfeval invocations is available in the Supplemental
Material.

Model evaluation
For our model selection and evaluation, we chose a minimum
acceptable capture rate of 99% (indicating 1/100 false calls are
missed) with a target capture rate of 99.5% (indicating 1/200 false
calls are missed). Given these criteria, a number of models passed
the evaluation process. The best model was chosen using the
modified F1 score described above. The results for the final
chosen models for all six variant–genotype combinations are
shown in Table 1. Additional information for all final trained
models at each evaluation capture rate is available in the
Supplemental Material.
Five of the six variant–genotype combinations had at least one

model passing our criteria. The only failing combination was
complex heterozygous SNVs (two nonreference alleles in trans at
the same position), a failure that is likely due to the rarity of such
events (45 false positive calls across all seven samples). Note that
in our approach, any failing combination indicates a variant/
genotype class that will always be sent for confirmation testing.
Models that were selected for use in clinical practice had a final
capture rate that was greater than or equal to our chosen target
capture rate of 99.5%.
We also tested the final models against two data sets (HG006

and HG007) that were not used during training, cross-validation,
or the final testing process. We limited the scope of this
experiment to exonic regions overlapping the benchmark regions
for the sample. Overall, the false positive (FP) capture rate was
99.70% (331/332) with a TP flag rate of only 12.99% (26,924/
207,339). Details of the HG006 and HG007 analysis, technical
challenges involving the GIAB benchmark regions, and the
performance by variant type are described in the Supplemental
Materials.

Clinical evaluation
As we developed the models, we tracked Sanger confirmation
results for cGS cases. The indication for testing was rare,
undiagnosed diseases. The first phase of the clinical evaluation
was a retrospective analysis of recent cases for which Sanger
confirmation results were available. We collected the orthogonal

Table 1. Summary of trained models for Dragen-based pipeline.

Variant/genotype Best model CV capture rate (%) Final capture rate (%) CV TP flag rate (%) Final TP flag rate (%)

SNV—heterozygous GradientBoosting 99.76+−0.18 99.58 12.78+−2.26 12.20

SNV—homozygous EasyEnsemble 99.94+−0.14 99.75 17.25+−2.07 17.40

SNV—complex heterozygous — — — — —

Indel—heterozygous GradientBoosting 99.62+−0.26 99.68 43.11+−3.35 43.41

Indel—homozygous GradientBoosting 99.78+−0.27 99.50 55.65+−4.16 55.16

Indel—complex heterozygous GradientBoosting 99.86+ -0.14 99.60 53.45+−5.65 54.22

For each variant–genotype combination, the following table reflects the best model for our criteria, the cross-validation (CV) mean and standard deviation
for capture rate and true positive (TP) flag rate, and final evaluation for capture rate and TP flag rate.
SNV single-nucleotide variant.
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testing results for 232 variants from 26 cGS cases and compared
them with the predictions from the Dragen-trained models. Note
that this data set includes all variants that were sent for
confirmation including primary or actionable variants. The results
of this retrospective analysis are seen in Table 2. Only two variants
in this data set failed to confirm by orthogonal testing. Both were
predicted to be false calls by the models. Of the 230 remaining
true positive calls (i.e., confirmed by orthogonal testing), only 36
were incorrectly flagged as false positives by the models. This
indicates an observed TP flag rate of 15.58% with observed
model-specific TP flag rates ranging from 2.94% to 25.00%.
Following the development and evaluation noted above, we

employed the models in clinical practice to reduce the number of
Sanger confirmations that were ordered in subsequent genome
sequencing cases. As noted earlier, these models were only
applied to nonactionable variants (carrier status findings and
pharmacogenomic findings). Primary and actionable secondary
variants continued to be sent for Sanger confirmation and were
therefore excluded from this analysis. Additionally, every qualify-
ing variant call that was predicted to be a true positive was
manually reviewed using the Integrative Genomics Viewer25 as an
additional review of the model’s prediction. We have applied the
prediction algorithm to 252 nonactionable variants from 31 cGS
cases gathered from the Dragen-based pipeline. Application of
these models reduced the number of variants that had orthogonal
confirmation by 216 (85.71%) overall, with an average reduction of
7 variants per sample. Sanger confirmation testing generally costs
at least $100 (USD) per variant indicating an average cost savings

of $700 per sample. Analysis of these results by variant type and
genotype is shown in Table 3.
We analyzed these prospective cases by applying the model to

four variant subsets along two risk axes: (1) risk of a false positive
having an adverse effect on patient care and (2) risk of reporting a
false positive variant call. First, if the models are applied to
actionable variants, there is increased risk of a false positive
affecting patient care because there is a candidate treatment or
therapy that may be erroneously applied. Second, if the models
are applied to variants outside the GIAB benchmark regions, there
is increased risk of reporting a false positive variant call because
the models may not be trained to handle complexities from
excluded regions such as structural variants, tandem repeats,
etc.11–13 Thus, there is reason to believe that variant calls outside
of all of the GIAB benchmark regions will be systematically
different from those inside the benchmark regions. As with
Lincoln et al.,10 we selected the union of the benchmark regions to
prevent an individual GIAB sample from excluding a benchmark
region.
Given the above risk axes, we define the four subsets of all

reported variants (n= 306) from each case: (1) all variants, (2)
variants within the union of GIAB benchmark regions, (3)
nonactionable variants, and (4) variants that are both nonaction-
able and within the union of GIAB benchmark regions. Given these
risk categories, applying the models to all variants (approach 1)
results in the lowest rate of confirmatory testing (21%), but also
has the highest risk of reporting false positive variants that may
adversely impact patient care. The most conservative approach

Table 2. Summary of retrospective variant analysis.

Variant/genotype Confirmed true calls False calls False calls captured True calls flagged Model TP flag rate

SNV—heterozygous 176 0 — 29 (16.48%) 12.20%

SNV—homozygous 34 0 — 1 (2.94%) 17.40%

SNV—complex heterozygous 0 0 — — —

Indel—heterozygous 20 2 2 (100.00%) 5 (25.00%) 43.41%

Indel—homozygous 0 0 — — 55.16%

Indel—complex heterozygous 0 0 — — 54.22%

Here we report the total number of variants confirmed to be true positive (TP) or false positive calls, the number of false positive calls correctly identified
(capture rate), and the number of true calls incorrectly labeled as false calls (TP flag rate). The model TP flag rate (i.e., expected TP flag rate) from the final
evaluation is also provided here for comparison. Models used for this analysis were generated from the Dragen-based pipeline.
SNV single-nucleotide variant.

Table 3. Summary of prospective variant predictions.

Variant/genotype Predicted false positive calls Predicted true positive calls Orthogonal order reduction

SNV—heterozygous 29 164 84.97%

SNV—homozygous 1 34 97.14%

SNV—complex heterozygous 0 0 —

Indel—heterozygous 6 18 75.00%

Indel—homozygous 0 0 —

Indel—complex heterozygous 0 0 —

Overall 36 216 85.71%

This table details the outcome of the use of the models in clinical cases. It shows the total number of variants that were predicted to be false positive or true
positive in the clinical cases along with the percentage of variants that were not sent for orthogonal confirmation.
SNV single-nucleotide variant.
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(approach 4) results in the highest rate of confirmatory testing
(54%), but also has the lowest risk of reporting false positive
variants that may adversely impact patient care. Our chosen
approach (approach 3) maintains a low rate of confirmatory
testing (29%) while still requiring confirmatory testing for all
actionable variants. The full data for each of these approaches are
shown in Table 4.

Pipeline comparison
In addition to the Dragen-based pipeline, we ran a second
pipeline consisting of Sentieon and Strelka2. Over 24 million true
positive calls with 419 thousand false positive calls were found
using the Sentieon/Strelka2 pipeline (a threefold increase in false
positive calls relative to Dragen-based pipeline). The details of this
pipeline, the RTG vcfeval results, and training/testing results are all
available in the Supplemental Materials.
The models trained on Sentieon/Strelka2 data showed a marked

improvement over those trained for the Dragen pipeline. While
maintaining the 99.5% target capture rate, there was a decrease in
TP flag rate across all model types except complex heterozygous
indels. The important differences include a 1.62% TP flag rate for
heterozygous SNVs compared with 12.20% for the Dragen
pipeline and 20.29% TP flag rate for heterozygous indels
compared with 43.41% for the Dragen pipeline. These differences
are explained, in part, by the increase in total false positive calls
relative to Dragen. This suggests that despite the overall
decreased precision of the Sentieon/Strelka2 pipeline, the models
are able to identify false positives more easily for the Sentieon/
Strelka2 pipeline compared with the Dragen pipeline.
Given the relative ease of identifying false positives, we tested a

version of the models with very stringent criteria: a minimum
capture rate of 99.9% and a target capture rate of 100%. These
stringent models with the Sentieon/Strelka2 pipeline resulted in a
final TP flag rate of 28.02% for heterozygous SNVs. In comparison,
the stringent models with the Dragen pipeline had a very high
final TP flag rate of 88.05% for heterozygous SNVs, a rate that
severely limits its usefulness. Results for all stringent models for
both pipelines are in the Supplemental Material.

DISCUSSION
We developed a framework for training models to identify false
positive variant calls from genome sequencing data sets. Our
approach advances that of Lincoln et al.10 by using numerical
values (rather than flags) as feature inputs to machine learning
models. Additionally, by using clinical genome sequencing data
instead of targeted sequencing, we increased the total number of
true positive and false positive calls that were available for training
and testing. This data obviates the need for a large set of
orthogonal test results, a resource that is not available to most
laboratories. In addition, the final models are tunable, allowing
laboratories to adjust the minimum and target capture rates of the
models to values that are relevant to a particular intended use of a
test. Furthermore, the framework we developed can be used in
conjunction with a variety of upstream pipelines as shown by the
two different aligner–caller combinations used in this study.
Custom models can also be developed to match upstream
processes different from those used in this study such as different
sequencing technologies, different secondary pipelines, and
different versions of the software used in a pipeline.
The differences in model results between the two tested

pipelines suggest that the upstream pipeline significantly
influences the final performance of the models. For example,
the final TP flag rates (the fraction of true variants that would be
flagged for orthogonal confirmation) were all lower with the
Sentieon/Strelka2 pipeline compared with the Dragen pipeline
with one exception. This suggests that while Sentieon/Strelka2 is
generating more false positive calls (i.e., reduced precision
compared with the Dragen pipeline), the features extracted from
the VCF were better able to differentiate false positive calls from
true positive calls compared with the features produced by the
Dragen pipeline (see Supplemental Material). We anticipate that
other informatic pipelines will have similar variability in perfor-
mance. Therefore we recommend building custom models for
each different upstream pipeline used. Note that these differences
may include any modification of the steps from the sample
extraction to the final variant file, for example: sample type (blood/
saliva), extraction technique, library preparation, sequencing
method, de-multiplexing method, read trimming, read correction,
alignment (mapping), marking or removing duplicate reads, base

Table 4. Summary of clinical approaches.

Category All variants GIAB benchmark only Nonactionable only GIAB benchmark+
nonactionable only

Risk of reporting false positive Higher Lower Higher Lower

Risk of adverse impact on patient care Higher Higher Lower Lower

Not eligible—no passing model 6 6 6 6

Not eligible—outside benchmark region AND
actionable

N/A N/A N/A 4

Not eligible—actionable N/A N/A 48 44

Not eligible—outside benchmark region N/A 88 N/A 84

Eligible—predicted true 240 164 216 141

Eligible—predicted false 60 48 36 27

Confirmation order rate 21.57% 46.41% 29.41% 53.92%

This table summarizes the prospective results for all variants (n= 306) under different clinical approaches. The methods are organized from highest risk of
reporting a false positive to lowest, where reporting actionable variants without confirmation is considered highest risk. Approaches that allow the models
to be applied to any variant interpretation (specifically primary or actionable) have a higher risk for adverse impact on patient care. Approaches that allow
for variants from any genomic region (specifically outside Genome in a Bottle [GIAB] benchmark regions) have a higher risk of reporting a false positive.
Variants that are classified as “not eligible” either did not have a validated model or require confirmation test due to the approach. Confirmation order rate is
the percentage of variants that are either not eligible or predicted false, indicating that a confirmation test would be ordered for that variant prior to
reporting. The results from our clinical approach (nonactionable only) are emphasized.
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quality recalibration, variant calling, batch calling, variant annota-
tion steps, and variant filtering steps.
We note that these differences between pipelines are not unique

to our approach. While our methodologies were different from
Lincoln et al.,10 they are similar enough to make some observations
regarding the different pipelines. For SNVs from Lincoln et al., lab 1
had a confidence interval lower bound on the capture rate of 98.9%
while only flagging 4.1% of true positive variants. We compare this
with the -2 SD from our cross-validation capture rate (noting that
these values are not exactly comparable), which was 99.4% for
heterozygous SNVs and 99.66% for homozygous SNVs while
flagging 13.16% of our true positive clinical SNVs. The difference
in capture rates may be attributed to the limited number of false
positives available to Lincoln et al. (fp= 211) compared with our
data (fp= 34,890). This suggests that some applications of these
approaches will be limited by the test itself due to a low occurrence
of false positives that can be used for training.
It appears that our algorithm does not perform as well as that of

lab 1 in the Lincoln et al. study10 with respect to indels. Lab 1 has
992 false positives. This shifts the lower bound on capture rate up
to 99.8% with a TP flag rate of 6.7%. This can be compared with
our -2 SD of 99.1% for heterozygous indels (fp= 215,261) and
99.24% for homozygous indels (fp= 31,410). Our algorithm flags a
greater number of our true positive clinical indels, 25%. While we
cannot rule out methodology as a contributing factor, the bulk of
this difference may be attributed to differences in the upstream
pipelines from both a data and processing perspective. First, our
data itself is likely far more diverse than that of either lab in the
Lincoln et al. study. Since we used cGS, we were only constrained
to the benchmark regions provided by GIAB for variant selection
leaving us with a 200-fold increase in false positive indels for
training and testing. This means our data set includes many
genomic contexts that are likely absent or underrepresented in
the Lincoln et al. data set such as noncoding exons, introns,
intergenic regions, pseudogenes, and short-tandem repeats.
Second, we did not perform any post–variant calling filtering
(manual or automatic) of our variants prior to training the models.
As a result, any variant call reported by the calling software that
was in a benchmark region was used in our analysis. In contrast,
Lincoln et al.’s lab 1 performs an automated and manual filtering
process to remove some “clearly false variant calls.”10 Lincoln et al.
suggest that this likely makes a major difference compared with
their lab 2 results. Lab 2 had less stringent automated filtering and
a limited or absent manual review process on their data. However,
their results were also comparably worse (lower bound of capture
rate = 99.1%, TP flag rate = 15.4% for indels). Limiting the scope
of our genome sequencing data to variants that pass a filtering
criteria (preferably automated due to the scale of our data) or that
reside only in specific genomic contexts (e.g., gene regions) may
reduce the complexity that the models need to capture and
ultimately improve the performance. However, these specialized
or focused models are less likely to be generally applicable to any
variant from genome sequencing, and they would require more
samples to reach the same number of data points for training/
testing due to the filtering component of the upstream pipeline.
Additional annotations to called variants may also improve the

performance of the trained models. For example, a feature
indicating strand bias was of great importance in the Sentieon/
Strelka2 heterozygous SNV model, but that feature is not available in
the Dragen pipeline outputs. Adding this feature to the Dragen VCF
could improve the model performance. Furthermore, almost all of
the features we used are not tied to the variant itself but are tied to
the call (i.e., genotype, call quality, strand bias, etc.). Adding
positional or variant annotations may be beneficial by providing
the algorithms with features that are associated with genomic
context such as reference/alternate allele, measures of local genomic
complexity (i.e., low-complexity or short-tandem repeat), or
pseudogene presence. This additional information may make the

individual variant calls more identifiable and could lead to an
overfitting scenario where the model ignores quality information
and has instead learned to recognize a particular variant, regardless
of its quality. Of course, models that have learned to recognize
problematic areas of the reference genome may prove to be
desirable in practice. Finally, studying the false positives calls that
are currently missed by the trained models may provide evidence
supporting the inclusion of some of the features discussed above.
Our results also suggest that there are differences between the

full set of variants used in training and the set of variants that we
are currently sending for orthogonal confirmation. For example,
both heterozygous SNVs and indels had observed TP flag rates
that are relatively close to the expected TP flag rate of the model
(see Table 2). In contrast, homozygous SNVs had an observed TP
flag rate (2.94%) much lower than the expected TP flag rate from
model evaluation (17.40%). While the numbers are too small to
meet statistical significance, the results suggest that reported
homozygous SNV variants are more likely to be predicted as true
positives than homozygous SNV variants chosen at random. More
data will be needed to assess this trend and determine whether
similar trends occur for other variant types.
There are limitations and potential drawbacks to our approach.

First, our approach is not trained on orthogonal results generated by
Sanger sequencing. Instead, we trained on the benchmark regions
for five samples provided by GIAB, which offers a diverse set of
variation across different genomic contexts and backgrounds. Note
that this is far more variation than can be feasibly acquired through
orthogonal, confirmatory testing for an individual laboratory and
includes more variants than those that are clinically relevant.
However, despite this major improvement in available training
variants from GIAB, the training data set is still limited in scope to
the GIAB benchmark regions. As discussed earlier, variant calls
outside the GIAB benchmark regions may be systematically different
from those inside the benchmark regions. We recommend that
clinical laboratories initially apply algorithms such as those described
in this paper to the lowest risk variants (only nonactionable variant
calls inside GIAB benchmark regions) and only consider other
approaches after careful evaluation and additional studies.
There may also be other sources of bias as a result of using the

GIAB data sets for training. A complete understanding of the
weight of each feature in a machine learning model is very
difficult, but is important when the result may impact patient
safety.15 While there are tools in place to aid in the interpretation
of some models, they do not apply to all of the models we trained.
The Supplement Materials detail some interpretation information
referred to as “feature importances,” denoting which features are
most influential in the models.20

As recommended in Rehm et al.,3 this study demonstrates the
need to understand the intricacies in technologies and bioinfor-
matics before eliminating orthogonal confirmation. In addition to
being cognizant of the pipeline differences and limitations listed
above, a laboratory must make several choices to apply the
algorithm developed here, notably the inherent trade-off between
risk of reporting a false positive and cost of confirmatory testing.
We presented the results of four approaches applied in our
prospective analysis. Each has a different level of risk and
associated confirmatory testing cost. Because this method is
intended to be used with patient samples, the study was
performed in concordance with professional and lab accreditation
standards for clinical testing.3,26

We chose to apply the algorithm only to nonactionable
findings, with a clear description in the report of which variants
required confirmation as recommended by the ACMG standards.3

This approach has a relatively low risk of an adverse patient
outcome. However, our approach does have a higher risk of
identifying a false positive variant that will be proven a false
positive by orthogonal testing because we are applying it to
nonactionable variants outside the GIAB benchmark regions. We
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selected this approach because it substantially reduced the overall
confirmatory testing rate to 29% without compromising patient
safety (see Supplemental Materials for a discussion of variants
outside GIAB benchmarks). Notably, if we had selected the most
conservative approach, we still would have observed a 47%
reduction in confirmatory testing.
Several variables are relevant to the actual training and testing

of the models. The minimum and target capture rates of the
models are the most important. Increasing these values will
capture more false positive variant calls, but will also increase the
number of true calls that are flagged as false positives. This is
appropriate for applications such as actionable variants where
stricter capture rates are required. Additionally, setting different
minimum and target capture rates based on the variant type may
be appropriate. For example, indels were consistently the major
type of false positive call despite having far fewer total calls than
SNVs. Within genes, indels are more frequently interpreted as
pathogenic due to variant types such as frameshifts. A clinical
laboratory may therefore choose to impose stringent require-
ments on the capture rates for indel models to reflect the
pathogenicity of the variant and/or the increased relative
likelihood that any given variant is a false positive.
Whether to restrict the data used for model training should also

be considered. We used the complete data from GIAB benchmark
regions for model training, providing the maximum amount of
benchmark variant calls to the models. Nevertheless, other
laboratories may wish to limit the analysis to particular regions
(e.g., gene or coding regions) or to exclude difficult regions (e.g.,
short-tandem repeats, homopolymer regions, or pseudogenes) from
the data set. This reduces the number of variants the models can use
for training and testing, but it also reduces the complexity that the
models are capturing. This may result in more specialized models
that perform better for those subsets of variants. Additionally, these
specialized models may be better suited for stringent target capture
rates due to the reduction in complexity of the input variants.
The choice of samples and cross-validation method can also

impact the final results. In our primary training, we tested the
models with three replicates of HG001 and one replicate of
HG002-HG005 using a leave-one-sample-out approach for cross-
validation. While we do not suspect bias in the data due to the
unidentified variant features used by the models, it cannot be
ruled out without further experimentation. Adding additional
replicates of HG002-HG005 would likely improve the results by
reducing any subtle biases and adding more data points to
training and testing. Alternate methods for cross-validation should
also be considered such as classic training–testing splits.14

While they were different in development, our results and those
found in Lincoln et al.10 have many similarities. First, many of the
features (or “flags” in Lincoln et al.) are conceptually similar, even if
calculated differently. In particular, allele depth, allele frequency,
call quality, and presence of nearby variants were fundamental in
both approaches. Second, we both observe that the choice of
upstream pipeline has a major impact on the final model’s
performance. We demonstrated major differences when compar-
ing the Dragen pipeline to Sentieon/Strelka2. Similarly, Lincoln
et al. demonstrated how filtering can influence the results derived
from lab 1 and lab 2. Third, we both train separate models for
different data types. We separated by variant type (SNV or indel)
and genotype, whereas Lincoln et al. only separated by variant
type. In both approaches, the performance of the model for each
data type varied and the relative feature importances also
changed. In some instances, a feature was very important in one
of our models, but not used in another model. Finally, across all
pipelines in both our data and Lincoln et al., false positive indels
were consistently more challenging to identify than SNVs. This is
most obvious when reviewing the TP flag rates, which indicates a
higher fraction of true indel calls are being flagged for
confirmation than true SNV calls across all approaches. This

suggests that indels are more difficult to capture across our
current pipelines, or that a key feature for distinguishing false
positive indels is missing from our annotations. Despite differ-
ences in the underlying data and approaches, these similarities
suggest that the general approach of using GIAB data along with
variant quality metrics to train models is one that is broadly
applicable to many different clinical genomic tests. These studies
show that the cost and time burdens of orthogonal confirmation
testing can be focused on a carefully chosen subset of variants
without adverse impacts on test quality or patient safety.
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