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Purpose: Computational documentation of genetic disorders is
highly reliant on structured data for differential diagnosis,
pathogenic variant identification, and patient matchmaking.
However, most information on rare diseases (RDs) exists in
freeform text, such as academic literature. To increase availability of
structured RD data, we developed a crowdsourcing approach for
collecting phenotype information using student assignments.

Methods: We developed Phenotate, a web application for
crowdsourcing disease phenotype annotations through assignments
for undergraduate genetics students. Using student-collected data,
we generated composite annotations for each disease through a
machine learning approach. These annotations were compared with
those from clinical practitioners and gold standard curated data.

Results: Deploying Phenotate in five undergraduate genetics
courses, we collected annotations for 22 diseases. Student-sourced
annotations showed strong similarity to gold standards, with F-

measures ranging from 0.584 to 0.868. Furthermore, clinicians used
Phenotate annotations to identify diseases with comparable
accuracy to other annotation sources and gold standards. For six
disorders, no gold standards were available, allowing us to create
some of the first structured annotations for them, while students
demonstrated ability to research RDs.

Conclusion: Phenotate enables crowdsourcing RD phenotypic
annotations through educational assignments. Presented as an
intuitive web-based tool, it offers pedagogical benefits and
augments the computable RD knowledgebase.
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INTRODUCTION
Background
There are an estimated 6172 rare diseases (RDs) and
approximately 262.9 to 446.2 million RD patients in the
world, yet the paucity of individual diseases and their
phenotypic variability across patients make characterizing
RDs extremely difficult.1 This makes identifying and
treating RD patients a unique challenge, leaving many
without accurate diagnoses and care for extended periods of
time. Recent advancements in computational approaches to
documenting and analyzing genetic disorders have begun
addressing this problem, greatly contributing to the care of
RD patients. Tools such as PhenoTips allow clinicians to
capture structured data about their patients, which can then
be used by Exomiser, Genomiser, and other related tools to
identify genomic variants likely to cause disease.2–4 Other
applications allow users to search diseases associated with

entered phenotypes for various purposes.2,5–7 The Match-
maker Exchange, for example, is used to connect multiple
RD patients and their care providers across the globe by
matching patients’ phenotypic and genomic profiles. This is
helping to identify dozens of novel disease genes, con-
tributing to the diagnosis of hundreds, if not thousands of
patients.6,9–13

These tools, however, rely on thorough and accurate
structured annotations of human diseases and their clinical
representations (phenotypic profiles). Unfortunately, much of
the available information about RD phenotypes currently
exists in freeform text, such as academic literature, and there
is a need to collect more data that characterizes RD
phenotypic profiles using standardized, computable terms.
Building a library of accurate, up-to-date, and standardized
annotations—or associations between specific OMIM/Orpha-
net Rare Disease Ontology (ORDO) diseases and collections
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of HPO phenotypes11—for rare and other genetic disorders
will therefore augment computational knowledge of RDs.
This, in turn, will enhance the potential of automating tasks
such as differential diagnosis, patient matching, and more to
ultimately improve the care of RD patients.
The RD community has converged on the Human

Phenotype Ontology (HPO), a structured and controlled
vocabulary of phenotypes, as the key resource for describing
symptoms of RDs.8 The HPO has a directed acyclic graph
structure, meaning that phenotypes closer to the root of the
HPO are more general (e.g., Abnormality of the nervous
system), while more specific phenotypes (e.g., Absence
seizures) are located further from the root. Synonymous
terms are merged into single concepts. The phenotypes are
hierarchically related based on shared features, such as the
affected body system (e.g., nervous system) or disease type
(e.g., cancer), in parent–child relationships. These relation-
ships are determined mainly through human curation.
Furthermore, each phenotype can be associated with diseases
in OMIM and ORDO catalogs.9,10 Both of these maintain
annotations of rare disorders with HPO terms and, for some
disorders, also record their respective frequencies in the
patient population. Although many of these disease annota-
tions are accurate and comprehensive, some are too broad or
incomplete. For example, Abnormality of the skeletal system
and Abnormal joint morphology are the only two listed
phenotypes for anomalous coracoclavicular joint (OMIM
121350; accessed October 2019). These two phenotypes are
not useful to physicians when diagnosing patients. Rather,
phenotypes such as Shoulder pain and Limited shoulder
movement, labeled with appropriate frequencies, would be
much more helpful.12

Data collection and analysis have been successfully
accomplished in computational medicine and bioinformatics
through crowdsourcing methods in the past. For example,
Phylo is a DNA sequence alignment tool presented as an
online game that over 12,000 players had contributed to at the
time of publication.14 CrowdMed is an online service where
undiagnosed patients can submit clinical information and test
results to be examined by physicians, medical students, and
laypeople around the world. Users can make and receive
diagnostic suggestions, which are rated on their likelihood of
being accurate. An initial study showed that CrowdMed
helped 233 of 391 patients receive a correct diagnosis.15 Some
crowdsourcing projects involve students in the process of data
collection, providing them with pedagogical benefits while
rapidly gathering data. One such project is MetaSUB, a
crowdsourcing initiative for the mapping of urban environ-
ment metagenomes, particularly in mass transit vehicles and
facilities.16,17 MetaSUB incorporates educational outreach by
involving students in collecting samples, allowing them to
learn about the microbiome of their city’s public transit
system.
The success of such crowdsourcing projects motivated our

use of similar techniques for improving RD annotations.
Methods such as automated text mining of disease annotations

from medical literature can be error prone, while manual
curation by experts is expensive and time consuming. In this
project, we implement crowdsourcing in a classroom setting as
a method of collecting disease annotations. By analyzing
annotations contributed by nonexperts (specifically, students
enrolled in undergraduate genetics courses) with a machine
learning (ML) approach, we show that it is possible to
construct composite annotations for genetic diseases that are
comparable, both quantitatively and qualitatively, with those
produced by experts such as clinical geneticists, genetic
counselors, and RD researchers.

MATERIALS AND METHODS
Phenotate web application
We built Phenotate (phenotate.org), a web application for
the collection and curation of disease annotations. Users
with various levels of medical expertise can submit
annotations through a simple user interface. While it can
be used by individuals such as RD patients and citizen
scientists, we designed the application primarily for
deployment in classroom settings. Course instructors can
create annotation exercises for students to complete, then
review, grade, and comment on the students’ annotations.
Students use the feedback to augment their knowledge in
medical genetics.
Phenotate users first create an account designated as either

expert (e.g., genetics clinicians, researchers, and course
instructors) or nonexpert (e.g., students and laypeople).
A user can receive an expert account upon sign-up by
entering a numeric code distributed to verified individuals, or
after their account is made by requesting an upgrade via their
Dashboard. The Phenotate user interface varies depending on
the user’s account type.
Once they have obtained an account, users can create and

submit annotations using the annotator tool (Fig. 1a). To do
so, users select a disease from the OMIM or ORDO catalog
using a search bar on their Dashboard or in My Annotations
(accessed from a menu in the left sidebar). Student users can
access their annotation assignments by selecting “Join a
Class” and entering a class code provided by their instructor.
Once a disease has been selected for annotation, users
can add, remove, and modify phenotypes. When adding
phenotypes, the annotator interface provides a dynamic
phenotype list that continuously updates as the user types. It
is powered by the PhenoTips3 search engine and allows users
with various levels of medical expertise to enter annotations
without knowing the precise name of the phenotype in the
HPO. The annotator interface also provides a phenotype
browser that allows users to select an ancestor or child of
any given HPO phenotype (Supplementary Fig. 1). In an
annotation, each phenotype is categorized by system, and
has modifiable attributes, including whether it is observed or
absent, its frequency, age of onset, pace of progression,
severity, temporal pattern, spatial pattern, and laterality.
Users can also link references, such as journal articles, to the
phenotypes. Students annotating diseases as part of a course

EDUCATION REPORT CHANG et al

12
34

56
78

9
0(
):,
;

1392 Volume 22 | Number 8 | August 2020 | GENETICS in MEDICINE

http://phenotate.org


exercise are required to associate each phenotype with one or
more references.
Expert users can view annotations submitted by other experts,

create course assignments, access annotations submitted by
their students, compare them against standard annotations, and
assign scores using the interface shown in Fig. 1b.

Data collection and annotation scoring
The vast majority of annotations on Phenotate to date were
collected through course assignments given by instructors
who agreed to use Phenotate in their genetics courses as extra
credit activities. Students were asked to use a combination of
their prior knowledge and literature searches to complete

a

b

Fig. 1 The Phenotate annotator and comparator user interfaces. (a) The Phenotate annotator user interface is available to all users. The user adds
phenotypes (left) and references (right) using the orange bar at the bottom of the interface. Clicking on a phenotype allows the user to change its age of
onset and frequency. (b) Course instructors can compare phenotypes in a student annotation (left) against a standard annotation (right) and grade the
student annotation via a comparator tab on the expert user interface. Each phenotype has a label indicating the entered frequency and age of onset. Scoring
options and a comment box are available for feedback to the student.
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their assigned annotations. We did not inform students about
publicly available HPO annotations in OMIM or ORDO;
rather, we emphasized the importance of using and citing the
medical literature. We also gave them the option to annotate
pertinent negative phenotypes, or those that are distinctively
absent in a given disease.
Instructors were given the option to grade student

annotations by comparing them against pre-existing high-
quality HPO annotations or curated annotations (hereinafter
termed “gold standard annotations,” see next section) if they
were available. Phenotate features automatic grading using the
Jaccard index, which is defined as the size of intersection of
two sets divided by the size of the union. This index is applied
between the list of phenotypes selected by the student and
their ancestors (R), and the list of phenotypes in the standard
annotation (Q).

g ¼ R \ Qj j= R∪Qj j
We chose to include ancestors because HPO concepts have

is-a relationships between child and parent, meaning that a
child implies all of its ancestors. This Jaccard measure was
selected based on its success in previous work.5 Although
instructors can adjust the students’ scores manually for
grading purposes, the automatically generated score was used
for data analysis in this paper.
To evaluate student annotations we relied, in part, on a set

of gold standard annotations created by a genetic counselor
(B.J.). These comprehensive annotations for the diseases were
created under consideration from both existing databases and
medical literature.

Data analysis
Generating composite annotations
First, n students each annotated two diseases: one scored
against standard annotations (known) and one unscored
(target). Based on the accuracy of the students’ known
diseases annotations, we generated composite annotations for
the target diseases. First, we removed any pertinent negative
phenotypes from all disease annotations. For each remaining
phenotype, we added its ancestor phenotypes from the HPO,
up to but excluding Phenotypic abnormality. We represented
the n annotations of a given disease as a binary p × n matrix
M(disease), where p is the number of all unique phenotypes
selected across all students, including aforementioned ances-
tors, that appear in any of the n annotations. Each matrix
element contained either a (+1) or a (−1), indicating that the
student did or did not include that phenotype in their
annotation, respectively.
As part of the model learning process, we define the

following four equations:

Sði;j;kÞ ¼ 1=ð1þ e�ðjþk ´ iÞÞ
Gðscored diseaseÞ ¼ R \ Qj j= R∪Qj j

CðdiseaseÞ ¼ MðdiseaseÞ ´Gðscored diseaseÞ
Y ðdiseaseÞ ¼ SðCðdiseaseÞ; θ0; θ1Þ

where S() is the sigmoid transformation applied to each
element in the vector input, G is a vector of length n
containing the Jaccard score for each student’s known disease
annotation, M() is the binary p × n matrix of a given disease,
C() is a length-p composition annotation vector, and Y() is
the predicted binary annotation. The sigma variables, θ0 and
θ1, are weight parameters that are learned throughout the
model training process. It is important to note that G is the
Jaccard score for the students’ known disease annotations in
both training and test phases. For all other variables, the
known disease values are used for training, while target
disease values are used for generating target annotations.
We trained a linear classification model on the scored

disease that takes C(scored_disease) as input, and learns to predict
the binary annotation Y(scored_disease) by learning a slope (θ0)
and bias vector (θ1). The model parameters outputted after
training may not be optimal due to potentially converging to a
local optimum. We thus trained the model five times for each
scored disease, and chose the parameters that yielded the
highest training F1 score. We then applied the vector
G(scored_disease) as well as the learned weight parameters θ0
and θ1, to generate the composite annotation C(target_disease)

and predict a binary annotation set Y(target_disease).
We trained the model on the scored disease with the Adam

optimizer using TensorFlow,18 version 1.9.0-rc0 (Python
2.7.15rc1 on Ubuntu 18.04 LTS), for 100,000 epochs. A sigmoid
cross-entropy loss was used as the training cost function
between the predicted annotation Y and the standard annota-
tion. This process is summarized in Supplementary Fig. 2.

Evaluating composite annotations
We generated a composite annotation for each target disease
from a given known disease annotated by the same students.
If multiple known diseases were available for a target disease,
the known-target disease pair with the highest number of
student annotations was selected. In the event of a tie, the
known disease with the higher quality standard annotation
source was selected. A composite annotation for a disease is
composed of the disease’s phenotypes and their ancestors (see
“Generating Composite Annotations”). We evaluated each
composite annotation by taking the F1 score of the annotation
when compared against the standard annotation, including all
of the selected phenotypes’ ancestors in the HPO.

RESULTS
Data collection
The Phenotate application has been deployed in a total of five
classes, with annotations ranging from 11 to 87 submissions per
class. Across all five classes, we collected student annotations for
22 diseases. These data are summarized in Table 1.
The largest deployment of Phenotate to date was in a course

assignment for the second-year undergraduate molecular
genetics class MGY200 (Current Topics in Molecular
Genetics and Microbiology) at the University of Toronto
during spring semester 2017. We focused our analysis on this
class, as it provided the most stable machine learning (ML)
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model. As a bonus exercise, 87 students annotated three
diseases: Marfan syndrome (MFS, OMIM 154700), Friedreich
ataxia 1 (FRDA, OMIM 229300), and presynaptic congenital
myasthenic syndrome 6 (CMS6, OMIM 254210). Each
student was assigned one disease as the known and one as
the target. As these were bonus assignments, the students

were given several weeks to complete their two assigned
annotations. For each disease pair, students’ annotations of
the known disease were first scored against the standard
annotation of that disease using the Jaccard index. These
scores determined the weighting of the students’ annotations
for the target disease when generating the composite

Table 1 Disease annotations generated by a set of courses coordinated through Phenotate.

Course Disease ID Number of

annotations

Gold standard Allotted time

MGY200 (1) CMS6: presynaptic congenital myasthenic syndrome 6 OMIM 254210 74 Expert clinicians,

genetic counselor

Several weeks

FRDA: Friedreich ataxia 1 OMIM 229300 77 Expert clinicians,

genetic counselor

MFS: Marfan syndrome OMIM 154700 87 Expert clinicians,

genetic counselor

BIO476 (2) AFAP: attenuated familial adenomatous polyposis ORPHA 220460 24 ORDO or OMIM 1 week

ALS4: juvenile amyotrophic lateral sclerosis 4 OMIM 602433 22 Student volunteer

CLASSIC: classic homocystinuria ORPHA 394 13 ORDO or OMIM

CMS6: presynaptic congenital myasthenic syndrome 6 OMIM 254210 24 Expert clinicians,

genetic counselor

DMP: distal myotilinopathy ORPHA 98911 22 N/A

DVA: chronic diarrhea with villous atrophy ORPHA 1670 23 N/A

FRDA: Friedreich ataxia 1 OMIM 229300 22 Expert clinicians,

genetic counselor

FTLD: frontotemporal lobar degeneration with TDP43

inclusions

OMIM 607485 18 Expert clinicians

HCU-MTHFR: homocystinuria due to methylene

tetrahydrofolate reductase deficiency

ORPHA 395 13 N/A

HSAN IE: hereditary sensory neuropathy type IE OMIM 614116 11 Expert clinicians

JPS: juvenile polyposis syndrome ORPHA 2929 11 N/A

LGMD2B: limb-girdle muscular dystrophy OMIM 253601 23 Expert clinicians

LODM-MG: late-onset distal myopathy,

Markesbery–Griggs type

ORPHA 98912 21 N/A

MFS: Marfan syndrome OMIM 154700 21 Expert clinicians,

genetic counselor

MTPD: mitochondrial trifunctional protein deficiency ORPHA 746 23 ORDO or OMIM

NPD-B: Niemann–Pick disease type B ORPHA 77293 18 ORDO or OMIM

SMARD1: spinal muscular atrophy with respiratory

distress type 1

ORPHA 98920 22 ORDO or OMIM

SPG2: X-linked spastic paraplegia OMIM 312920 22 Expert clinicians

TMD: tibial muscular dystrophy ORPHA 609 22 ORDO or OMIM

WILSON: Wilson disease ORPHA 905 23 ORDO or OMIM

BIOL434 (3) ALS: amyotrophic lateral sclerosis ORPHA 803 23 Student volunteer Several weeks

WILSON: Wilson disease ORPHA 905 23 ORDO or OMIM

HMB311 (4) ALS: amyotrophic lateral sclerosis ORPHA 803 14 Student volunteer Several weeks

CLASSIC: classic homocystinuria ORPHA 394 14 ORDO or OMIM

MD: muscular dystrophy ORPHA 98473 14 N/A

WILSON: Wilson disease ORPHA 905 14 ORDO or OMIM

LMP408 (5) ALS4: juvenile amyotrophic lateral sclerosis 4 OMIM 602433 11 Student volunteer 50 minutes

FTLD: frontotemporal lobar degeneration with TDP43

inclusions

OMIM 607485 11 Expert clinicians

Courses included University of Toronto MGY200 (Current Topics in Molecular Genetics and Microbiology), LMP408 (Genetic Modeling of Human Development and Dis-
ease), and HMB311 (Laboratory in Fundamental Genetics and its Applications), as well as University of Waterloo BIOL434 (Human Molecular Genetics). Gold standard
annotations came from a number of sources, including expert clinicians, genetic counselor (B.J.), student volunteer (outside of course), and ORDO or OMIM. Allotted
time indicates the length of time students were given to complete two disease annotations.
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annotation. Fifty percent of the bonus grade received by
students for this exercise was based on the completion of the
assignment, and 50% on the accuracy of the annotations, as
evaluated by the Jaccard coefficient, with a small linear
correction.
We likewise collected a number of annotations from clinical

geneticists as part of a neuromuscular disease workshop held
in December 2014 in Newcastle, UK. Geneticists were given
approximately two hours to complete annotations for several
disorders. We were able to collect one, two, and three
annotations from clinical geneticists for MFS, FRDA, and
CMS6, respectively.

Evaluating composite annotations for CMS6, FRDA, and
MFS
With the data submitted by all students in MGY200, we
generated composite annotations for CMS6, FRDA, and MFS.
The F1 scores of every composite annotation at 50%
probability threshold, along with other metrics including
areas under the receiver operating characteristic curves
(AUROCs), are listed in Table 2. Receiver operating
characteristics (ROC) curves are shown in Supplementary
Fig. 3. Composite annotations are in Supplementary File 1.
We then compared the Jaccard similarity score of each

target disease for our model’s predicted composite annota-
tions with those created by a genetic counselor (B.J.), and the
clinical geneticists from the neuromuscular disease workshop.
The Jaccard score between the model’s predictions and the
genetic counselor's annotations of CMS6 was 0.430. Between
the model’s predictions and the workshop annotations, the
score was 0.381, and for the genetic counselor's annotations
against the clinical geneticists’ annotations, it was 0.299. For
FRDA, the Jaccard scores for these same pairings were 0.611,
0.571, and 0.305, respectively. Finally, for MFS, the Jaccard
scores were 0.652, 0.374, and 0.332, respectively. For all three
diseases, our model’s predicted annotations had a much
stronger Jaccard score against the genetic counselor's annota-
tions than against those collected at the workshop.
A closer examination of the composite annotations revealed

that they included a number of phenotypes not listed in some
or all of the clinical geneticists’ annotations. Ectopia lentis and
Dysarthria—frequent and clinically important phenotypes of
MFS and FRDA, respectively19,20—are in many students’
annotations as well as the composite annotations, but not in
those by clinical geneticists. Furthermore, the FRDA compo-
site annotation is more specific and correct regarding the
symptom Gait ataxia, which is listed in the geneticists’
annotations as Sensory ataxia or simply Ataxia. Apnea and
Bulbar palsy, possible symptoms of CMS6,21 are listed in the
composite annotations but only occur in one of the three
clinical geneticists’ annotations each.
Discrepancies between student and professional annotations

may be accounted for by several factors. Ectopia lentis may have
been excluded as the clinical geneticists’ subspecialty was
neuromuscular disorders as opposed to those of the connective
tissue. Dysarthria is relatively nonspecific in ataxia patients, and

so may not have been suggested for this reason. Furthermore,
clinical geneticists were asked to work from memory, while
students had access to additional resources and were required to
include citations to medical literature for their assignments.
Students were also not under time constraint, and had several
weeks to complete the annotations.

Subsampling student annotations
To test the reproducibility of the ML model with different
sample sizes, we performed subsampling analysis on disease
annotations from the MGY200 class. From the original 73
usable annotations collected in this class, we trained the
model and tested it using randomly selected subsamples of
annotations. Ten subsample sizes were attempted, ranging
from 7 annotations (10%) to all 73 annotations (100%), in
increments of 7 (10%). We ran the experiment ten times per
subsample size, and took an average of the results to account
for different biases that each group of annotations might
contain.
Higher subsample sizes performed slightly better than lower

sizes. Nevertheless, the F1 scores of our composite annota-
tions only dropped by approximately 10–15% when using
10% of the data set compared with the full data set. Therefore,
although larger annotation samples are preferred, our model
can still perform relatively well with a limited number of
annotations. Furthermore, the model scales well and con-
tinues to improve performance as the sample size increases.
Further data collection and testing will need to be done to
establish convergence and saturation points of the model
performance, which will be the focus of the next stage of this
study. Average F1 scores of each subsample size for each
scored-target disease pair are shown in Fig. 2.

Student grade distributions
One goal of having students and nonexperts annotate diseases
on Phenotate is to provide a learning experience to them,
helping expand their research skills and genetics knowledge.
The students were not expected to have any familiarity with
the specific RDs before the class. To illustrate the knowledge
each student gained throughout the annotation process we
generated histogram plots of the sensitivity and specificity of
student annotations of target diseases against the gold
standard annotation that exists within Phenotate. In the
original class of MGY200, the students rarely labeled
irrelevant concepts, with 100% of students achieving a
specificity score above 50% for every disease. However, there
was some variability in the completeness of the annotations,
with 49–94% of students achieving a sensitivity score above
50% for the three diseases (Fig. 3). Specifically, for MFS only
5% of students submitted nearly complete annotations
(80–100% specificity), while for CMS6 all students (100%)
had nearly complete annotations.

Annotation of additional diseases
We also deployed Phenotate in four additional classes: three
at the University of Toronto and one at the University of
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Waterloo. Through these classes, we collected student
annotations for 19 additional diseases and generated compo-
site annotations for all 19. The assignments were typically
done as homework, with the exception of one class where
assignments were done in class. For the classes in which this
was given as homework, students had one week to complete
two disease annotations. For in-class assignments, students
had 50 minutes to complete two disease annotations. All work
was graded using the automated scoring mechanism.
All metrics are shown in Table 2, and ROC curves are

presented in Supplementary Figs. 4–7. Grade distribution
histograms for four classes can be found in Supplementary

Figs. 8–11. In general, we obtain high AUROCs (0.8–0.9)
across most disease combinations. We present F1 scores and
other metrics at 50% probability threshold for each pheno-
type. This threshold can be tweaked to obtain better F1 scores
or to limit the composite annotation to only those phenotypes
that are selected most often, depending on the specific
downstream application.
Within the 22 total diseases that students across all five

classes annotated, we created composite annotations for six
diseases with no gold standard annotations at the time of
analysis: distal myotilinopathy (DMP), muscular dystrophy
(MD), chronic diarrhea with villous atrophy (DVA),

Table 2 Results for all classes where Phenotate was deployed.

Class Target disease Scored disease Number of annotations Precision Recall F1 score Accuracy AUROC

MGY200 (1) CMS6 MFS 73 51.65% 67.14% 58.39% 84.77% 86.20%

FRDA MFS 73 78.30% 68.60% 73.13% 85.68% 90.63%

MFS FRDA 73 94.61% 80.20% 86.81% 89.09% 95.34%

BIO476 (2) AFAP LGMD2B 23 91.49% 39.09% 54.78% 68.86% 84.53%

ALS4 CMS6 22 90.91% 54.05% 67.80% 88.27% 86.63%

CLASSIC CMS6 13 95.65% 31.21% 47.06% 69.44% 78.35%

CMS6 AFAP 24 53.85% 76.71% 63.28% 81.69% 88.74%

DMP SPG2 22 - - - - -

DVA CMS6 23 - - - - -

FRDA CMS6 22 94.64% 46.49% 62.35% 83.20% 92.52%

FTLD CMS6 18 65.22% 60.00% 62.50% 89.47% 89.22%

HCU-MTHFR CMS6 13 - - - - -

HSAN IE CMS6 11 50.00% 44.00% 46.81% 79.76% 76.78%

JPS HSAN 1E 11 - - - - -

LGMD2B CMS6 23 51.85% 40.00% 45.16% 86.97% 81.69%

LODM-MG MFS 21 - - - - -

MFS CMS6 21 100.00% 40.45% 57.60% 67.88% 87.92%

MTPD CMS6 23 84.44% 54.29% 66.09% 88.60% 94.06%

NPD-B FTLD 18 69.57% 55.17% 61.54% 82.22% 83.85%

SMARD1 FRDA 22 68.99% 78.07% 73.25% 83.33% 90.85%

SPG2 CMS6 22 80.00% 46.38% 58.72% 79.07% 79.21%

TMD ALS4 22 36.84% 50.00% 42.42% 86.13% 86.21%

WILSON CMS6 23 63.64% 40.78% 49.70% 82.40% 77.92%

BIOL434 (3) ALS WILSON 23 37.70% 62.16% 46.94% 79.03% 78.16%

WILSON ALS 23 55.88% 60.64% 58.16% 77.72% 80.15%

HMB311 (4) ALS WILSON 14 37.74% 62.50% 47.06% 71.52% 73.16%

CLASSIC ALS 14 94.29% 52.38% 67.35% 76.30% 72.50%

MD ALS 14 - - - - -

WILSON ALS 14 67.65% 58.97% 63.01% 80.29% 75.00%

LMP408 (5) ALS4 FTLD 11 71.88% 62.16% 66.67% 81.75% 85.21%

FTLD ALS4 11 50.00% 36.00% 41.86% 79.34% 86.65%
The precision, recall, F1 score, accuracy (all at 50% probability thresholds), and AUROCs of composite annotations of the target disease are indicated. Composite anno-
tations were generated with sigmoid parameters and Jaccard index scores obtained from annotations of the corresponding scored disease. Dashes indicate a gold stan-
dard annotation was not available at the time of analysis.Courses included University of Toronto MGY200 (Current Topics in Molecular Genetics and Microbiology),
LMP408 (Genetic Modeling of Human Development and Disease), and HMB311 (Laboratory in Fundamental Genetics and its Applications), as well as University of
Waterloo BIOL434 (Human Molecular Genetics).
AFAP attenuated familial adenomatous polyposis, ALS amyotrophic lateral sclerosis, ALS4 juvenile amyotrophic lateral sclerosis 4, AUROC area under the receiver operat-
ing characteristic curve, CLASSIC classic homocystinuria, CMS6 presynaptic congenital myasthenic syndrome 6, DMP distal myotilinopathy, DVA chronic diarrhea with vil-
lous atrophy, FRDA Friedreich ataxia 1, FTLD frontotemporal lobar degeneration with TDP43 inclusions, HCU-MTHFR homocystinuria due to methylene tetrahydrofolate
reductase deficiency, HSAN IE hereditary sensory neuropathy type IE, JPS juvenile polyposis syndrome, LGMD2B limb-girdle muscular dystrophy, LODM-MG late-onset dis-
tal myopathy, Markesbery–Griggs type, MD muscular dystrophy, MFS Marfan syndrome, MTPD mitochondrial trifunctional protein deficiency, NPD-B Niemann–Pick dis-
ease type B, SMARD1 spinal muscular atrophy with respiratory distress type 1, SPG2 X-linked spastic paraplegia, TMD tibial muscular dystrophy, WILSON Wilson disease.
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homocystinuria due to methylene tetrahydrofolate reductase
deficiency (HCU-MTHFR), juvenile polyposis syndrome
(JPS) and late-onset distal myopathy, Markesbery–Griggs
type (LODM-MG). Since then, annotations for HCU-
MTHFR, DMP, JPS, and LODM-MG were made available
at ORDO from consultation with RD experts and literature
searches. We compared our annotations with those curated by
ORDO and found that our composite annotations often
included either the most frequent phenotypes in the ORDO

annotation or their parents. For DMP, we successfully
identified Peripheral neuropathy, as well as the parents or
siblings of 5 of the 12 phenotypes classified as either very
frequent or frequent. We also identified an additional five
very frequent or frequent ORDO phenotypes for DMP;
however, the weighted scores of these phenotypes were below
our F1 cutoff of 0.500. Our composite annotation for JPS
contained direct matches to four of the eight most frequent
phenotypes listed on ORDO, as well as the parents of the
remaining four. For LODM-MG, our annotations included
the parents of two of three frequent phenotypes, but we did
not have a match for Fatigable weakness of distal limb muscle
or its parent terms. All of our annotations also included
several phenotypes labeled as “occasional” or “rare” in the
ORDO annotations of these three diseases.
Overall, our predictions had more annotated terms than

ORDO (46 versus 29, on average over these three diseases).
However, these include some high-level terms (e.g., abnorm-
ality of the nervous system), which may not be explicitly
reported in ORDO. The overall high precision of Phenotate
annotations for these disorders (0.81, 0.98, and 0.65,
respectively, see Supplementary Table 1) illustrates that in
general Phenotate does not significantly predict extraneous
phenotypes.

Evaluation of Phenotate for clinical applications
To further evaluate the accuracy and completeness of
composite annotations generated using Phenotate, we
designed an experiment to compare composite annotations
of 20 diseases to their OMIM/ORDO counterparts. Within
these 20, we included the 4 diseases for which ORDO/OMIM
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ataxia 1 (FRDA), and presynaptic congenital myasthenic syndrome 6 (CMS6) in University of Toronto course MGY200 (Current Topics in
Molecular Genetics and Microbiology). The histogram plot contains five equidistant bins between 0.0 and 1.0. The x-axis of each graph shows the
sensitivity/specificity of the students’ scores, while the y-axis shows a count of how many students fall within each bin. All students showed high specificity
(>0.5) across all disorders; however, the sensitivity varied by disorder.
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annotations were made available only after the composite
annotations were generated (HCU-MTHFR, DMP, JPS, and
LODM-MG). We then asked two clinical geneticists (T.B.B.
and S.L.S.) to identify the diseases, while blinding them to the
annotation sources. Each clinician was given ten annotations
from both sources, and for any given disease one clinician
received the composite annotation, while the other received
an OMIM/ORDO annotation. The clinicians were asked to do
this without referencing HPO, OMIM, or ORDO databases.
For readability, we omitted ancestor phenotypes from each
annotation. We also asked clinicians to indicate, on a scale of
1–5, how certain they were of their identifications.
The clinicians were able to identify 13 diseases using

Phenotate composite annotations, and 15 diseases using
OMIM/ORDO annotations. The clinicians were able to more
accurately diagnose four diseases using Phenotate composite
annotations, and six using OMIM/ORDO annotations. On
the remaining ten diseases, they performed equally. Impor-
tantly, the clinicians used the composite annotations to either
precisely diagnose or identify the correct subgroup for three of
four diseases that did not previously have OMIM/ORDO
annotations (JPS, LODM-MG, and HCU-MTHFR). For
LODM-MG and HCU-MTHFR, clinicians performed equally
well when using either the composite or OMIM/ORDO
annotations, while they were only able to successfully
diagnose JPS using its composite annotation. When asked
about the confidence of their diagnoses, the clinicians had
higher overall certainty when using OMIM/ORDO across the
entire set of diseases (Phenotate average certainty: 4.05;
OMIM/ORDO average certainty: 4.55; p= 0.045, Student’s t
test). Nonetheless, it should be noted that some diseases were
particularly difficult to identify regardless of the annotation
source, including DMP and mitochondrial trifunctional
protein deficiency (MTPD). These diseases are ultrarare and
primarily seen by subspecialist geneticists, contributing to the
difficulty of their identification. All results are summarized in
Supplementary Table 2.
To gain insight into how Phenotate may be improved for

clinical use, we also asked clinical geneticists to directly
compare annotations from Phenotate and OMIM/ORDO
for six diseases (attenuated familial adenomatous polyposis
[AFAP], amyotrophic lateral sclerosis [ALS], FRDA, JPS,
MFS, and Wilson disease [WILSON]). Clinicians were given
two annotations for the same disease and, without knowing
the sources of the annotations, were asked to select the one
that more accurately described the disease. Each clinician
was asked to do this for three different diseases. Overall,
clinicians showed equal preference for Phenotate and
OMIM/ORDO (three disorders each). They cited preferring
shorter annotations with more specific and accurate
descriptions, particularly for phenotypes that help differ-
entiate one disease from others similar to it. For example, in
the case of JPS, the clinician felt that the ORDO annotation
was inaccurate and presented far too many phenotypes that
were either extremely rare or erroneous. This made the
ORDO annotation difficult to use, particularly compared

with the more concise and specific composite annotation
from Phenotate.

DISCUSSION
Phenotate allows for collecting annotations of genetic diseases
with HPO phenotypes. We successfully implemented Phenotate
in five classes with 11–87 students each, and demonstrated that,
by using a large number of annotations from the same
individuals for two diseases, it is possible to generate a
composite annotation for one disease given an existing standard
annotation for the other. We showed that, for MFS and FRDA,
the composite annotations we generated are higher in quality
than individual annotations created by expert clinicians. This
comparison pits data generated by undergraduate students with
varied levels of genetics knowledge against those of geneticists
with extensive medical training and clinical experience (albeit
with limited time constraints). For no disease under considera-
tion did the students collectively perform worse than the
geneticists. We anticipate that future uses in courses and
training programs will involve students annotating progressively
rarer diseases for which we do not have sufficient computational
annotations. Additional avenues that can be explored in future
work include scaling up and integration of Phenotate into
general purpose crowdsourcing using means such as Amazon
Mechanical Turk.
The process of generating composite annotations depends

on the ML method we developed that weighs students’
annotations for one disease based on their scores from
another disease with a standard known annotation. The
method comprises training two parameters for a sigmoid that
determines the weighting of scores. While this implementa-
tion performed well, a clear limitation is that we are using a
linear classifier only, which would fail to learn any nonlinear
relationships within the data set. A more complex model can
also be implemented in the future to allow for various types of
linear and nonlinear relationships to exist within the analysis,
allowing for a more fine-tuned learning approach.
We designed Phenotate as a crowdsourcing annotation tool

that has a strong educational component, with its primary
deployment setting being university genetics classrooms.
Phenotate gives genetics students an opportunity to learn about
rare disease phenotypes associated with rare genetic diseases.
Phenotate also encourages its student users to explore the
relevant medical and scientific literature, allowing them to
examine these diseases and their associated phenotypes in
various clinical and research-based contexts. This, in turn, may
help them understand how specific phenotypes relate to
molecular and genetic components of particular diseases. The
high sensitivity and specificity of student annotations show that
they are successfully using various sources to research assigned
diseases, and correctly applying the knowledge they obtained to
create accurate annotations.
Our work shows that Phenotate is an effective platform for

crowdsourced curation of structured RD annotations that are
comparable with those created by medical professionals. We
show that clinicians can use the composite annotations
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generated via Phenotate to arrive at a patient diagnosis. They
do so with accuracy comparable with that of annotations from
sources such as OMIM and ORDO. Composite annotations
also allowed for a diagnosis for several diseases that were
recently unannotated, suggesting that Phenotate can be used
to generate novel annotations for RDs. Clinicians did,
however, have more certainty in their diagnoses when using
OMIM/ORDO annotations due to higher specificity of the
annotations included. We will use this feedback to refine
Phenotate in future courses.
Structured data can be applied in computational methods

related to diagnostics, patient matching, and more to improve
RD patient care, yet such data are not often available for many
RDs. The annotations compiled through Phenotate will allow
for such computational approaches to be used for the
documentation and analysis of various RDs. This could be
done through integration with the HPO, which has high
interoperability with other ontological tools and annotation
databases. It also takes a collaborative approach to increasing
access to disease ontology and phenotype data. Incorporating
Phenotate annotations into the HPO will increase the availability
of complete sets of disease phenotype annotations for RDs. The
accuracy and robustness of such annotations will help refine the
characterization of RDs and guide patient diagnostics.

SUPPLEMENTARY INFORMATION
The online version of this article (https://doi.org/10.1038/s41436-
020-0812-7) contains supplementary material, which is available
to authorized users.
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