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Purpose: Variants in the ABCA4 gene are causal for a variety of
retinal dystrophy phenotypes, including Stargardt disease (STGD1).
However, 15% of patients who present with symptoms compatible
with STGD1/ABCA4 disease do not have identifiable causal ABCA4
variants. We hypothesized that a case–control collapsing analysis in
ABCA4-negative patients with compatible symptoms would provide
an objective measure to identify additional disease genes.

Methods: We performed a genome-wide enrichment analysis of
“qualifying variants”—ultrarare variants predicted to impact
protein function—in protein-coding genes in 79 unrelated cases
and 9028 unrelated controls.

Results: Despite modest sample size, two known retinal dystrophy
genes, PRPH2 and CRX, achieved study-wide significance (p <
1.33 × 10−6) under a dominant disease model, and eight additional
known retinal dystrophy genes achieved nominal significance (p <

0.05). Across these ten genes, the excess of qualifying variants
explained up to 36.8% of affected individuals. Furthermore, under a
recessive model, the cone–rod dystrophy gene CERKL approached
study-wide significance.

Conclusion: Our results indicate that case–control collapsing
analyses can efficiently identify pathogenic variants in genes in
non-ABCA4 retinal dystrophies. The genome-wide collapsing
analysis framework is an objective discovery method particularly
suitable in settings with overlapping disease phenotypes.
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INTRODUCTION
The ABCA4 gene is the most widely studied gene involved in
retinal/macular dystrophies, with pathogenic variants in this
adenosine triphosphate (ATP)-binding cassette transporter
linked to a variety of phenotypes. These include recessive
Stargardt disease (STGD1) (ref. 1), cone–rod dystrophy
(CRD),2,3 bull’s eye maculopathy (BEM),4 pattern-like
dystrophy (PD),4 and retinitis pigmentosa (RP),2 collectively
now referred to as “ABCA4 disease.” Previous studies have
identified over 800 disease-associated ABCA4 variants,5 the
most frequent of which are detected in ~20% of STGD1
patients of European descent.6 Some variants are seen at
much higher frequencies in other ethnic groups.7–9 In about
15% of patients with clinical diagnosis compatible with
STGD1/ABCA4 disease, sequencing of the entire ABCA4
gene10 or even the entire genomic locus11 reveals no disease-
associated variants. It is likely that most of these cases
represent STGD1-like phenotypes caused by variants in one

or more other genes.10 The quality of clinical diagnosis is an
important factor in these analyses because the phenotypic
overlap between STGD1, RP, CRD, PD, BEM, macular
dystrophy (MD), and other types of retinal dystrophy can
be substantial. However, the unequivocal diagnosis is achieved
only by determining the genetic causality of the disease
phenotype. In patients with ABCA4-like phenotypes and no
causal ABCA4 variants, uncovering the genetic cause of
disease is not always straightforward.
One promising approach to identifying disease-causing

genetic variants is exome sequencing (ES), which has been
used to study many retinal dystrophies, including STGD1, RP,
and CRD.12 Most of these studies have examined families or
small numbers of sporadic cases. In both the familial and
sporadic frameworks, searching for variants in known disease
genes is the primary method of analysis, though novel retinal
disease genes, such as RDH11 (ref. 13) have also been
implicated.
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The increasing availability of ES data has allowed for the
development of population-genetic approaches to detect
disease associations in case–control, rather than familial,
settings. For example, collapsing analyses test the associa-
tion of the burden of rare, presumably deleterious variants
between cases and controls, generally on a genic level. In
collapsing analysis studies, these “qualifying variants” are
considered to have identical effects on gene function
regardless of where they occur in the gene. In recent years,
collapsing studies have successfully pinpointed disease
genes in various contexts, including amyotrophic lateral
sclerosis (ALS)14 and idiopathic pulmonary fibrosis.15 It has
also been shown that the collapsing analysis framework can
identify epileptic encephalopathy genes implicated using
trio de novo mutation analysis.16 The success of collapsing
analysis thus far suggests that it could be a useful method
for agnostically exploring associations in rare diseases, when
causal variants are likely to be highly penetrant but very
rare. Additionally, collapsing analysis offers an objective
measure of statistical enrichment of putatively causal
variants in genes in which disease associations are
observed—a feature that we used in this study to catalog
genes that are most important to interrogate in ABCA4-
negative STGD1-like patients.
We implemented exome-wide gene-based collapsing ana-

lysis comparing ES data from 79 patients against a large
cohort of unrelated control individuals to identify the genes
contributing to disease status. Importantly, all 79 affected
individuals were diagnosed with phenotypes compatible with
ABCA4 disease but were all negative for any disease-causing,
pathogenic variants in the ABCA4 locus, which eliminates the
most likely genetic explanation for the observed phenotypes.
Despite the modest sample size, under a dominant collapsing
analysis model we identified two known retinal disease genes
achieving study-wide significance (p < 1.33 × 10−6) and an
additional eight known retinal disease genes at nominal
significance (p < 0.05). Under a recessive model, there were no
genes at study-wide significance, but the known CRD gene
CERKL was the top hit with a p value of 3.29 × 10−5. These
results demonstrate the power of collapsing analysis to detect
disease associations even with extremely limited sample size.
Furthermore, we have shown that, even after discounting the
possible effects of known ABCA4 pathogenic variants, the
diverse phenotypes of the patients in this study are potentially
explainable by rare variants in other known retinal disease
genes.

MATERIALS AND METHODS
Subjects and sequencing
We started with ES data generated from 96 cases and 14,090
controls, with controls selected from other Institute for
Genomic Medicine (IGM) studies. Controls were known to
not have ophthalmic disease, liver disease, kidney disease,
metabolic disease, or ALS. We collected written informed
consent at the time of recruitment. Patient collection and
sharing of anonymized specimens for research was approved

by site-specific institutional review boards and ethics
committees.
For the cases, patients whose phenotypes were compatible

with those caused by pathogenic variants in the ABCA4 gene
(STGD1, CRD, PD, BEM, RP-like) were recruited and
clinically examined during a 20-year period at Columbia
University. All study-related procedures adhered to tenets set
out in the Declaration of Helsinki. Patients presenting with
ABCA4 disease were enrolled into Columbia University
Medical Center–approved protocol #AAAI9906 after provid-
ing written consent at the conclusion of a complete
ophthalmic exam by a retina specialist. Clinical determination
of ABCA4 disease phenotype was based on the assessment of
disease features on slit-lamp examination, fundus autofluor-
escence (AF, 488-nm and 787-nm), spectral domain–optical
coherence tomography (SD-OCT), and full-field electroreti-
nogram (ffERG) testing. Table 1 summarizes the criteria by
which patients were initially diagnosed and classified as
exhibiting characteristics consistent with ABCA4 disease.
Disease onset in ABCA4 disease is defined as the decade
within which patients report visual symptoms associated with
their condition. Disease inheritance was determined through
patient-reported family histories or through clinical exams if
relatives were available. The clinical manifestation of ABCA4
disease is profoundly heterogeneous and can often exhibit
phenotypic overlap with other inherited retinal conditions
such as PD, BEM, occult macular dystrophy, and CRD,
among others. Clinically ubiquitous features most often
associated with ABCA4 disease include increased levels of
fundus autofluorescence, presence of yellow flecks across the
posterior pole, progressive but confined chorioretinal atrophy,
and peripapillary sparing. Variation in these fundus char-
acteristics provided the most significant means by which
patients were categorized. The presence of flecks on clinical
exam was indicative of STGD1 or PD but their absence was
not contraindicative, particularly in younger patients. Most
diagnoses varied in the preservation of cone-specific response
on ffERG testing; however, cases who exhibited reduced rod-
specific relative to cone responses were excluded.
Sequencing of the ABCA4 gene in all cases prior to ES was

performed using the Illumina TruSeq Custom Amplicon
protocol (Illumina, San Diego, CA).10,11 Sequencing of the
entire ABCA4 genomic locus at an average depth of 100× was
performed in some patients using the Illumina TruSeq
Custom Amplicon protocol as described previously.11 Selected
patients were also screened for copy-number variation by
custom array comparative genomic hybridization (aCGH)
arrays (Agilent Technology), in an 8 × 60 K format, as
described previously.11 All cases included in this study did
not carry any possible disease-causing ABCA4 variants and
were subjected to ES as described below.
For ES, all samples were sequenced after exome capture

using SeqCap EZ Exome v2 and SeqCap EZ Exome v3.
Sequencing was performed at multiple sites, but we processed
all data using the alignment and annotation pipeline at the
IGM.
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IGM bioinformatics pipeline
We quality-filtered the raw sequence data using CASAVA
(Illumina). We processed all data using a consistent alignment
and variant calling pipeline, which consisted of primary
alignment to the Human Reference Genome (NCBI Build37/
hg19) and duplicate marking using the Dynamic Read
Analysis for Genomics (Edico Genome, San Diego, CA)
followed by variant calling using best practices outlined in the
Genome Analysis Toolkit17 (GATK v3.6) (Supplemental
Methods for further details). Variants for analysis were
restricted to the consensus coding sequencing public tran-
scripts (CCDS release 20) plus 2-bp intronic extensions. We
further required variants to meet certain quality standards
(Supplemental Methods). We annotated variants using
ClinEff (DnaMiner) with Ensembl-HGRCh37.73
annotations.18

Finally, we excluded variants if they demonstrated imbal-
anced sequencing coverage between cases and controls
according to a binomial test of independence between
case–control status and coverage. We used the proportion
of total samples that were cases as p in the binomial
framework and the total number of samples that had at least
10× coverage at the genomic site in question as n. We
performed a two-sided binomial test on the number of case
samples with 10× coverage at that site, excluding variants at
sites with binomial test p value < 0.05. Unlike the site-
coverage harmonization in previous collapsing analysis
studies,15,16 which is performed on all sites across CCDS
regions (approximately 33 million), the binomial method is
only performed at sites with an otherwise qualifying variant.

Quality control, relatedness check, and principal
component analysis
We removed exomes with ambiguous sex as determined by X:
Y coverage ratios. We also removed samples with contamina-
tion 7% or greater as determined by VerifyBamID19 and
samples with less than 90% of CCDS bases covered at 10× or
greater. After these steps, we retained 92 of 96 cases and
10,963 of 14,090 controls.
Before running the collapsing analyses, we implemented

sample-level pruning procedures to minimize systemic bias in
the data that might lead to spurious association or reduced
power to detect real association.
First, we removed related individuals. To do this, we

generated genotype data on an LD-pruned (r2 threshold 0.1)
list of 12,840 single-nucleotide polymorphism (SNPs)
extracted from exome sequencing data and used KING20 to
calculate pairwise kinship coefficients for all subjects. We used
a kinship coefficient of 0.0884 (corresponding to the
minimum kinship coefficient for second-degree relations or
closer) as a threshold and removed samples introducing
relatedness to the cohort. We preferentially retained cases
over controls, with ties broken randomly. After this step, we
retained 92 of 92 cases and 9545 of 10,963 controls.
Next, we performed principal component analysis (PCA)

using EIGENSTRAT21 on the 92 cases and 9545 controls withTa
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the same SNP list as above. For five iterations, we removed
outliers with a distance of six standard deviations or more
from the mean on the top ten principal components. At this
step, we retained 79 of 92 cases and 9028 of 9545 controls.
Plots for the first three principal components calculated on
the remaining samples are shown in Figure S1.

Collapsing analysis
To identify genes associated with retinal dystrophy under the
case–control association analysis framework, we performed a
genome-wide search for enrichment of “qualifying variants”
(QVs) in either cases or controls across all protein-coding
genes (using the same CCDS regions plus 2-bp extensions
described above). We admitted QVs to analysis according to a
set of criteria (in addition to quality filters described above)
based on allele frequency and functional predictions, designed
to capture pathogenic variants. For variant functional effect,
we defined loss-of-function (LoF) variants to be variants with
any one of the following annotations: stop_gained, frame_-
shift, splice_site_acceptor, splice_site_donor, start_lost,
exon_deleted. The dominant and recessive models included
both LoF and missense variants. For the dominant model, we
determined missense variants to be qualifying if they were
assessed as not benign (“probably damaging,” “possibly
damaging,” “unknown”) by PolyPhen-2 (HumVar).22 We
also required QVs to meet certain allele frequency (AF)
thresholds. We calculated the “leave one out” (LOO) AF in
our cohort by excluding the variant in question and then
computing the AF of that variant in the remaining samples
(both cases and controls). We required the LOO AF of the
variant to fall at or below the given threshold (0.0001 for the
dominant model and 0.01 for the recessive model). For the
external data set AF threshold, we required the variant’s AF to
fall at or below the cutoff (0.0001 for the dominant model and
0.01 for the recessive model) in each of eight gnomAD
populations (global, African/African-American, Latino/
Admixed American, East Asian, Finnish, Non-Finnish
European, South Asian, and Other (population not
assigned)).23 After applying all of the filtering criteria, the
dominant model included 383,452 total variants for analysis
(348,653 unique variants). For the recessive model, there were
7275 qualifying variants (5001 unique variants).
For each gene, we assigned a qualification state indicator

variable (1/0 states) to each individual based on the presence
of at least one qualifying genotype in that gene (state 1) or no
qualifying genotype in that gene (state 0). For the dominant
model, we defined a qualifying genotype as either hetero-
zygous or homozygous for a QV. For the recessive model, we
defined a qualifying genotype as homozygous for a QV.
Under this framework, for a given gene, a qualifying sample
(case or control) was defined to be a sample (case or control)
with an indicator variable status of 1. For the dominant
model, we used the two-tailed Fisher’s exact test (FET) (SciPy
module,24 Python 2.7.7) to evaluate the statistical significance
of association on each gene. For the recessive model, to
address the potential confounding effect of population

stratification at higher MAF thresholds, we constructed a
logistic regression model using the first ten EIGENSTRAT
principal components as covariates. To account for bias due
to small numbers of QVs in these recessive logistic regression
models, we applied a Firth correction with profile likelihood
confidence intervals.25,26 For both models, with 18,852 genes
being tested under two models, we used the Bonferroni
multiple-test correction to set a study-wide significance
threshold of p= 1.33 × 10−6. We performed all logistic
regression analyses using R version 3.2.5.

Quantile–quantile plots and genomic inflation factor (λ)
We generated quantile–quantile plots using a permutation-
based empirical expected probability distribution. For the
dominant model’s qualification state matrix (genes × sam-
ples), we randomly permuted the case–control labels
associated with each column of qualification states. After
each permutation of the 79 case and 9028 control labels, we
recomputed the FET p values for each gene and ordered the
p values from lowest to highest. We repeated this process 1000
times and calculated the mean of each rank-ordered value
across the 1000 permutations, i.e., the average 1st rank
p value, the average 2nd rank p value, etc. These averages
represent the empirical estimates of the ordered expected
p values. This empirical expected p value distribution does not
depend on the assumption that the p values are uniformly
distributed under the null.
To compute the permutation-based expected p value

distribution for the recessive model Firth logistic regression,
due to the presence of the EIGENSTRAT-determined
ancestry covariates, we implemented permutation using the
R package “BiasedUrn” (cran.r-project.org/web/packages/
BiasedUrn/) to maintain the confounding role of covariates
in each permuted data set while the association between
genotype and disease was broken.27 We performed the
permutation 1000 times and calculated the empirical expected
p value distribution as described above.
We estimated the λ inflation factor in a manner similar to

the procedure defined in the “estlambda” method in the
genABEL R package (cran.r-project.org/web/packages/
GenABEL/). Following the removal of data points corre-
sponding to observed p values of study-wide significance and
data points where either the observed or expected p value was
1, we calculated the “inverse” of each p value by subtracting it
from 1. We then transformed these “inverse” observed and
expected p values using χ2 quantile function (with one degree
of freedom). We performed a least-squares linear regression
on the transformed observed and expected p values. The λ
factor was taken to be the slope of this regression line.

RESULTS
To identify genes associated with rare eye disease, we used ES
data from 79 cases and 9028 controls. The affected individuals
varied in clinical phenotype (Table 1), but all received
diagnoses compatible with the clinical presentation of ABCA4
disease. Nearly three-quarters of cases were initially classified
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as either STGD1 or CRD (combined 73%), although BEM
(10%), PD (11%), MD (3%), and other cases with generally
overlapping ABCA4 features (3%) were included (Fig. 1). All
cases were determined negative for any disease-causing
ABCA4 pathogenic variants. We ran a standard gene-level
collapsing analysis comparing these two groups. We coded
individuals using the presence/absence of qualifying geno-
types, where the qualifying criteria were defined according to
either a dominant or a recessive model (see “Materials and
methods.”)
In the dominant model, two genes, PRPH2 and CRX,

demonstrated enrichment of QVs at a level that achieved
study-wide significance (p= 1.33 × 10−6) using FET p values
(Fig. 2a). We identified qualifying genotypes in PRPH2 in
5.06% of cases versus 0.022% of controls (odds ratio [OR]
>240; FET p value 7.77 × 10−8). Previously, PRPH2 has been
reported to exhibit a dominant effect in PD,28 RP,29 MD,30

CRD,31 and central areolar choroidal dystrophy.32 In CRX, we
identified qualifying genotypes in 5.06% of cases versus
0.067% of controls (OR >80; FET p value 1.06 × 10−6).
Previous studies have implicated CRX in dominant forms of
CRD,33,34 RP,34 and Leber congenital amaurosis.34 Cases in
which PRPH2 and CRX were indicated to be causal presented
with late-onset STGD1 and BEM (with cone–rod dysfunction
on ffERG), respectively (Fig. 1). We also identified eight
additional known retinal disease genes reaching nominal
significance (p= 0.05). Of these, PROM1 (ref. 35) and RPE65
(ref. 36) have been reported to harbor variants exhibiting

dominant disease effects. To ascertain the proportion of
disease burden in our cohort that could be explained by
genetic variation in these genes, we calculated the excess of
qualified individuals in each of the ten genes (Table 2). We
subtracted the frequency of qualified controls from the
frequency of qualified cases to quantify the potential percent
of cases explained by each gene. Taken together, the qualified
individual excess in PRPH2 and CRX potentially explains
10.03% of the affected individuals, while the excess across all
ten nominally significant retinal disease genes potentially
explains 36.78% of affected individuals.
We also performed a recessive model collapsing analysis

(see “Materials and methods”) with a more permissive minor
allele frequency (MAF) threshold. To better account for
artifacts arising from population stratification effects at the
higher MAF threshold, we used logistic regression with
ancestry covariates (the first ten EIGENSTRAT principal
components) in place of FET (Fig. 2b). This analysis
identified CERKL as the top gene, which qualified in 2.53%
of cases and 0.01% of controls (OR >234; logistic regression
p value 3.29 × 10−5). Both qualified CERKL cases carried the
same homozygous stop-gain variant, and both were success-
fully identified by the diagnostic analysis. CERKL has been
implicated in recessive cone–rod dystrophy,37 which was the
clinical diagnosis in both qualified cases. The top four
identified genes and specific, determined pathogenic, variants
are detailed in Table 3. Causality was determined by a
combination of in silico methods including previous
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Fig. 1 Clinical and diagnostic profile of ABCA4-negative study cases. The study cohort consisted predominantly of Stargardt disease (43%) and
cone–rod dystrophy (30%). Approximately one-fifth of cases exhibited features consistent with pattern dystrophy (11%) and bull’s eye maculopathy (10%)
(a). Cases presenting with nonspecific, early-onset macular disease classified as macular dystrophy (3%) and those with suspected ABCA4-related retina-
wide degeneration or retinitis pigmentosa–like phenotypes were classified as “other” (3%). Cases in whom disease-causing variants in PRPH2 were
identified by collapsing analysis exhibited a range of phenotypes on autofluorescence (488-nm excitation) consistent with pattern or butterfly macular
dystrophy (b–d). All cases with causal variants identified in CRX presented with elliptical bull’s eye maculopathies and a cone–rod pattern of attenuation on
full-field electroretinogram (e–g).
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knowledge of causality, MAF in matched general population,
analysis with predictive software (e.g., CADD), and segrega-
tion with the disease in families if family members were
available.

DISCUSSION
Comparing 79 ABCA4-negative retinal dystrophy cases and
9028 controls using gene-based collapsing analysis, we
identified PRPH2 and CRX, two known retinal disease genes,
at study-wide significance. Combining these with eight
additional known retinal disease achieving nominal signifi-
cance, we observed a 36% excess of qualifying genotypes in
cases. Therefore, in this prescreened cohort, over one-third of
non-ABCA4 retinal dystrophy is attributable to damaging
variants in previously characterized retinal disease. The
collapsing analysis framework is intended to capture the
effect of rare protein-altering or protein-truncating variants
that, unlike most standard diagnostic analyses, which mine
previously reported qualifying pathogenic variants, does not
depend on a priori knowledge of disease association and is
therefore not dependent on curated databases such as ClinVar
and HGMD. This is especially important because of the
phenotypic variability of the affected individuals in this study:
we analyzed a group of patients under six distinct clinical
diagnoses. Within the group of eight patients who harbored
qualifying CRX and PRPH2 variants, the clinical diagnoses
included STGD1 (3/8), BEM (3/8), CRD (1/8), and PD (1/8)
diagnoses. The genetic overlap between retinal dystrophy
phenotypes is widely acknowledged (e.g.,38), and our study
underlines the value of grouping various retinal dystrophy
phenotypes to maximize the power to detect disease
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Fig. 2 Dominant model and recessive nonsynonymous model collapsing analysis results. (a) Quantile–quantile (QQ) plot for exome-wide gene-
based collapsing analysis under the dominant genetic model. The y-axis represents the –log10 of the observed Fisher’s exact test (FET) p values (sorted). The
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bound are labeled with corresponding gene symbols. PRPH2 and CRX reached study-wide significance. (b) QQ plot for the collapsing analysis under the
recessive n model. The y-axis represents the –log10 of the observed p values (sorted) evaluated in the Firth logistic regression adjusting for the first ten
ancestry principal components. The x-axis represents the –log10 of the expected p values (sorted) evaluated in the same logistic regression model with
permutation (“BiasedUrn”). The red dots represent the data points, while the blue line is the diagonal with slope 1. The green and yellow lines represent
permutation-based 95% confidence intervals.

Table 2 Collapsing analysis results for nominally significant
retinal disease genes

Rank Gene FET

p value

Qualified

case

frequency

Qualified

control

frequency

QV

excessa

1 PRPH2 7.77E-08 0.0506 2.22E-04 0.0504

2 CRX 1.06E-06 0.0506 6.65E-04 0.0499

11 RPE65 0.0011 0.038 0.0023 0.0357

17 CDHR1 0.0026 0.038 0.0032 0.0348

23 C2orf71 0.0037 0.038 0.0037 0.0343

33 PROM1 0.0053 0.038 0.0042 0.0338

84 EYS 0.0131 0.0633 0.0174 0.0459

115 GPR179 0.0179 0.038 0.0068 0.0312

141 CC2D2A 0.0219 0.038 0.0073 0.0307

299 INVS 0.0469 0.0253 0.0042 0.0211

Total 0.3678
FET Fisher’s exact test, QV qualifying variant.
aQV excess is calculated as the qualified control frequency subtracted from the
qualified case frequency.
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associations. In the clinic and in diagnostic analyses, these
diagnosed conditions may be treated as distinct, but their
shared genetic etiology becomes clear in a pooled collapsing
analysis. Our findings support the hypothesis that genes
besides ABCA4 cause disease in many of the 15–20% of
patients with STGD1-like phenotypes but no identifiable
pathogenic ABCA4 variant.10 Of course, over 60% of the cases
are not directly explained by qualifying variant excess in
nominally significant known eye disease genes. Many causal
single variants/genes (e.g., PROM1, Table 3) do not reach
statistical significance due to the small cohort size and
fraction of each gene/variant. Furthermore, some of these
cases likely harbor causal variants in other, still unknown,
retinal disease genes.
In the context of retinal dystrophies, many of which are

known to be recessive, the recessive analysis provides a useful
complement to the dominant analysis. Performing collapsing
analyses under a recessive model necessitates the use of a
more permissive allele frequency threshold, which often
introduces inflation into the analysis due to population
stratification within the cohort subpopulations. However, our
recessive analysis shows no inflation and a clear, though not
study-wide, enrichment of qualified samples for CERKL, a
gene sometimes known to cause recessive CRD. This result,
especially with such a small case cohort, is a favorable sign for
the potential utility of recessive model collapsing analysis.
Dominant effects are more evident in this study; however, it is
likely that many of the unsolved cases harbor very rare
biallelic disease-causing variants.
Among the noncarriers of PRPH2, CRX, and CERKL

qualifying genotypes, the cause of disease could also be more
complex than damaging variants in single genes. However, it
is also worth noting that collapsing analysis increases in
statistical power with larger sample sizes. The 79 cases in this
study represent an extremely limited sample size for this
method. Given the magnitude of signal observed in PRPH2,
CRX, and CERKL, we anticipate that the genes in this analysis
demonstrating strong, non–study-wide significance could
reach the study-wide threshold under investigation of a larger
cohort. Furthermore, we might expect to uncover additional
retinal dystrophy genes that explain even smaller fractions of
the patient population. Our investigation indicates that, at
least in this setting, collapsing analysis can allow researchers
to leverage a large data set of unaffected individuals to draw
conclusions from fewer than 80 phenotypically heterogeneous
cases. Though larger sample sizes are desirable, they are not
absolutely necessary, which has clear implications for
discovery strategies in a variety of rare genetic diseases.
In conclusion, our analyses indicate that rare missense and

LoF variants in PRPH2 and CRX are significantly associated
with a broad retinal dystrophy phenotype (encompassing
STGD1, CRD, PD, BEM, MD, and other diagnoses) in
patients without a disease-causing ABCA4 variants. These
results demonstrate the power of collapsing analysis in a
phenotypically heterogeneous disease setting and suggest that
a substantial portion of non-ABCA4 retinal dystrophy can beTa
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attributed to previously known eye disease genes. Further-
more, we demonstrate the general utility of using collapsing
analysis as an objective method to understand the hetero-
geneity and interplay of genetics and disease phenotypes.
Collapsing analyses leverage the power derived from a large
control population to identify enrichment of qualifying signal
in the genes associated with disease phenotypes and therefore
are not dependent on published literature or curated gene and
variant lists. Even in this study of retinal disease, where there
is an abundance of clinically reported pathogenic variants,
collapsing analyses provide the initial, significant explanatory
evidence of disease burden in known retinal disease genes,
which can be then analyzed in detail in follow-up studies. In
disease phenotypes that are poorly understood beyond the
primary disease driver gene, collapsing analyses may offer a
powerful and economical approach to expand our under-
standing of the genetic basis of the disease with limited
sample sizes.
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