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Identifying genes and variants contributing to rare disease
phenotypes and Mendelian conditions informs biology and
medicine, yet potential phenotypic consequences for variation of
>75% of the ~20,000 annotated genes in the human genome are
lacking. Technical advances to assess rare variation genome-wide,
particularly exome sequencing (ES), enabled establishment in the
United States of the National Institutes of Health (NIH)-supported
Centers for Mendelian Genomics (CMGs) and have facilitated
collaborative studies resulting in novel “disease gene” discoveries.
Pedigree-based genomic studies and rare variant analyses in
families with suspected Mendelian conditions have led to the
elucidation of hundreds of novel disease genes and highlighted the
impact of de novo mutational events, somatic variation underlying
nononcologic traits, incompletely penetrant alleles, phenotypes
with high locus heterogeneity, and multilocus pathogenic variation.
Herein, we highlight CMG collaborative discoveries that have
contributed to understanding both rare and common diseases and
discuss opportunities for future discovery in single-locus Mendelian

INTRODUCTION
Mendelian conditions are individually rare, but collectively
contribute to disease in ~0.4% of children and young adults,
and 8% of live births if all congenital anomalies are
considered." These findings likely underestimate the true
burden of Mendelian conditions; the estimates focus on the
severe end of the phenotypic spectrum and often fail to
capture disorders caused by de novo pathogenic variant alleles
or characterized by adult onset. Prior to the broader
availability of genome-wide assays, discovery of loci

disorder genomics. Phenotypic annotation of all human genes;
development of bioinformatic tools and analytic methods; explora-
tion of non-Mendelian modes of inheritance including reduced
penetrance, multilocus variation, and oligogenic inheritance;
construction of allelic series at a locus; enhanced data sharing
worldwide; and integration with clinical genomics are explored.
Realizing the full contribution of rare disease research to functional
annotation of the human genome, and further illuminating human
biology and health, will lay the foundation for the Precision
Medicine Initiative.
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underlying Mendelian conditions relied heavily on traditional
genetic mapping and positional cloning approaches that had
little power to detect disorders characterized by de novo
variation, incomplete penetrance, and locus heterogeneity.
Chromosome microarray analysis (CMA) and next-
generation sequencing (NGS), applied to well-phenotyped
individuals,” have provided substantial technological advances
toward clinical genomics and identifying a more complete
variant spectrum (single-nucleotide variants [SNVs], indels,
and copy-number variants [CNVs]) and molecular basis for
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human Mendelian conditions.”’™'’ Despite substantial pro-
gress in variant detection genome-wide, the overwhelming
majority of annotated genes have yet to be assigned function
in the context of human disease traits. Thus, a comprehensive
molecular understanding of disease biology and disease gene
function remains to be achieved.

Several national and international programs have been
developed to both stimulate and support the study of
Mendelian conditions. In Canada, Finding of Rare Disease
Genes (FORGE)"" and Care4Rare Canada Consortium'* have
contributed to this global effort, leading to development of the
Canadian Rare Diseases Models and Mechanisms Network
(RDMM), which supports collaboration among clinical and
human geneticists and model organism researchers in the
study of rare variants and their functional impact. In the UK,
the Deciphering Developmental Disorders (DDD)"*™"” study
has for over a decade made significant contributions to the
understanding of the molecular etiologies of neurodevelop-
mental delay and the roles of different variant types,
mutational mechanisms, and new pathogenic variants in
disease traits. Additional international efforts in rare disease
gene discovery include the Undiagnosed Diseases Network
International (UDNI)'® and the International Rare Diseases
Research Consortium (IRDiRC)."

In the United States, the Centers for Mendelian Genomics
(CMGs)**?! and Undiagnosed Diseases Network (UDN)*
use complementary approaches to investigate the molecular
etiology of Mendelian conditions. The CMGs comprise four
Centers: a joint Baylor College of Medicine-Johns Hopkins
University Center (BHCMG), the Broad Institute/Harvard
University  (BIHCMG), University of Washington
(UWCMG), and Yale University (YCMG) (www.mendelian.
org). The Centers are supported by the National Human
Genome Research Institute (NHGRI); the National Heart,
Lung, and Blood Institute (NHLBI); and the National Eye
Institute (NEI); are leveraged by local resources; and are
focused on shared goals of novel disease gene discovery using
exome and genome sequencing (ES/GS), and rare variant,
family based genomics approaches. Knowledge dissemination
is facilitated through publication (both in scientific journals
and online at www.mendelian.org), resource and data sharing,
education of the scientific and medical communities, and
collaboration with clinicians, families, and researchers
worldwide.

ES coupled with the power inherent in a rare variant, family
based analysis enables the identification of rare, de novo, and
cosegregating variants with large phenotypic effect, ie.,
disease traits tied to a specific locus, yielding results of
immediate clinical utility and driving novel disease gene
discovery. Gene-first approaches, in which a cohort of
individuals with rare variation at a particular locus undergo
careful phenotyping, can elucidate the full phenotypic
spectrum associated with an allelic series at a disease gene
locus.”>** For example, analysis of variation at the POGZ
locus led to the delineation of White-Sutton syndrome
(WHSUS; MIM 616364), after phenotype-focused cohort
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studies identified only a subset (developmental delay/
intellectual disability [DD/ID], autism spectrum disorder,
schizophrenia) of the cognitive phenotypes associated with
rare variation in POGZ.'**>~*" Further examples of this CMG
and collaborator-facilitated gene-first approach include stu-
dies of ASXL3 (refs.’®*'), CDK13 (ref. **), PNPLAI (ref. **),
POLE,** IFT81 (ref. *°), HDACS (ref. *°), AHDCI (ref.>”), and
CDC42 (ref. *°).

Disease gene discovery and genetic diagnosis informs
clinical care

Rare disease research and gene discovery inform and enhance
molecular diagnosis and can impact patient management.
Molecular diagnostic assays provide potential precise genetic
contributors to clinical diagnoses, important prognostic
information, and guidance for clinical management and
disease surveillance, and enable more accurate recurrence risk
estimates for families. In turn, this individualized “precision”
information provides an entry for illuminating disease biology
and insight, enabling development and implementation of
rational and targeted therapeutics. For example, the discovery
of loss-of-function (LoF) PCSK9 variants causing hypocho-
lesterolemia led to the rapid development of monoclonal
antibodies targeting PCSK9, to treat cardiovascular disease
and familial hypercholesterolemia.”*'

At the initiation of the CMG program, we and others
predicted that opportunities provided by NGS technologies,
novel computational analytic approaches, and the access to
these technologies for clinicians and families from popula-
tions around the world would transform the field of
Mendelian genomics, and our understanding of both human
biology and perturbations to homeostasis resulting in
disease.'”*”*>** However, it was not anticipated that such
studies might potentially enable building testable models for
the genetics of disease from the bottom up. In the next
section, we highlight CMG accomplishments that are driving
this transformation.”'

CMG-FACILITATED DISCOVERIES

Disease gene discovery and functional annotation of the
human genome

A primary goal of the CMGs is to identify novel disease genes
responsible for human Mendelian conditions.””*' The CMGs
have reported a total of 3617 disease gene—phenotype pairs
(http://mendelian.org/phenotypes-genes),  categorized as
novel, phenotypic expansion (phenotypic features extending
beyond those previously reported for a Mendelian condi-
tion),”" or known (Fig. 1, Supplemental Figure 1). The CMGs
are well positioned to achieve the overall goal of connecting
phenotypes to high penetrance variants in a substantial
fraction of all ~20,000 annotated human genes, and the
current pace of discovery within the CMGs does not show
evidence of slowing (Fig. 2). This simple accounting or “tally”
of gene discovery does not fully represent the genetic and
genomic insights and new understanding generated by CMG
international collaborative efforts regarding disease traits,
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human biology, and human developmental and homeostatic
processes.

Dissemination of knowledge

As of 31 August 2018, the CMGs have contributed to a total
of 522 manuscripts with collaborators worldwide (Table 1).
These efforts have supported the establishment of tenure-
track positions for 16 junior faculty, and the successful
preparation of 9 K- or R-level NIH-funded grants (Appendix,
Supplemental Tables 1 and 2), and aided in the training of
numerous graduate students. The CMGs have also taken steps
to disseminate prepublished data to the scientific community.
The Genomic Sequencing Program Coordinating Center
(GSPCC)-managed CMG website provides public access to
a searchable phenotypes and genes database of CMG disease
gene discoveries; depositions to ClinVar and dbGaP further
support knowledge dissemination.

Contribution to clinical diagnosis and patient management
The CMGs have engaged diagnostic laboratories as an
extension of the research laboratory efforts, increasing gene
discovery through analysis of nondiagnostic clinical exomes.
This interaction facilitates rapid transition from novel disease
gene discovery to patient report, with direct involvement of
additional stakeholders in the discovery efforts.** Review of
12,577 sequential noncancer cases referred to the Baylor
Genetics diagnostic laboratory yielded 4075 cases for which
ES was diagnostic. Of these, 333 molecular diagnoses
explaining part or all of the reported clinical phenotype
involved CMG discovery genes (Supplemental Figure 2A). A
precise molecular diagnosis (PGM3 [ref. 431, TANGO2 [ref. %9
and ABLI [ref. *’]) informed medical management of 21
individuals, with several additional clinically impactful CMG
disease gene discoveries beyond this clinical cohort (Supple-
mental Table 3). Other collaborations between the CMGs and
worldwide diagnostic and research laboratories make exten-
sive use of the Matchmaker Exchange network,**** which
includes CMG-developed nodes GeneMatcher,”””" MyGene2
(ref. **), and matchbox, facilitating novel disease gene
discoveries worldwide (Supplemental Table 4). The impact
of CMG disease gene discoveries on molecular diagnostics is
further reflected in the number of pathogenic or likely
pathogenic variant entries in discovery genes in ClinVar and
the Genetic Testing Registry database (GTR, https://www.
ncbinlm.nih.gov/gtr/; Supplemental Figure 2B-D). These
findings illustrate the substantial impact of the CMGs on
both clinical diagnostics and medical management, demon-
strating unequivocally a successful “bedside-to-bench-to-
bedside” approach.

Molecular mechanisms underlying Mendelian conditions

Over the past decade there has been tremendous progress in
understanding the molecular basis of and mechanisms
underlying Mendelian conditions. De novo pathogenic
variants have been increasingly recognized as a major source
of rare conditions, particularly those that reduce reproductive
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Fig. 1 Centers for Mendelian Genomics (CMG) disease gene dis-
covery through 31 May 2018 (year 7, quarter 2) by the four centers.
Discoveries are defined as “novel” if (1) the causal variant was identified in
a gene not previously associated with a Mendelian phenotype at the time of
case acceptance to the study (i.e., novel gene), or (2) the causal variant was
identified in association with a Mendelian phenotype with a MIM number (a
known phenotype) and for which no causal variants had previously been
reported (i.e., novel gene, unexplained known phenotype), or (3) the causal
variant was identified in association with a Mendelian phenotype with no
MIM number and for which no variants in the identified gene had been
previously reported as causal of a Mendelian phenotype (i.e., novel gene,
new phenotype). Graph of discoveries (genotype—phenotype pairs) cate-
gorized as novel, phenotypic expansion, or known. Discoveries are classified
as either tier 1 (blue bars) or tier 2 (orange bars, not meeting tier 1 defi-
nition). Tier 1 genes include high confidence genes reported by individual
centers as tier 1, defined as having been identified in either (1) multiple
kindreds with shared phenotypic features and likely pathogenic variants in
the same gene, or (2) a single family plus a model organism with ortholo-
gous phenotypic features, or (3) a single family with supportive functional
and mapping data. Pheno expan phenotypic expansion.

fitness.”> > This has been borne out in clinical referral
cohorts across all ages,”™ as well as across numerous
phenotypes, such as neurodevelopmental disorders,””
Meier-Gorlin syndrome (MIM 616835) (ref. 0y visceral
myopathy (megacystis—microcolon-intestinal hypoperistalsis
syndrome [MIM 155310]) (ref. ol and nasopalpebral
lipoma-coloboma syndrome.®> Somatic mosaic variation has
been demonstrated to be an important contributor to rare
disease.”>™® Parental mosaicism can impact recurrence risk
counseling for families with apparently sporadic disease, and
the likelihood of parental germline mosaicism is dependent
on whether the new variant arises on the maternal or paternal
allele.**® Proband mosaicism has been found to underlie
many conditions, including Cornelia de Lange syndrome
(CdLS), for which both genetic heterogeneity and mosaicism
can impact clinical expressivity of disease.””””> Mosaic
reversion of pathogenic variants to wild type has also been
described in ichthyosis with confetti lesions caused by variants
in KRTI0 or KRTI (refs. 7>’*), and in immunodeficiency
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Fig. 2 Cumulative Centers for Mendelian Genomics (CMG) disease gene discovery. The number of novel gene—phenotype discoveries as reported by
all four centers is graphed by progress reporting period (blue bars) and cumulatively (red bars). Biannual phenotypic expansion discoveries involving
previously known disease genes (green line) and biannual known disease gene discoveries (yellow line) are also graphed. The yellow arrow indicates the
pace of novel gene—phenotype discovery, and demonstrates a pace of 263 novel gene—phenotype discoveries per year, or 1 novel gene-phenotype

discovery for every 28 exome sequences (ES) performed.

syndromes for which the affected cell populations are under
strong negative selection.””

Intragenic CNVs, most notably exon deletion or “dropout”
alleles sometimes affecting only a single exon, have been
identified as a difficult-to-detect cause of many Mendelian
conditions (Supplemental Table 5). Additionally, exonic
deletions from clinical diagnostic CMA have fostered gene
discovery efforts.”® Mosaic and copy-number variants are
underdiagnosed by current NGS technologies,”” and these
examples illustrate the clinical relevance of such discovery and
the need to develop and apply dedicated computational
pipelines to their identification.

Variation in patterns of disease inheritance

For certain Mendelian conditions, empirical observations
suggest more than one pattern of disease trait transmission
associated with variation at a single locus (e.g., autosomal
recessive, AR; autosomal dominant, AD; in some instances, X-
linked, XL; and even common, complex), which may
confound genomic mapping studies for a particular
trait.”®’®"®> These observations can be explained by allelic
heterogeneity, with different consequences of the pathogenic
variants (i.e., LoF, GoF, dominant negative) at a given locus or
variable magnitude of the pathogenic variant effect.”®’® This
is exemplified by SMCHDI, for which missense variants
located within the ATPase domain are associated with Bosma
arhinia microphthalmia syndrome (MIM 603457), whereas
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LoF is associated with facioscapulohumeral muscular dystro-
phy type 2 (FSHD2, MIM 158901) and digenic inheritance.*’
Collectively, the CMGs have identified over 30 loci (http://
mendelian.org/phenotypes-genes) with known or proposed
human disease phenotypes for which elucidation of the
responsible gene and causative variants explains the clinical
observation of both dominant (monoallelic) and recessive
(biallelic) inheritance of the corresponding disease traits with
either similar or dissimilar phenotypic features (Supplemental
Table 6).

There are increasing examples of variants that escape
nonsense-mediated decay (NMD) and result in expression of
a phenotype due to GoF.*** An NMD escape intolerance
score metric based on the depletion of protein-truncating
variants within gene regions predicted to escape NMD may
facilitate the identification of variants that function through a
GoF mechanism.*” Such variants may be present in genes
with low probability of loss-of-function intolerance (pLI)
scores predicting tolerance to LoF variants.®”

The CMGs have unraveled the biology of genetic hetero-
geneity in analyses of several cohorts with apparently
homogeneous phenotypes. The identification of novel disease
genes (DVL1, DVL3, FZD2, and NXN) in Robinow syndrome
(MIM 268310, 180700, 616331, 616894) has provided a
molecular diagnosis in potentially 95% of the studied disease
cohort and highlighted a shared role in the noncanonical Wnt
pathway for this phenotype.**” Similarly, in Noonan
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Table 1 Centers for Mendelian Genomics (CMG)-wide recruitment, production, and knowledge dissemination and
collaboration achievements

Recruitment Production Dissemination & collaboration

Number Number Number

Samples 61,286 Phenotypes 2248 Publications 522

Families 22,742 ES 47,129 Authors 5832

Collaborators 3928 GS 1169 Organizations 1540

Countries 80 RNAseq 144 Countries 77

CMG-wide recruitment and production achievements as of 31 May 2018. CMG-wide knowledge dissemination, and collaboration achievements as of 31 August 2018.

ES exome sequencing, GS genome sequencing, RNAseq RNA sequencing.

syndrome, the CMGs and others have identified novel
disease genes with a role in the RAS/MAPK pathway.”'~'%°
Rare variation in genes encoding the cohesin complex
have now been described to underlie Mendelian conditions
termed “cohesinopathies,” which demonstrate clinical features
that are similar to those observed in CdLS.”>'®" The
frequency of the cohesin complex subunit protein/gene
contribution depends on how the phenotype is ascertained:
specifically as CdLS-like phenotypes, or more broadly as DD/
ID.” Increasingly, Mendelian inheritance is appreciated as
vastly more complicated and nuanced than the simple binary
patterns Gregor Mendel described in 1864, and ES now
enables delineation of this complexity through identification
of allelic and locus heterogeneity in human Mendelian
disorders.

CMG-facilitated studies contributed to elucidation of
multilocus pathogenic variant effects on disease trait
manifestations:

e Digenic inheritance has been described in facioscapulo-
humeral dystrophy type 2 (FSHD2 [MIM 158901]),
involving rare variation in SMCHDI and a permissive
DUX4 allele, both required for expression of disease.'*>'"
Digenic inheritance of a rare SMADG variant in associa-
tion with a common variant downstream of BMP2 was
described in association with midline craniosynostosis.'**
In both examples, the observation of reduced penetrance
drove discovery of the second locus required for disease
expression.

e Dual/multiple molecular diagnoses or multilocus
pathogenic variation involving CNVs and/or SNVs result
in blended phenotypes estimated to comprise at least 4.9%
of all diagnostic clinical exome cases.”>*”'*>"'% Present-
ing phenotypes may be distinct or overlapping, and may
obscure clinical ascertainment, and parental mosaicism
can impact recurrence risk.”*''?

e Mutational burden and modifiers can modulate the
phenotypic severity of the observed trait, and may explain
intrafamilial phenotypic variability, as has been observed
in peripheral neuropathy.''' Similarly, an aggregation of
rare variants has been shown to influence susceptibility to
Parkinson disease,''” and the age of onset of amyotrophic
lateral sclerosis (ALS).'"?

802

e Phenotypic expansion®' is often observed with recently
discovered disease genes, for which the full phenotypic
spectrum of disease has not yet been appreciated.
Multilocus variation can explain some cases of apparent
phenotypic expansion,''* resulting in the observation of
additional phenotypic features (multiple molecular diag-
noses) or modifying the severity or characteristics of the
primary observed phenotype (as multiple molecular
diagnoses, or as modifiers).

Bioinformatic tool development
CMG investigators have developed tools for gene matching,
data sharing, phenotype analysis, and exome variant data
analysis (Table 2). Gene-matching tools connecting clinicians
and human and model organism genetics investigators include
GeneMatcher,”””' MyGene2 (which includes a patient-facing
portal for data sharing),”” and matchbox (Fig. 3). These tools
each  communicate  through the MME (www.
matchmakerexchange.org/), enabling gene and phenotype
matching both within and across matching tools in the United
States and internationally.” Members of the CMGs have
essential roles in developing and maintaining the MME.***
The CMGs have also developed software to record and
compare phenotype data and analyze sequence data with the
aim of identifying responsible genes and variants. These
include PhenoDB*'"> and seqr (https://seqr.broadinstitute.
org), which, in addition to recording phenotypic data in a
standard structured ontology (e.g, Human Phenotype
Ontology, HPO),"''® also enable variant prioritization utilizing
patterns of Mendelian inheritance, minor allele frequencies
from reference population databases, and annotation of genes
and variants by OMIM, ClinVar, and other resources
(Table 2). ALoFT (annotation of loss-of-function transcripts)
annotates and predicts putative disease-causing LoF patho-
genic variants. It can further distinguish between disease-
causing LoFs, which are heterozygous, compared with those
in a homozygous state.''” Quantification of missense variant-
induced local perturbation on a protein structure can identify
putative disease-causing missense pathogenic variants.''® The
localized frustration metric can identify variants that disrupt
protein function without severely affecting the global stability
of proteins."'® Additional analysis software developed by the
CMGs is listed in Table 2.
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Type of tool Name Description URL
Phenotyping, genotyping, PhenoDB Phenotype and genotype storage & analysis https:/phenodb.org
and sequence analysis
Variant analysis seqr Exome and genome analysis software for variant https://seqr.broadinstitute.org/
prioritization https://github.com/macarthur-lab/
seqr/
HMZDelFinder Homozygous & hemizygous CNV caller https://github.com/BCM-Lupskilab/
HMZDelFinder
CoNIFER Homozygous & hemizygous CNV caller https://github.com/nkrumm/
CoNIFER
BafAOHcalculator Absence of heterozygosity caller https://github.com/BCM-Lupskilab/
BafCalculator
NMDescPredictor Prediction of variants subject to NMD https:/nmdprediction.shinyapps.io/

NMDEscIntoleranceScore

DNM-Finder

AluAluCNVpredictor

OMIMExplorer

ALoFT
Gene and phenotype GeneMatcher
matching and data sharing
Geno2MP
MyGene2
matchbox

Calculation of a gene’s NMD escape intolerance score

De novo variant caller

Alu/Alu-mediated recombination predictor

Variant prioritization based on phenotypic similarity

Annotation of putative loss-of-function variants
Matching with researchers/clinicians with shared gene
of interest

Bulk sharing of rare variants tied to broad phenotypic
descriptions

Matching with patients in addition to researchers/
clinicians with shared gene of interest

Matching with researchers/clinicians with shared gene

nmdescpredictor/
https://nmdprediction.shinyapps.io/
nmdescintolerancescore/
https://github.com/BCM-Lupskilab/
DNM-Finder
https://github.com/BCM-Lupskilab/
AAMR-Predictor
https://omimexplorer.research.bcm.
edu/

http://aloft.gersteinlab.org
https://www.genematcher.org/

http://geno2mp.gs.washington.edu

https://mygene2.org/

https://github.com/macarthur-lab/

of interest

matchbox

CMG Centers for Mendelian Genomics, CNV copy-number variant, NMD nonsense-mediated decay.

WHAT REMAINS TO BE DONE
Phenotypic annotation of variant effects in all ~20,000 human
genes will provide the necessary evidence base to study the
biologic relevance of each locus in the human genome. Some
of the key challenges in meeting this long-term goal are
elucidated below.

Disease gene discovery

Despite the progress of the CMGs, thousands of disease genes
remain to be discovered. Currently, OMIM lists 3961 genes
known to have high penetrance variants (~19% of the total
annotated protein coding genes) underlying Mendelian
conditions (www.OMIM.org; 4 October 2018). The early
years of the CMGs saw rapid-paced gene discovery, including
much of the “low-hanging fruit” available for study. Moving
forward, the CMGs plan to explore new strategies for
identification and engagement of families and clinicians
worldwide and mainstreaming use of more complex,
biologically based analysis strategies to identify novel genes
for Mendelian conditions. Discoveries will stimulate new

GENETICS in MEDICINE | Volume 21 | Number 4 | April 2019

biological questions about the relationship between rare
variation and human Mendelian conditions, including the
impact of different mutational mechanisms, the consequences
of pathogenic variants on RNA and protein function, and the
extent and consequences of mosaicism. Elucidation of the
phenotypes resulting from allelic heterogeneity (LoF, GoF)
and the impact of variation on protein function (LoF
[amorph], partial LoF [hypomorph], increase in function
[hypermorph], novel function [neomorph], and dominant
negative [antemorph])''” are incompletely explored for most
loci, underscoring the important role of allelic series. We will
expand allelic series for newly identified disease genes and
further explore gene-first approaches to develop more
sophisticated genotype-phenotype relationships. This rapidly
expanding application of genomic sequencing to identify
novel genotype-phenotype relationships across the world’s
population will expand the utility of clinical genomics, enable
precision medicine in all countries, and fuel the rapidly
increasing trajectory of biological insights into perturbed
homeostasis and disease.
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communication among multiple databases of human genomic and phenotypic data, each unique in focus and design. Each database functions as a node
within the MME. (b) Total number of entries in each MME node, as well as total number of entries per node shared within the MME, are indicated. Also
listed is the total number of unique genes per node. Note that a given unique gene may be present in more than one node. (c) Cumulative GeneMatcher
statistics demonstrate 26,614 submissions of 10,341 genes through 1 November 2018. This has resulted in 5195 matched genes. GeneMatcher submitters
in 77 countries today, demonstrating worldwide democratization of disease gene discovery. (d) MyGene?2 is a database through which patients and families
can directly share their genomic data. Matchbox is an open-source tool through which institutions or groups with genomic data can connect to the MME.

Methods and approach
Continued evaluation and integration of appropriate techno-
logical advances will provide the greatest likelihood of success
in reaching our goals. To date, ES has been the predominant
platform contributing to discovery of new disease genes,
owing to its markedly lower cost compared with GS and
enrichment of rare variants with large phenotypic effect in
coding regions. In support of ES reanalysis to increase
molecular diagnostic rates, one pilot study of ES reanalysis in
74 nondiagnostic clinical cases, with expansion to available
relatives for trio- and multiplex-ES, led to the identification of
a likely or potential molecular diagnosis in 51% (38/74) of
previously unsolved clinical cases.*’

On contemporary capture platforms, sensitivity of detection
of SNVs is similar between ES and GS, however GS enables
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more sensitive structural variant calling, particularly for copy-
neutral variation (e.g., inversions) and smaller sized (<10 Kb)
CNVs. GS also promotes integration of CMG data with those
generated by ENCODE, GTEx, and GENCODE. Caveats to
the use of GS include limited annotation of noncoding
variants and lower-fold coverage, which reduces power to
detect low allele fraction mosaic variants and increases false
positive de novo variant calls. Reports of improved coverage
of coding regions by GS compared with ES are complicated by
lack of an appropriately powered head-to-head study
comparing contemporaneous versions of both technologies.
Despite several large-scale investments in GS, the paucity of
new disease gene discoveries reported from GS that would not
have been made at much lower cost by ES challenges GS as a
cost-effective strategy. Some studies suggest, however, that the
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addition of RNAseq and/or GS identifies causative variants or
adds functional support for the interpretation of variants
discovered by ES. For example:

® Muscle-related and mitochondrial phenotypes for which
highly penetrant noncoding variants and/or tissue-specific
transcript-level changes can cause Mendelian condi-
tionleO—lZZ

® Recessive conditions for which a single (i.e., mono-
allelic) rare coding variant has been identified in a
candidate gene, increasing the likelihood of having a
noncoding SNV or CNV impacting splicing on the second
allele (in trans)'?>712°

Further development of analytic methods and
bioinformatics tools

Several variant types remain poorly (or at least not routinely)
recognized by current variant-calling methods. The sensitivity
for indel calling is suboptimal by standard currently utilized
analytic tools (Atlas2, GATK). Analytic methods need to
incorporate information about imprinted genomic areas, X-
linked pseudoautosomal regions, and uniparental dis-
omy."**"*” Structural variant identification also remains a
challenge, particularly single-exon dropout alleles, small
CNVs 50-1000 bp in size, mobile element insertions (MEIs),
and copy number neutral structural variants (e.g., inversions
and translocations), as well as trinucleotide repeat expansions.
Improved methods design needs to consider family structure,
modes of inheritance, and the contribution of rare, or even
private variants to Mendelian conditions.'*® Methods such as
Combined Annotation Dependent Depletion (CADD),"**"'*°
which predict missense variant impact on protein function,
are needed to support resolution of clinically reported variants
of uncertain clinical significance.

We need a better understanding of the contribution of
synonymous and noncoding variants to altered function
through transfer RNA (tRNA) abundance and splicing
effects.”'~>* There is also a clear need for development of
programs, such as NMDEscPredictor, to predict a variant’s
effect on NMD.* Simultaneous computational integration of
rare and common variant analyses should be evaluated for
enabling identification of conditions resulting from a
combination of variants of these types (e.g., compound
inheritance underlying 10% of congenital scoliosis).'**
Population-specific databases are increasingly helpful tools
in identifying rare variants within a given population, and
continued growth and diversification of these resources are
needed. The CMGs have studied multiple non-European
populations including large Turkish, Middle Eastern, and
African cohorts of over 1000 individuals.'*”

The challenge of non-Mendelian inheritance

The insights and discoveries described in previous sections
define a shift that moves beyond the boundaries of one-
disease-one-gene models. Mechanistically, more work is
needed to explore the molecular basis of penetrance. Two
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CMG-studied conditions illustrate compound inheritance of
both rare and common variant models for incomplete
penetrance involving a single or more than one locus. The
observation of incomplete penetrance after identifying
variants in SMAD6 in nonsyndromic midline craniosynostosis
cohort prompted the additional discovery of a common
variant (minor allele frequency [MAF] 0.41) downstream of
BMP2, which explained the incomplete penetrance.'”* In Han
Chinese individuals with congenital scoliosis, incomplete
penetrance observed in relatives sharing a 16p11.2 deletion
or TBX6 LoF variant led to the discovery of a common TBX6
hypomorphic allele (MAF 0.44 in Chinese population, 0.33 in
Caucasians, <0.01 in individuals of African descent) in trans
with the rare TBX6 null allele (MAF of 16pl11.2 deletion is
0.0003 worldwide).'** Individuals with biallelic LoF +
hypomorphic TBX6 variants have a distinct TBX6-associated
congenital scoliosis (TACS) phenotype characterized by
hemivertebrae and/or butterfly vertebrae involving the lower
spine."*® Mouse models of biallelic LoF + hypomorphic TBX6
alleles demonstrated reduced Tbx6 expression from hypo-
morphic alleles, leading to a vertebral malformation pheno-
type;'>” homozygosity for the null allele leads to distortion of
Mendelian ratios through embryonic lethality. These studies
demonstrate that a rare null and a noncoding common
hypomorphic allele can influence gene dosage and expression
at a locus and thereby impact phenotypic expression of
human disease traits.

We need to understand the contributions to penetrance of
variation in environmental exposures,'**'*” variation at
various modifier loci, and epigenetic effects. From a
computational perspective, we also need a more refined
definition of LoF, with distinction between nonsense and
frameshifting variants that are likely to escape—or be subject
to—NMD. This distinction will be increasingly important for
understanding the pathogenesis underlying variants that
result in premature translation termination, a class of variants
for which premature truncation readthrough-based therapeu-
tics may become available.'*

Bridging the gap between rare and common variation and
disease
The genetic architecture of rare and common disease is often
conceptualized as a continuum based primarily on the
frequencies of the relevant variant alleles: rare variant alleles
causative for Mendelian conditions and common alleles
contributing risk for common disease phenotypes.'*' Rare
diseases, defined in the United States as any condition
affecting fewer than 200,000 individuals, typically have
etiologic or causal variants of large effect and a population
frequency of far less than 0.1%. Common diseases of adult life
often have a mixed genetic and environmental etiology, with
susceptibility variants that are more common (>1%) and have
markedly smaller effect sizes.'*

Discoveries in Mendelian conditions have refined our
understanding of the genetic architecture of common disease,
with contributions of both rare and common variants to
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common disease.'*'""'**71*® An analysis of genes associated
with rare disease revealed that almost 20% were nearest to, or
contain, a variant that had been associated with
common disease.”’ Moreover, rare de novo SNVs with
large phenotypic effect contribute to common childhood
traits including neurodevelopmental and congenital heart
conditions."*'*'**71%®  Abnormalities of gene dosage
mediated by rare CNVs have further been recognized as an
etiology of both Mendelian conditions and risk for common
diseases such as neuropathy, dementia, depression,
bipolar disease, schizophrenia, autism, and intellectual
disability,5151-157-166

The ongoing exploration of Mendelian conditions by the
CMGs and others has increased appreciation for the extent of
allelic and locus heterogeneity, variability of expression and
penetrance, the role of new mutation, and mosaicism in
disease and the phenotypic complexity that can arise from
combinatorial effects of rare alleles at a locus (biallelic versus
monoallelic) or at different loci (i.e, multilocus pathogenic
variation)—characteristics shared by both rare and common
disorders. We explore these concepts using four examples,
and discuss the impact of genomics informed by pedigree
structure and mode of inheritance on the human genetics
field’s understanding of the architecture of common disease:

1. Rare variation may present phenotypically as a common
disease, obscuring recognition of a distinct monogenic
disorder. Monogenic forms of steroid-resistant nephrotic
syndrome due to rare variation in NUP93, NUP205,
XPO5, and FATI illustrate this concept: these monogenic
conditions implicated a role for BMP7-induced SMAD
signaling and Rho-like small GTPase signaling pathways
in defective podocyte migration, providing therapeutic
targets for drug development."*>'** A recent analysis of
electronic health records for correlations between phe-
notypes overlapping with a Mendelian condition using a
phenotypic risk score (PheRS) and genotype data in
individuals with presumed common disease revealed 18
previously unrecognized Mendelian diagnoses.'*®

2. Rare variants causing dominant traits may present as a
phenotypically milder common trait, such as the
dominant carpal tunnel syndrome that may be observed
in PMP22 deletion heterozygotes, who typically are
expected to develop hereditary neuropathy with liability
to pressure palsies (HNPP [MIM 162500]) (refs.'®”'*®).
Allelic series have elucidated loci harboring rare, highly
penetrant variants leading to Mendelian conditions, and
more common variants contributing risk for common
disease; for example, rare and common variants in SNCA,
including duplication and triplication CNV of the locus,
have been described in association with familial and
sporadic forms of Parkinson disease, respectively.'**~'”?

3. Several genes identified because of their association with
recessive Mendelian conditions were later discovered to
contribute to risk for common complex disease in
heterozygous individuals, representing an expansion of
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the originally defined phenotypes (Supplemental Table 7).
Notably, heterozygosity for alleles that cause severe
recessive disease may be associated with reduced risk
for common disease. For example, heterozygosity for
pathogenic alleles in SLCI2A1, KCNJI, and SLCI2A3,
associated with Bartter and Gitelman syndromes, reduces
blood pressure and protects against adult-onset hyperten-
sion.'”” Population cohorts with a high rate of con-
sanguinity and carrier frequency for recessive conditions
represent an opportunity to analyze phenotypic effects of
heterozygous LoF."*®!7*

4. Multilocus mutational burden can impact expression of
common disease. Genomic studies of neuropathy and
Parkinson disease have suggested a model in which an
aggregation of rare variants in disease-associated genes
can influence clinical severity and can contribute to
common complex traits.!' 1

These discoveries at the intersection of rare and common
disease will facilitate further development of precision
medicine through elucidation of targetable pathways under-
lying disease.

Data sharing

A worldwide effort to share individual-level exome variant
and phenotype databases can be highly beneficial for rare
disease research as well as other genetic studies. CMG data are
deposited to dbGaP and ClinVar. Additionally, access to the
Broad CMG data can be applied for through the Broad’s Data
Use Oversight System (DUOS). DUOS (https://duos.
broadinstitute.org/#/home) is a novel framework for auto-
mating the data use oversight process that is overseen by a
Data Access Committee. DUOS provides de-identified
genotype and phenotype data to authorized researchers in a
substantially more usable fashion than the currently cumber-
some dbGaP platform. De-identified rare variants tied to
broad phenotype data for all cases sequenced by the UWCMG
are shared publicly through Geno2MP (htttp://geno2mp.gs.
washington.edu) and deposited in MyGene2. Variant data for
candidate genes can be directly requested from both BHCMG
and Baylor Genetics clinical diagnostic laboratories. Submis-
sion of candidate genes to the MME further fosters global
involvement in discovery. Continued integration of data with
patient-facing portals, for example MyGene2 (ref. °*), may
facilitate further engagement of stakeholders to support
patient involvement in research studies. The additional
development of publicly accessible online tools for direct
interrogation of exome data would be useful to further patient
and physician engagement.

Integration with other genome sequencing programs

Partnership with the Centers for Common Disease Genomics
(CCDGs) will continue to be an important strategy for the
CMGs as rare disease discoveries are likely to increasingly
impact common disease discoveries and both programs
implement genome-wide approaches. Collaborations with
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the CCDGs have already been instrumental in development,
improvement, and implementation of sequencing methods
and variant data processing, annotation, and analysis
pipelines (Farek et al., https://github.com/jfarek/xatlas/blob/
master/README.md).'”>'”® The genomics community and
CMGs in particular have benefitted tremendously from the
development of the EXAC and gnomAD databases as well as
the ARIC database.”””'*>'”” The ARIC database is represented
by a more general population and not a disease cohort. Using
these former resources, the study of constrained genes that
show fewer than expected LoF or missense variants in general
populations has refined prioritization of candidate disease
genes. Likewise, GoF variant allele prioritization has been
assisted by the ARIC database and NMDEscPredictor.®”

A recent formalized collaboration between the CMGs and
the Knock-Out Mouse Project (KOMP, https://www.komp.
org) centers promotes rapid sharing of CMG discovery gene
lists with the KOMP centers. Mutant mouse strains generated
through these collaborations will be available to researchers
worldwide. Similarly, an enhanced interface with the UDN
clinical and model organism screening centers (MOSCs)
should enable in-depth characterization of allelic series for
disease genes.'”® As many as 45% of Drosophila genes
important for neurodevelopment have a human disease
ortholog, and Drosophila genes with more than one human
ortholog are enriched eightfold for human disease
genes.'”*'”” One such gene, ANKLE2, had been identified as
a CMG tier 2 gene in a family with severe microcephaly;
recent studies implicate ANKLE2 as a target of the Zika
virus.'"™  Collaborative  efforts have included the
UDN, 7872177153 the DDD,™”*'** and the UK10K Pro-
ject.** Expansion of such collaborations to similar clinically
oriented discovery programs, such as the Gabriella Miller Kids
First (GMKF) program, and deeper integration with interna-
tional programs like FORGE Canada Consortium,"' DECI-
PHER (https://decipher.sanger.ac.uk), Care4Rare Canada
Consortium (http://care4rare.ca) and rare disease programs
affiliated with IRDiRC (http://www.irdirc.org) and in
Asia®*'*° could further foster international collaboration
and stakeholder impact for CMG discovery.

Integration with clinical testing programs

With the goal of rapidly translating novel CMG discoveries to
maximally impact patient care, expanded partnerships with
clinical diagnostic laboratories and engaging clinicians world-
wide will be important. Clinicians provide perhaps the most
important role in discovery and are truly at the forefront of
efforts to engage in detailed phenotyping. Collaboration with
diagnostic laboratories provides several advantages: (1)
availability of thousands of cases for which ES has been
nondiagnostic, maximizing the likelihood of novel disease
gene discovery; (2) potential for enrollment of individuals
with pre-existing exome data into research; (3) contact with
referring physicians, allowing access to phenotypic informa-
tion and the opportunity for clinical reassessment; (4)
collaborative research; and (5) clinical (College of American
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Pathologists [CAP], CLIA-accredited) reporting of novel
discoveries to the referring physician, facilitating rapid
dissemination of information from bench to bedside.

CONCLUSION

CMG-facilitated collaborative research efforts have provided
clear deliverables including, most notably, >1000 new
disease genes and >500 peer-reviewed publications. However,
much work remains. Extending gene discoveries to the
interrogation of LoF, GoF, and dominant negative variants
on disease expression, and modeling allelic series in mice,
underscores the need for analysis of multiple variants per
gene. The relationship between rare and common disease is
real but complex and can include the intersection of both rare
variant and common variant alleles at one or more loci. The
extent to which multilocus pathogenic variation contributes to
blended phenotypes, phenotypic severity, and phenotypic
expansion remains to be explored.

As we, the CMG and world collaborators, investigate
personal genome variation in the context of an individual’s
phenotype, computational methods for analysis of observed
clinical phenotypes using structured phenotypic ontologies'’’
will enable the field to fully explore genotype-phenotype
relationships and to potentially achieve individualized care.
Expansion of recruitment efforts to understudied countries,
ethnicities, and phenotypes will further expand disease gene
discovery and improve clinical utility. Continued develop-
ment of sequencing technology and bioinformatic tools for
genomic data analysis will also increase the effectiveness and
efficiency of the CMG collaborative efforts. Finally, and
perhaps most importantly, increased integration with clinical
genomics,” extending the reach of the research laboratories
and enabling novel discoveries that benefit patient care as
expeditiously as possible, is essential for realizing the maximal
benefit to world populations.
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