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Purpose: The nature of phenylalanine hydroxylase (PAH) variants
determines residual enzyme activity, which modifies the clinical
phenotype in phenylketonuria (PKU). We exploited the statistical
power of a large genotype database to determine the relationship
between genotype and phenotype in PKU.

Methods: A total of 9336 PKU patients with 2589 different
genotypes, carrying 588 variants, were investigated using an allelic
phenotype value (APV) algorithm.

Results: We identified 251 0-variants encoding inactive PAH, and
assigned APVs (0= classic PKU; 5=mild PKU; 10=mild
hyperphenylalaninaemia) to 88 variants in PAH-functional hemi-
zygous patients. The genotypic phenotype values (GPVs) were set
equal to the higher-APV allele, which was assumed to be dominant
over the lower-APV allele and to determine the metabolic
phenotype. GPVs for 8872 patients resulted in cut-off ranges of
0.0–2.7 for classic PKU, 2.8–6.6 for mild PKU and 6.7–10.0 for mild

hyperphenylalaninaemia. Genotype-based phenotype prediction
was 99.2% for classic PKU, 46.2% for mild PKU and 89.5% for
mild hyperphenylalaninaemia. The relationships between known
pretreatment blood phenylalanine levels and GPVs (n= 4217), as
well as tetrahydrobiopterin responsiveness and GPVs (n= 3488),
were significant (both P < 0.001).

Conclusions: APV and GPV are powerful tools to investigate
genotype–phenotype associations, and can be used for genetic
counselling of PKU families.
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INTRODUCTION
Phenylketonuria (PKU; MIM 261600) is a heterogeneous
group of diseases caused by variants in the phenylalanine
hydroxylase (PAH) gene.1 PAH catalyses the oxidation of
phenylalanine (Phe) to tyrosine.2 The cofactor tetrahydro-
biopterin (BH4), iron and molecular oxygen are required for
its full activity.3 PAH deficiency presents phenotypically as
mild hyperphenylalaninaemia (MHP; blood Phe= 120–600
µmol l–1), mild PKU (mPKU; blood Phe= 600–1200 µmol l–1)
or classic PKU (cPKU; blood Phe > 1200 µmol l–1), with
mPKU and cPKU requiring treatment. Inheritance is
autosomal recessive with an average prevalence of 1:10,000.4

Treatment with a low-Phe diet enables near-normal cognitive
development in affected children.5 Alternative treatment
options include pharmacological supplementation with BH4,
which acts as a chaperone for PAH, and enzyme substitution
with phenylalanine ammonia lyase (in phase 3 development).6

More than 1000 PAH variants have been reported to the
locus-specific database PAHvdb (http://www.biopku.org/

home/pah.asp): 65% are in-frame amino acid substitutions,
including changes to nonsense codons, and other common
variants, such as deletions (15%), splice variants (12%),
insertions, duplications or indels (4%), and synonymous
variants (4%), indicating that PKU is a highly heterogeneous
disease.7,8 Relationships between genotypes and metabolic
phenotypes reported in the past have varied widely, from no
correlation to incomplete or substantial correlation.9,10

Associations between genotypes and in vitro residual PAH
activity have been documented for several PAH variants.11–14

Epigenetic factors (e.g., DNA methylation) and gene products
involved in protein stability (e.g., chaperones and proteolytic
enzymes), as well as interallelic complementation (positive or
negative), are also factors influencing the phenotype.15

Many of the missense PAH variants that retain substantial
residual PAH activity are associated with BH4 responsive-
ness.16 Patients with BH4-responsive PKU may benefit from
oral administration of synthetic BH4 (sapropterin dihy-
drochloride), which lowers blood Phe levels.17,18 Hence,
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genotype analysis has the potential to identify likely BH4

responders.19,20

Prediction of metabolic phenotypes by genotype in PKU
was proposed by Guldberg et al.21 on the basis of 105 PAH
variants in 297 functionally hemizygous patients. Some of the
variants were reported only once or twice. The PAH variants
were assigned arbitrary values (AVs) based on the power of 2:
1= cPKU; 2=moderate PKU; 4=mPKU; and 8=MHP.
Although the genotype is characterized by the sum of two
AVs, due to the power scale, the proposed phenotypic effect is
based on the higher AV. This AV system has since been used
in several studies, where genotype-based phenotype predic-
tions were correct in approximately 54% of patients; however,
numbers of patients were always limited.22,23

In this study, we investigated genotype–phenotype associa-
tions in 9336 PKU patients with various degrees of
hyperphenylalaninaemia and with a known genotype. We
calculated allelic phenotype values (APVs) based on the
frequencies of the metabolic phenotype (i.e., cPKU, mPKU or
MHP) for genotypes presenting in a functionally hemizygous
state. A scale for APV, ranging from 0 for cPKU to 5 for
mPKU and 10 for MHP, was introduced. Genotypic
phenotype values (GPVs) were calculated for all patients
and compared with blood Phe levels and BH4 responsiveness.

MATERIALS AND METHODS
Patients, phenotypes and genotypes
A total of 9336 PAH-deficient patients with a known
genotype had been tabulated in the BIOPKU database
(http://www.biopku.org/home/biopku.asp) as of October
2017. Individual information was collected from the pub-
lished literature or records submitted online. In addition to
the genotype, BIOPKU includes information on the pheno-
type, BH4 responsiveness (following a BH4 challenge) and
blood Phe concentrations (where reported). Based on the
highest reported pretreatment blood Phe level, patients’
phenotypes were classified as cPKU, mPKU or MHP.
However, neither the method used for blood Phe quantifica-
tion nor the age at measurement was reported. Similarly, the
protocols for the BH4 challenge were different, and only
patients who responded to oral BH4 administration with a
decrease in blood Phe by at least 30% within 24–48 h were
designated as responders. BH4 responsiveness was reported as
“yes” or “no”. In total, 1373 (53%) of the 2589 different
genotypes in the BIOPKU databases were reported as present
in only a single patient. Data in the BIOPKU are anonymized
and cannot be traced back to the families.
The BIOPKU database is linked to the PAHvdb database,

containing a total of 1041 PAH variants as of October
2017.8 PAHvdb follows the Human Genome Variation
Society (http://www.hgvs.org/content/guidelines) nomencla-
ture recommendations.
Patients in the BIOPKU database harboured 588 different

PAH variants, 247 of which were initially defined as 0-
variants, which have presumed or confirmed zero PAH
activity and are thus associated with cPKU (Supplementary

Table 1). Most 0-variants were: base substitutions, deletions or
insertions that introduced a premature stop codon with or
without a frame-shift; splice site variants that completely
impaired correct messenger RNA (mRNA) splicing; or large
deletions. There were also some missense variants with no
in vitro enzyme activity. All 0-variants were tested against
each other to confirm a cPKU-only set.

Two-stage algorithm for validation of APVs
The aim of the algorithm was to assign APVs to variants,
which were then used to calculate GPVs for the prediction of
metabolic phenotypes and to test the APV model. APVs range
between 0 and 10, with APV= 0 indicating cPKU, APV= 5
mPKU and APV= 10 MHP. Three basic assumptions were
incorporated into the model: (1) the APV of a so-far
unknown variant present in a functionally hemizygous
constellation (i.e., with another known 0-variant) corresponds
to the phenotype of this constellation; (2) each variant belongs
to one of three phenotypes (cPKU, mPKU or MHP); and (3)
the observed metabolic phenotype is the result of the highest
PAH activity of the two variants (i.e., the model does not take
into account potential interallelic complementation (positive
or negative)).
In the BIOPKU database, each variant was classified as

either a 0-variant with no residual activity or a non-0-variant
with presumed or observed residual activity. Initially, all non-
0-variants were assigned as 'unknown'. In stage 1, variants
with frequencies ≥9 and classified as belonging to the same
phenotype group in at least 90% of the cases were assigned
APV values of 0, 5 or 10 and considered to be strong
predictors (for details, see Supplementary Figure 1). Cases not
congruent with the at least 90% concordant phenotypes
were classified as errors and excluded from further analysis.
The same procedure was applied to variants occurring in at
least 4 but in fewer than 9 patients (4 ≤ n < 9), with the
same phenotype leading to weak predictors. Table 1 sum-
marizes the logic of predicting phenotypes from two alleles

Table 1 Phenotypes predicted from different variant
combinations

Genotype Predicted phenotype

(APV1+APV2) cPKU mPKU MHP

0+ 0 x

0+ 5 x

0+ 10 x

5+ 5 x

5+ 10 x

10+ 10 x

U+ U x x x

U+ 0 x x x

U+ 5 x x

U+ 10 x
The higher of two APVs (APVmax) was dominant over the lower-APV allele and
therefore determined the phenotype
APV allelic phenotype value, U unknown APV
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with known APVs. In stage 2, for all remaining unknown
variants not fulfilling the frequency and percentage of
concordance criteria, APVs were computed using the
following equation:

APV ¼ ð%cPKU ´ 0þ%mPKU ´ 5þ%MHP ´ 10Þ=100
(1)

where % indicates the percentage of phenotypes for a given
functionally hemizygous genotype. For example, for a variant
occurring in 10 functionally hemizygous patients once as
cPKU (1%), 7 times as mPKU (7%) and twice as MHP (2%),
the APV= ((1 × 0)+ (7 × 5)+ (2 × 10))/100= 5.5, indicating
mPKU.

All APVs calculated from functionally hemizygous cases
were compared with those calculated from homozygous cases
when n ≥ 9 (strong predictors). APVs were also calculated
using the same equation for variants that occurred in fewer
than 9 patients (4 ≤ n < 9) and were designated weak
predictors. APVs when n < 4 and more than 1 phenotype
class is predicted are not informative and should be used with
caution.

GPVs
GPVs combine information from both alleles and indicate the
metabolic phenotype. The GPV was calculated as APVmax

(the APV with the higher value of the two APVs) because the
sum of the two APVs would not always distinguish between
different phenotypes. For example, using the sum of APVs, a
genotype with APV1= 5 and APV2= 5 (both associated with
mPKU) and a genotype with APV1= 0 (cPKU) and APV2=
10 (MHP) would both result in a GPV of 10, but they would
probably not express the same phenotype.

GPV, blood Phe levels and responsiveness to BH4

GPVs were compared with mean blood Phe levels using the
nonlinear regression equation (2) for all cases in which Phe
was reported (see “Patients, phenotypes and genotypes”):

Phe μmoll�1� � ¼ a ´ eb ´GPV þ ϵ (2)

where GPV is equal to APVmax, a and b are constants, e is
Euler's number and ε is an error term.

GPV and responsiveness to BH4

GPVs were evaluated with regards to BH4 responsiveness in
all cases where BH4 challenges were reported.

Statistical analyses
All statistical analyses were performed with the R language for
statistical computing and graphics.24 Cut-off values for
predicting the metabolic phenotype from the GPV were
determined by linear discriminant analysis.25 Analysis of
variance (ANOVA) was used to evaluate relationships among
several nominal predictor variables and a continuous response
variable. ANOVA post hoc comparisons used estimated

marginal means.26 The Mann-Whitney U-test was used to
compare two groups, with a Bonferroni P value adjustment
when necessary. Receiver operating characteristic curves
relating the sensitivity and specificity of GPVs and AVs for
the three phenotypes were calculated using the R package
pROC27 and compared with DeLong’s test.

RESULTS
Validation of 0-variants
Initially, APV= 0 was assigned to 247 variants (Supplemen-
tary Table 1). Out of 3283 cases, only 19 with 2 0-variants
were not reported as cPKU. The expert-ranked 0-variants
c.1315+ 6 T > A/p.?(IVS12+ 6 T > A), c.510–21_665del177/
p.?(IVS5–21del177) and c.1099dupC/p.L367Pfs*27 were re-
classified as unknown (Supplementary Table 1) because
c.1315+ 6 T > A and c.510–21_665del177 occurred once
each with another 0-variant, resulting in mPKU, and
c.1099dupC occurred twice with another 0-variant (once
with a cPKU phenotype and once with an mPKU phenotype).
The remaining 16 cases with an mPKU phenotype
were judged to be misclassified and excluded from further
analysis.
Genotypes consisting of APV= 0 and 'unknown' were

combined to identify new 0-variants. In iteration 1, 6 unknown
variants were assigned APV= 0 (c.473 G > A/p.R158Q,
c.728 G > A/p.R243Q, c.809 G > A/p.R270K, c.847 A > T/p.
I283F, c.969+ 5 G > A/p.?(IVS9+ 5 G > A) and c.1066–3 C >
T/p.?(IVS10–3C > T)). In iteration 2, c.1183 G > C/p.A395P
was identified as a further 0-variant (Supplementary Table 1).

Validation of MHP and mPKU variants
Genotypes with APV= 0 plus 'unknown' were tabulated to
identify MHP variants (APV= 10). In the first iteration, eight
MHP variants were identified (c.965 C > G/p.A322G,
c.1243 G > A/p.D415N, c.527 G > T/p.R176L, c.890 G > A/p.
R297H, c.259 A > C/p.S87R, c.1139 C > T/p.T380M, c.688 G
> A/p.V230I and c.734 T > C/p.V245A; Table 2). Further
iterations did not reveal new MHP variants.
Genotypes with APV= 0 and 'unknown' were then

tabulated to identify variants with APV= 5. In the first
iteration, five variants were identified (c.386 A > G/p.D129G,
c.722 G > A/p.R241H, c.204 A > T/p.R68S, c.1241 A > G/p.
Y414C and c.1012 G > T/p.D338Y; Table 2). Further iterations
did not reveal new variants.
Genotypes with APV= 5 and 'unknown' were tabulated to

identify additional MHP variants. No additional variants
could be assigned.

Assignment of APV to unknown variants
APVs were assigned to 33 frequent (n ≥ 9) and 32
less frequent (4 ≤ n < 9) variants (Table 2). Ten variants
occurring in only three patients each but with a uniform
phenotype were included as well. All other variants were
assigned as unknown and given no APV, although this
information may change as the numbers of reported patients
increase.
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Effect of homozygous genotypes on APVs
From the 30 most frequent homozygous genotypes, all of
which occurred in at least 9 cases (Supplementary Table 2), 20
did not differ from the corresponding functionally hemi-
zygous genotypes; however, 19 out of these were cPKU. In
5 homozygous genotypes, the GPV was higher, but only
by ≤1.0. The following variants had the largest discrepancies
in APV (2.4–3.4 units): c.194 T > C/p.I65T, c.782 G > A/p.
R261Q and c.721 C > T/p.R241C. For the c.782 G > A/p.
R261Q and c.194 T > C/p.I65T variants, APVs were between
the cut-offs for cPKU and mPKU, while for c.721 C > T/p.
R241C, the APV was between mPKU and MHP. The most
striking difference in APVs was found for the splice site
variant c.1066–3 C > T/IVS10–3C > T, which is associated
with cPKU in the functionally hemizygous state, but also
reliably reported in three homozygous MHP patients from
Turkey and Spain.

Association between GPV and phenotypes and the
definition of cut-off values
GPV was compared among the phenotypes of patients in the
BIOPKU database (n= 8673), with 5146 (59.4%) reported as
cPKU, 2101 (24.2%) as mPKU and 1423 (16.4%) as MHP
(Figure 1a). These numbers are probably representative of the
distribution of metabolic phenotypes of the global PKU
population. The GPV cut-off ranges calculated by linear
discriminant analysis were 0.0–2.7 for cPKU, 2.8–6.6 for
mPKU and 6.7–10.0 for MHP, where 5107/5149 (99.2%)
cases were in the range defined for cPKU and only
42/5149 (0.8%) were above the upper cut-off value (dis-
criminant coefficients are available in Supplementary Materi-
als 2). Within the cut-off range for mPKU were 970/2101
(46.2%) cases, with 852/2101 (40.6%) below and 277/2101
(13.2%) above the range. For MHP, 1273/1423 (89.5%) cases
were within the cut-off range, and 150/1423 (10.5%) fell
below.

Comparison between GPV and BH4 responsiveness
GPV and BH4 responsiveness data were available for 3665
patients (Figure 1b). For 2133 non-responders, the GPV
(median (25th–75th percentile)) was 0 (0–5); 193 patients with
a GPV >4.0 were defined as statistical outliers. There was no
outlier in the 1532 BH4 responders with a GPV (median
(25th–75th percentile)) of 5.0 (2.4–8.9) (P < 0.0001, Mann-
Whitney U-test).
Finally, a two-way ANOVA of GPV, with BH4 responder

status (yes or no) and metabolic phenotype (cPKU, mPKU or
MHP) as independent variables revealed a significant
interaction (F2,3659= 3.32, P= 0.036). Post hoc comparisons
showed that mean GPVs were significantly different between
all combinations of metabolic phenotypes and BH4 responder
status except for MHP, where the difference between GPVs
for responders versus non-responders was not significant.
However, it should be noted that in the BIOPKU dataset, 103
cPKU patients were classified as BH4 responders—a result
that requires explanation.Ta
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Cross-validation of GPVs and Guldberg’s AVs
Guldberg’s AVs and GPVs were cross-validated using the
genotype and phenotype information from 358 Spanish
patients (128 cPKU, 80mPKU and 150MHP)19 not included
in the BIOPKU dataset. For all patients, APVs (and thus GPVs
and AVs) that were previously reported by Guldberg et al.21

were known for both alleles (Supplementary Figure 2a, b). The
GPV separated cPKU (median (25th–75th percentile)= 0
(0–1.5)) from MHP (median (25th–75th percentile)= 9.1
(8.9–10.0)), while mPKU (median (25th–75th percentile)=
1.8 (1.3–5.0)) was partially overlapping with cPKU. Descrip-
tive analysis of AV revealed 2 (2–5) (median (25th–75th

percentile)) for cPKU, 5 (5–8) for mPKU and 9 (9–12) for
MPH (P values, two tailed: always <0.0001, U-test, Bonferroni
adjusted) (Supplementary Figure 2a, b).
Following Guldberg’s genotype–phenotype classification,21

genotypes with AV= 2 were classified as cPKU, AVs 3–8
were classified as mPKU and AVs 9–16 were classified as
MHP. The sensitivity and specificity of predictions by GPVs
versus the AV system were analysed with receiver operating
characteristic curves (Supplementary Figure 3). Although in
absolute measures the differences were small, the areas under
the curve (AUCs) were significantly larger for cPKU (AUC
for APV= 89.96; AUC for AV= 87.89; DeLong’s z=−2.04,
P= 0.042) and MHP (AUC for APV= 97.35; AUC for AV=
94.02; DeLong’s z= 3.05, P < 0.01) for GPV, indicating higher
sensitivity and specificity for GPV. AUCs for mPKU (AUC
for APV= 61.58; AUC for AV= 59.76; DeLong’s z=−1.3,
P= 0.19) were not significantly different. For cPKU, the

positive predictive value (PPV) for GPV was 0.7, compared
with 0.8 for AV; however, the sensitivity of GPV was much
higher (0.98) for GPV than AV (0.58). This discrepancy in
sensitivity corresponds to a false positive rate of 0.42.
Predictions of mPKU based on APV and AV were not only
similar, but also their PPVs were relatively low for GPV (0.6)
as well as AV (0.4). Predictions based on GPV showed higher
PPVs (1.0), sensitivity (0.9) and specificity (1.0) than
predictions based on AV (0.99, 0.8 and 0.99, respectively)
(Supplementary Table 3).

Alignment of the APV scale to blood Phe values
To compare APVs with the maximum untreated Phe
value, we calculated medians and 25th–75th percentiles
for data provided in the entire BIOPKU database.
These were 1677 μmol l–1 (1116–3919 μmol l–1) for cPKU
(n= 5096), 835 μmol l–1 (506–1220 μmol l–1) for mPKU (n=
1991) and 341 μmol l–1 (91–623 μmol l–1) for MHP (n=
1331). The overlapping areas between the three phenotypes
and the upper open area for blood Phe in cPKU indicate
where misclassification of phenotypes may occur. The
alignment of APVs to blood Phe is shown in Figure 2.

Association between GPV and blood Phe
The association of GPVs with pretreatment blood Phe values
in 4217 of the patients is shown in Figure 3a, b.
For this subsample, Phe levels (mean; SD; n) were: 1737

µmol l–1; 633 µmol l–1; 2206 for cPKU; 828 µmol l–1; 223 µmol
l–1; 1166 for mPKU; and 358 µmol l–1; 136 µmol l–1; 845 for
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Fig. 1 Association between GPV and phenotypes. a Boxplots (median, 25th–75th percentile, ±1.5) of the genotypic phenotype value (GPV; that is, the
maximum allelic phenotype value of the two genotype-determining alleles) for three metabolic phenotypes in 8669 phenylketonuria (PKU) patients. Circles
represent outliers. Numbers show the numbers of cases, with the number of outliers in brackets. Dark grey areas represent cut-off ranges. cPKU classic PKU,
mPKU mild PKU, MHP mild hyperphenylalaninaemia. b Boxplots (median, 25th–75th percentile, ±1.5) for GPV in 3665 tetrahydrobiopterin (BH4) responders
and non-responders. Only cases tested for BH4 responsiveness were included. Circles represent outliers. The number of cases is shown below the boxes, with
the number of outliers in brackets. For a definition of BH4 responsiveness, see “Patients, phenotypes and genotypes”
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MHP. GPVs (mean; SD; n) were highest in MHP (8.7; 1.44;
845), mid-range in mPKU (4.10; 2.33; 1166) and lowest in
cPKU (0.47; 0.47; 2206). Nonlinear regression analysis
identified a significant relationship between blood Phe and
GPV: significant coefficients a= 1763 and b=−0.17 (both
P < 0.001) indicate that with increasing GPV, pretreatment
blood Phe decreased significantly (Figure 3a). A contour
graphic of the two-dimensional density of pretreatment blood
Phe and GPVs shows the expected high negative association
in all phenotypes (Figure 3b).

Online access to APVs and GPVs
APVs are tabulated in the PAHvdb locus-specific database
(http://www.biopku.org/pah) and linked with the BIOPKU
genotypes database (http://www.biopku.org/biopku). APVs
were dynamically calculated from the actual BIOPKU dataset.
Following a search for a specific genotype in the BIOPKU
database, it reports the corresponding GPV and predicted
phenotype. A detailed walkthrough of the BIOPKU applica-
tion is presented in Supplementary Materials 1.

DISCUSSION
Understanding the genetic basis of inherited metabolic
diseases is an ongoing challenge. Multi-omics systems have
increased the amount of genomic (e.g., single-nucleotide
polymorphisms, copy number variations, loss of heterozygos-
ity and genomic rearrangements), epigenomic (e.g., DNA
methylation, histone modification, chromatin accessibility,
transcription factor binding and microRNA), transcriptomic
(e.g., gene expression and alternative splicing), proteomic (e.g.,
protein expression and post-translational modifications) and
metabolomic (e.g., metabolite profiling in plasma, urine or
cerebrospinal fluid) data flowing into the databases of genetic
information available for analysing the phenome.28 Despite the
increasing amount of data being generated, the association
between multi-omics and phenomics is not always predictable.
In many genetic diseases, the small numbers of reported cases
limit our ability to perform feasible genotype–phenotype
correlations, and proteomic and epigenomic constellations
complicate data interpretation. For this study, to explore

correlations in the PKU population, we used information from
a large database of over 9000 patients to establish a relation-
ship between gene variants and metabolic phenotypes.
Our approach differs from those obtained by previous simple

correlations derived from a limited number of genotypes and
metabolic phenotypes29–31 or between genotypes and BH4

responsiveness.19,20,32 While these studies indicate that there are
no simple genotype–phenotype correlations, in many cases, a
reasonable match (60–70%) has been observed between
predicted and observed phenotypes. For example, genotype
was informative for BH4 responsiveness in approximately 25%
of cases.20,31 We found a significant (P < 0.0001) association
between pretreatment blood levels and GPV in a group of 4435
patients containing all 3 phenotype classes. As expected, higher
GPVs were significantly correlated with lower blood Phe levels.
No outliers were detected within the group of 1532 BH4

responders, and the two groups were well separated on the
GPV scale (P < 0.0001) (Figure 1b). We found that BH4

responsiveness was clearly less frequent in more severe variants
(APV < 2) and more common in those with APV > 5. Out of
2133 non-responders, 193 were found to have GPVs broadly
ranging between 4 and 10, perhaps because of the non-
standardized protocols used for BH4 challenge.

33

Another approach to correlate genotypes with phenotypes
is to analyse the transient expression of PAH variants in
eukaryotic cell systems and measure their in vitro residual
activity. In early studies, expression analyses of PAH variants
showed that residual enzyme activity was strongly correlated
with pretreatment blood Phe levels and Phe tolerance.11,29,34

However, the amount of mutant PAH protein and residual
activity could be modulated by the in vitro experimental
conditions, and the observed in vitro metabolic variation
could, therefore, be explained by inter-individual variation
in protein quality control systems (e.g., chaperones
and proteases).13 Similar inconsistencies between genotypes
and metabolic phenotypes have frequently been reported
for all three PKU classes35,36, and the co-expression of
two distinct PAH variants suggests that a possible
dominance effect (positive or negative) by one of the variants
on residual PAH activity may be the result of interallelic
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Fig. 2 Alignment of APVs to blood Phe. a–c Alignment of the allelic phenotype value (APV) scale (a) to three phenotype classes (b) and the pretreatment
blood Phe levels (median, 5th–95th percentile) of 8418 phenylketonuria (PKU) patients tabulated in the BIOPKU database (c). Note the overlapping areas in
blood Phe levels between mild hyperphenylalaninaemia (MHP) and mild PKU (mPKU), and between mPKU and classic PKU (cPKU)
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complementation.15 In our APV model, no such events
appeared relevant.
If residual enzymatic function is the most determining

factor for a clinical phenotype, identical PAH variants should
cause the same effects on PAH function and therefore the
same clinical phenotype. Several potential mechanisms may
account for the presence of discordant cases. Variations in the
fidelity of splicing mechanisms can result in multiple mRNAs,
possibly including some normal mRNA transcripts resulting
in enzyme activity. Because the mechanisms responsible for
splicing are independently inherited from PAH, the amount
of normal mRNA encoding PAH may vary among individuals
carrying the same splicing variant. This mechanism may
explain why discordant phenotypes are commonly associated
with splicing variants. One example from our study is the
c.1066–3 C > T splicing variant, which has a variable pheno-
type. This variant was found to be severe in a functionally
hemizygous state, but was also reported and confirmed in
three homozygous MHP patients. These patients represent an
example of phenotypic variation associated with a splicing
variant, and indicate one of the challenges faced when
classifying a continuously graded spectrum of clinical
phenotypes into distinct categories.
Structural instability and misfolding of the PAH protein

may also alter enzyme activity independent of the associated
variant.37 Since mechanisms of degradation and synthesis are
independently inherited from PAH, different individuals with
the same PAH variant may have different steady-state levels of
PAH activity. Molecular chaperones, including heat shock
proteins (HSPs), are essential components of the protein
quality control system. The 70 kDa HSPs (HSP70s) are
versatile chaperones that maintain protein homoeostasis
(proteostasis) by controlling the proper folding, degradation

and translocation of many client proteins or substrates.
HSP40s, or J-proteins, such as DNAJC12, function as co-
chaperones of HSP70s. DNAJC12 has been shown to interact
with PAH and DNAJC12 variants to cause hyperphenylala-
ninaemia if mutated. DNAJC12 is responsible for the proper
folding and intracellular stability of PAH.38 Although this is
rather speculative, individuals with the same PAH genotype
may have DNAJC12 variants affecting PAH folding,
ubiquitin-tagged degradation and enzyme activity, which
would result in different phenotypes.
A wide range of genotype–phenotype associations present

with well-established properties that appear to be common to
all of them. These include inconsistency in genotype, meaning
that some genotypes map to different phenotypes, as found in
PKU. Aside from the aforementioned epigenetic factors,
interallelic complementation and regulatory factors, such as
chaperones, the quality of information and the number of
cases per genotype are essential to evaluate the power of a
genotype-based phenotypic prediction. Misclassification of
phenotypes is the main reason for differences between
studies.39 We took advantage of a large database that contains
the genotypes and phenotypes of 9336 PKU patients from all
over the world, 3665 of whom were challenged with BH4, to
establish a model to quantify allelic severity according to
APVs and predict phenotypes based on genotypes. As
previously proposed,21 one assumption was essential to
characterize the observed genotypes: a variant with a higher
APV was always dominant over one with a lower APV
(severe). Thus, it was not the sum of both alleles (e.g.,
APV1+APV2), but rather the APVmax that determined the
metabolic phenotype. APV values were added to the PAHvdb
locus-specific database, which is linked to the BIOPKU
genotypes database and calculates the GPV for a selected
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genotype. The addition of new records to the BIOPKU
database may alter the APV slightly, and if the number of
cases reaches ≥9, the APV may change from a weak predictor
to a strong one.
We hope that the APV/GPV model presented here and its

implementation into BIOPKU will help professionals develop
evidence-based metabolic phenotyping, particularly in
instances when treatment recommendations are unclear
(e.g., due to borderline blood Phe levels), and improve genetic
counselling of patients’ families. It can also serve as a model
for how large genotype–phenotype databases with well-
defined phenotype groups can contribute to the rapidly
growing field of omics.40

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of this
paper at https://doi.org/10.1038/s41436-018-0081-x
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