Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammasome inhibition under physiological and pharmacological conditions

Abstract

Inflammasomes are key regulators of the host response against microbial pathogens, in addition to limiting aberrant responses to sterile insults, as mediated by environmental agents such as toxins or nanoparticles, and also by endogenous danger signals such as monosodium urate, ATP and amyloid-β. To date at least six different inflammasome signalling platforms have been reported (Bauernfeind & Hornung, EMBO Mol Med. 2013;5:814–26; Broz & Dixit, Nat Rev Immunol. 2016;16:407). This review focuses on the complex molecular machinery involved in activation and regulation of the best characterised inflammasome, NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), and the development of molecular agents to modulate NLRP3 inflammasome function. Activation of the NLRP3 inflammasome induces inflammation via secretion of interleukin-1β (IL-1β) and interleukin-18 (IL-18) proinflammatory cytokines, with orchestration of pyroptotic cell death, to eliminate invading microbial pathogens. This field has gradually moved from an emphasis on monogenic autoinflammatory conditions, such as cryopyrin-associated periodic syndromes (CAPS), to the broad spectrum of innate immune-mediated disease. NLRP3 inflammasome activation is also linked to a range of common disorders in humans including type 2 diabetes (Krainer et al., J Autoimmun. 2020:102421), cystic fibrosis (Scambler et al., eLife. 2019;8), myocardial infarction, Parkinson’s disease, Alzheimer’s disease (Savic et al., Nat Rev Rheumatol. 2020:1–16) and cancers such as mesotheliomas and gliomas (Moossavi et al., Mol Cancer. 2018;17:158). We describe how laboratory-based assessment of NLRP3 inflammasome activation is emerging as an integral part of the clinical evaluation and treatment of a range of undifferentiated systemic autoinflammatory disorders (uSAID) (Harrison et al., JCI Insight. 2016;1), where a DNA-based diagnosis has not been possible. In addition, this review summarises the current literature on physiological inhibitors and features various pharmacological approaches that are currently being developed, with potential for clinical translation in autoinflammatory and immune-mediated conditions. We discuss the possibilities of rational drug design, based on detailed structural analyses, and some of the challenges in transferring exciting preliminary results from trials of small-molecule inhibitors of the NLRP3 inflammasome, in animal models of disease, to the clinical situation in human pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The NLRP3/NEK7 complex domains and related CAPS mutations.
Fig. 2: PKA-mediated NLRP3 inhibition pathway and the relevant CAPS mutations.
Fig. 3: PKD-mediated NLRP3 activation pathway and the relevant CAPS mutations.
Fig. 4: BTK-mediated NLRP3 modification pathway and the relevant CAPS mutations.
Fig. 5: CAPS mutations affecting NLRP3 sumoylation.
Fig. 6: CAPS mutations affecting NLRP3/NEK7 interactions.

Similar content being viewed by others

References

  1. Vande Walle L, Kanneganti T-D, Lamkanfi M. HMGB1 release by inflammasomes. Virulence. 2011;2:162–5.

    PubMed  PubMed Central  Google Scholar 

  2. Savic S, Caseley EA, McDermott MF. Moving towards a systems-based classification of innate immune-mediated diseases. Nat Rev Rheumatol. 2020;16:1–16.

  3. Krainer J, Siebenhandl S, Weinhäusel A. Systemic autoinflammatory diseases. J Autoimmun. 2020;109:102421.

  4. Zahid A, Li B, Kombe JK, Jin T, Tao J. Pharmacological Inhibitors of the NLRP3 Inflammasome. Front Immunol. 2019;10:2538.

    PubMed  PubMed Central  Google Scholar 

  5. Hoffman HM. Therapy of autoinflammatory syndromes. J Allergy Clin Immunol. 2009;124:1129–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wekell P, Berg S, Karlsson A, Fasth A. Toward an inclusive, congruent, and precise definition of autoinflammatory diseases. Front Immunol. 2017;8:497.

    PubMed  PubMed Central  Google Scholar 

  7. Abbate A, Toldo S, Marchetti C, Kron J, Van Tassell BW, Dinarello CA. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ Res. 2020;126:1260–80.

    CAS  PubMed  Google Scholar 

  8. Romberg N, Vogel TP, Canna SW. NLRC4 inflammasomopathies. Curr Opin Allergy Clin Immunol. 2017;17:398.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21:248.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. He H, Jiang H, Chen Y, Ye J, Wang A, Wang C, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun. 2018;9:1–12.

    Google Scholar 

  11. Jiang H, He H, Chen Y, Huang W, Cheng J, Ye J, et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med. 2017;214:3219–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sarrauste de Menthière C, Terriere S, Pugnere D, Ruiz M, Demaille J, Touitou I. INFEVERS: the registry for FMF and hereditary inflammatory disorders mutations. Nucleic Acids Res. 2003;31:282–5.

    PubMed  PubMed Central  Google Scholar 

  13. Walle LV, Stowe IB, Šácha P, Lee BL, Demon D, Fossoul A, et al. MCC950/CRID3 potently targets the NACHT domain of wild-type NLRP3 but not disease-associated mutants for inflammasome inhibition. PLoS Biol. 2019;17:e3000354.

    CAS  Google Scholar 

  14. Nakanishi H, Prakash P, Ito T, Kim HJ, Brewer CC, Harrow D, et al. Genetic hearing loss associated with autoinflammation. Front Neurol. 2020;11:141.

  15. de Jesus AA, Hou Y, Brooks S, Malle L, Biancotto A, Huang Y, et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J Clin. Invest. 2020;130:1669–82.

  16. Poulter JA, McDermott MA. Faculty Opinions Recommendation of [de Jesus AA et al., J Clin Invest 2020 130:1669–1682]. In Faculty Opinions. https://doi.org/10.3410/f.737127558.793571862.

  17. Gram H. The long and winding road in pharmaceutical development of canakinumab from rare genetic autoinflammatory syndromes to myocardial infarction and cancer. Pharmacol Res. 2019;154:104139.

  18. Cavalli G, Dinarello CA. Anakinra therapy for non-cancer inflammatory diseases. Front Pharmacol 2018;9:1157.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Coburn LA, Horst SN, Chaturvedi R, Brown CT, Allaman MM, Scull BP, et al. High-throughput multi-analyte Luminex profiling implicates eotaxin-1 in ulcerative colitis. PloS ONE. 2013;8:e82300.

  20. Monastero RN, Pentyala S. Cytokines as biomarkers and their respective clinical cutoff levels. Int J Inflamm. 2017;2017:4309485.

  21. Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol. 2012;189:4175–81.

    CAS  PubMed  Google Scholar 

  22. Misawa T, Takahama M, Kozaki T, Lee H, Zou J, Saitoh T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 2013;14:454.

    CAS  PubMed  Google Scholar 

  23. Mortimer L, Moreau F, MacDonald JA, Chadee K. NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nat Immunol. 2016;17:1176.

    CAS  PubMed  Google Scholar 

  24. Indramohan M, Stehlik C, Dorfleutner A. COPs and POPs patrol inflammasome activation. J Mol Biol. 2018;430:153–73.

    CAS  PubMed  Google Scholar 

  25. Kahlenberg JM, Dubyak GR. Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am J Physiol Cell Physiol. 2004;286:C1100–8.

    CAS  PubMed  Google Scholar 

  26. Hu Y, Mao K, Zeng Y, Chen S, Tao Z, Yang C, et al. Tripartite-motif protein 30 negatively regulates NLRP3 inflammasome activation by modulating reactive oxygen species production. J Immunol. 2010;185:7699–705.

    CAS  PubMed  Google Scholar 

  27. Jin J, Yu Q, Han C, Hu X, Xu S, Wang Q, et al. LRRFIP2 negatively regulates NLRP3 inflammasome activation in macrophages by promoting Flightless-I-mediated caspase-1 inhibition. Nat Commun. 2013;4:1–8.

    Google Scholar 

  28. Carpentier SJ, Ni M, Duggan JM, James RG, Cookson BT, Hamerman JA. The signaling adaptor BCAP inhibits NLRP3 and NLRC4 inflammasome activation in macrophages through interactions with Flightless-1. Sci Signal. 2019;12:eaau0615.

    PubMed  PubMed Central  Google Scholar 

  29. Kubota T, Koike R. Cryopyrin-associated periodic syndromes: background and therapeutics. Mod Rheumatol. 2010;20:213–21.

    PubMed  Google Scholar 

  30. Shim D-W, Lee K-H. Posttranslational regulation of the NLR family pyrin domain-containing 3 inflammasome. Front Immunol. 2018;9:1054.

    PubMed  PubMed Central  Google Scholar 

  31. Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019;10:1–11.

    Google Scholar 

  33. Song N, Li T. Regulation of NLRP3 inflammasome by phosphorylation. Front Immunol. 2018;9:2305.

    PubMed  PubMed Central  Google Scholar 

  34. Sokolowska M, Chen L-Y, Liu Y, Martinez-Anton A, Qi H-Y, Logun C, et al. Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cyclic AMP in human macrophages. J Immunol. 2015;194:5472–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Z, Meszaros G, He W-t, Xu Y, de Fatima Magliarelli H, Mailly L, et al. Protein kinase D at the Golgi controls NLRP3 inflammasome activation. J Exp Med. 2017;214:2671–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Pichulik T, Wolz O-O, Dang T-M, Stutz A, Dillen C, et al. Human NACHT, LRR, and PYD domain–containing protein 3 (NLRP3) inflammasome activity is regulated by and potentially targetable through Bruton tyrosine kinase. J Allergy Clin Immunol. 2017;140:1054–67.e10.

    CAS  PubMed  Google Scholar 

  37. Mao L, Kitani A, Hiejima E, Montgomery-Recht K, Zhou W, Fuss I, et al. Bruton tyrosine kinase deficiency augments NLRP3 inflammasome activation and causes IL-1β-mediated colitis. J Clin Invest. 2020;130:1793–1807.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bittner ZA, Liu X, Dickhoefer S, Kalbacher H, Bosch K, Andreeva L, et al. BTK operates a phospho-tyrosine switch to regulate NLRP3 inflammasome activity. bioRxiv. 2019. https://www.biorxiv.org/content/10.1101/864702v1.

  39. Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L, Qiao Q, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature. 2019;570:338–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Han S, Lear TB, Jerome JA, Rajbhandari S, Snavely CA, Gulick DL, et al. Lipopolysaccharide primes the NALP3 inflammasome by inhibiting its ubiquitination and degradation mediated by the SCFFBXL2 E3 ligase. J Biol Chem. 2015;290:18124–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Barry R, John SW, Liccardi G, Tenev T, Jaco I, Chen C-H, et al. SUMO-mediated regulation of NLRP3 modulates inflammasome activity. Nat Commun. 2018;9:1–14.

    CAS  Google Scholar 

  42. Paramel G, Sirsjö A, Fransén K. Role of genetic alterations in the NLRP3 and CARD8 genes in health and disease. Mediat Inflamm. 2015;2015:846782.

    CAS  Google Scholar 

  43. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20:319–25.

    CAS  PubMed  Google Scholar 

  44. Ito S, Hara Y, Kubota T. CARD8 is a negative regulator for NLRP3 inflammasome, but mutant NLRP3 in cryopyrin-associated periodic syndromes escapes the restriction. Arthritis Res Ther. 2014;16:R52.

    PubMed  PubMed Central  Google Scholar 

  45. Cheung MS, Theodoropoulou K, Lugrin J, Martinon F, Busso N, Hofer M. Periodic fever with aphthous stomatitis, pharyngitis, and cervical adenitis syndrome is associated with a CARD8 variant unable to bind the NLRP3 inflammasome. J Immunol. 2017;198:2063–9.

    CAS  PubMed  Google Scholar 

  46. Mao L, Kitani A, Similuk M, Oler AJ, Albenberg L, Kelsen J, et al. Loss-of-function CARD8 mutation causes NLRP3 inflammasome activation and Crohn’s disease. J Clin Invest. 2018;128:1793–806.

    PubMed  PubMed Central  Google Scholar 

  47. Haq T, Richards MW, Burgess SG, Gallego P, Yeoh S, O’Regan L, et al. Mechanistic basis of Nek7 activation through Nek9 binding and induced dimerization. Nat Commun. 2015;6:1–12.

    Google Scholar 

  48. He Y, Zeng MY, Yang D, Motro B, Núñez G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 2016;530:354–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2015;17:250–8.

    PubMed  PubMed Central  Google Scholar 

  50. Chen X, Liu G, Yuan Y, Wu G, Wang S, Yuan L. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis. 2019;10:1–12.

    Google Scholar 

  51. Matsubayashi T, Sugiura H, Arai T, Oh‐Ishi T, Inamo Y. Anakinra therapy for CINCA syndrome with a novel mutation in exon 4 of the CIAS1 gene. Acta Paediatr. 2006;95:246–9.

    PubMed  Google Scholar 

  52. Jesus AA, Silva CA, Segundo GR, Aksentijevich I, Fujihira E, Watanabe M, et al. Phenotype–genotype analysis of cryopyrin-associated periodic syndromes (CAPS): description of a rare non-exon 3 and a novel CIAS1 missense mutation. J Clin Immunol. 2008;28:134.

    CAS  PubMed  Google Scholar 

  53. Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu Rev Immunol. 2009;27:621–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha‐and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1:945–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Duncan JA, Bergstralh DT, Wang Y, Willingham SB, Ye Z, Zimmermann AG, et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. PNAS. 2007;104:8041–6.

    CAS  PubMed  Google Scholar 

  56. Coll RC, Hill JR, Day CJ, Zamoshnikova A, Boucher D, Massey NL, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol. 2019;15:556–9.

    CAS  PubMed  Google Scholar 

  57. Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT, Hofmann SR, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal‐onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin‐associated autoinflammatory diseases. Arthritis Rheum. 2002;46:3340–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Caroli F, Pontillo A, D’Osualdo A, Travan L, Ceccherini I, Crovella S, et al. Clinical and genetic characterization of Italian patients affected by CINCA syndrome. Rheumatology. 2007;46:473–8.

    CAS  PubMed  Google Scholar 

  59. Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, et al. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science. 2015;350:404–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hu Z, Yan C, Liu P, Huang Z, Ma R, Zhang C, et al. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science. 2013;341:172–5.

    CAS  PubMed  Google Scholar 

  61. Matyszewski M, Zheng W, Lueck J, Antiochos B, Egelman EH, Sohn J. Cryo-EM structure of the NLRC4CARD filament provides insights into how symmetric and asymmetric supramolecular structures drive inflammasome assembly. J Biol Chem. 2018;293:20240–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Oroz J, Barrera-Vilarmau S, Alfonso C, Rivas G, de Alba E. ASC pyrin domain self-associates and binds NLRP3 protein using equivalent binding interfaces. J Biol Chem. 2016;291:19487–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Vajjhala PR, Mirams RE, Hill JM. Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein. J Biol Chem. 2012;287:41732–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bae JY, Park HH. Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly. J Biol Chem. 2011;286:39528–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Abais JM, Xia M, Zhang Y, Boini KM, Li P-L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox. Sign. 2015;22:1111–29.

    CAS  Google Scholar 

  66. Hoffman HM, Scott P, Mueller JL, Misaghi A, Stevens S, Yancopoulos GD, et al. Role of the leucine‐rich repeat domain of cryopyrin/NALP3 in monosodium urate crystal–induced inflammation in mice. Arthritis Rheum. 2010;62:2170–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Latz E. The inflammasomes: mechanisms of activation and function. Curr Opin Immunol. 2010;22:28–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Py BF, Kim M-S, Vakifahmetoglu-Norberg H, Yuan J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell. 2013;49:331–8.

    CAS  PubMed  Google Scholar 

  69. Hoss F, Mueller JL, Ringeling FR, Rodriguez-Alcazar JF, Brinkschulte R, Seifert G, et al. Alternative splicing regulates stochastic NLRP3 activity. Nat Commun. 2019;10:1–13.

    CAS  Google Scholar 

  70. Dowds TA, Masumoto J, Zhu L, Inohara N, Núñez G. Cryopyrin-induced interleukin 1β secretion in monocytic cells enhanced activity of disease-associated mutants and requirement for ASC. J Biol Chem. 2004;279:21924–8.

    CAS  PubMed  Google Scholar 

  71. Martinon F, Agostini L, Meylan E, Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol. 2004;14:1929–34.

    CAS  PubMed  Google Scholar 

  72. Hafner-Bratkovič I, Sušjan P, Lainšček D, Tapia-Abellán A, Cerović K, Kadunc L, et al. NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway. Nat Commun. 2018;9:1–18.

    Google Scholar 

  73. Koda A, Nagai H, Watanabe S, Yanagihara Y, Sakamoto K. Inhibition of hypersensitivity reactions by a new drug, N (3′, 4′-dimethoxycinnamoyl) anthranilic acid (N-5′). J Allergy Clin Immunol. 1976;57:396–407.

    CAS  PubMed  Google Scholar 

  74. Huang Y, Jiang H, Chen Y, Wang X, Yang Y, Tao J, et al. Tranilast directly targets NLRP3 to treat inflammasome‐driven diseases. EMBO Mol Med. 2018;10:e8689.

  75. He Y, Varadarajan S, Muñoz-Planillo R, Burberry A, Nakamura Y, Núñez G. 3, 4-methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J Biol Chem. 2014;289:1142–50.

    CAS  PubMed  Google Scholar 

  76. Juliana C, Fernandes-Alnemri T, Wu J, Datta P, Solorzano L, Yu J-W, et al. Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem. 2010;285:9792–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Shim D-W, Shin W-Y, Yu S-H, Kim B-H, Ye S-K, Koppula S, et al. BOT-4-one attenuates NLRP3 inflammasome activation: NLRP3 alkylation leading to the regulation of its ATPase activity and ubiquitination. Sci Rep. 2017;7:1–12.

    Google Scholar 

  78. Perregaux DG, McNiff P, Laliberte R, Hawryluk N, Peurano H, Stam E, et al. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J Pharm Exp Ther. 2001;299:187–97.

    CAS  Google Scholar 

  79. Tapia-Abellán A, Angosto-Bazarra D, Martínez-Banaclocha H, de Torre-Minguela C, Cerón-Carrasco JP, Pérez-Sánchez H, et al. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat Chem Biol. 2019;15:560–4.

    PubMed  PubMed Central  Google Scholar 

  80. Śledź P, Caflisch A. Protein structure-based drug design: from docking to molecular dynamics. Curr Opin Struc Biol 2018;48:93–102.

    Google Scholar 

  81. Abdullaha M, Mohammed S, Ali M, Kumar A, Vishwakarma RA, Bharate SB. Discovery of quinazolin-4 (3 H)-ones as NLRP3 inflammasome inhibitors: computational design, metal-free synthesis, and in vitro biological evaluation. J Org Chem. 2019;84:5129–40.

    CAS  PubMed  Google Scholar 

  82. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell. 2014;156:1193–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Pal A, Neo K, Rajamani L, Ferrer FJ, Lane DP, Verma CS, et al. Inhibition of NLRP3 inflammasome activation by cell-permeable stapled peptides. Sci Rep. 2019;9:1–15.

    Google Scholar 

  84. Chang W-C, Chu M-T, Hsu C-Y, Wu Y-JJ, Lee J-Y, Chen T-J, et al. Rhein, an Anthraquinone drug, suppresses the NLRP3 Inflammasome and macrophage activation in urate crystal-induced gouty inflammation. Am J Chin Med. 2019;47:135–51.

    CAS  PubMed  Google Scholar 

  85. Wally V, Hovnanian A, Ly J, Buckova H, Brunner V, Lettner T, et al. Diacerein orphan drug development for epidermolysis bullosa simplex: a phase 2/3 randomized, placebo-controlled, double-blind clinical trial. J Am Acad Dermatol. 2018;78:892–901.e7.

    CAS  PubMed  Google Scholar 

  86. Marchetti C, Swartzwelter B, Gamboni F, Neff CP, Richter K, Azam T, et al. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. PNAS 2018;115:E1530–9.

    CAS  PubMed  Google Scholar 

  87. Jansen T, Klück V, Janssen M, Comarniceanu A, Efdé M, Scribner C, et al. P160 The first phase 2A proof-of-concept study of a selective NLRP3 inflammasome inhibitor, dapansutrile™(OLT1177™), in acute gout. Ann Rheum Dis. BMJ Publishing Group Ltd. 2019; A70–1.

  88. Inzomelid completes Phase I studies and shows positive results in the treatment of Cryopyrin-Associated Periodic Syndrome (CAPS). 2020.

  89. Darakhshan S, Pour AB. Tranilast: a review of its therapeutic applications. Pharm Res. 2015;91:15–28.

    CAS  Google Scholar 

  90. Mangan MS, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17:588.

    CAS  PubMed  Google Scholar 

  91. Dubreuil P, Letard S, Ciufolini M, Gros L, Humbert M, Castéran N, et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PloS ONE. 2009;4:e7258.

  92. Cikovic T. Effects of small molecules and cytokine signalling on NLRP3 inflammasome activation. Doctoral dissertation, Technische Universität München; 2019.

  93. Mora JS, Genge A, Chio A, Estol CJ, Chaverri D, Hernández M, et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph Lateral Scler Frontotemporal Degeneration. 2020;21:5–14.

    CAS  Google Scholar 

  94. Science A. Masitinib significantly delays disability progression on EDSS in patients with primary progressive (PPMS) and non-active secondary progressive (nSPMS) multiple sclerosis. 2020. https://multiplesclerosisnewstoday.com/news-posts/2020/02/21/ab-science-announces-positive-top-line-phase-2b3-results-for-oral-masitinib-in-progressive-forms-of-multiple-sclerosis/.

  95. Science A. Interim results of masitinib study in Alzheimer’s disease: positive trend of efficacy in one of the doses tested. 2019. http://www.ab-sciencecom/images/_pdf/CP_AD_Interim_VEng_VF.pdf.

  96. Maier NK, Crown D, Liu J, Leppla SH, Moayeri M. Arsenic trioxide and other arsenical compounds inhibit the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes. J Immunol. 2014;192:763–70.

    CAS  PubMed  Google Scholar 

  97. Paugh SW, Bonten EJ, Savic D, Ramsey LB, Thierfelder WE, Gurung P, et al. The NLRP3-CASP1 Inflammasome Induces Glucocorticoid Resistance in ALL. Cancer Discov. 2015;5:18.

  98. Pang Z, Wang G, Ran N, Lin H, Wang Z, Guan X, et al. Inhibitory effect of methotrexate on rheumatoid arthritis inflammation and comprehensive metabolomics analysis using ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-Q/TOF-MS). Int J Mol Sci. 2018;19:2894.

    PubMed Central  Google Scholar 

  99. Tang T-T, Lv L-L, Pan M-M, Wen Y, Wang B, Li Z-L, et al. Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation. Cell Death Dis. 2018;9:1–14.

    Google Scholar 

  100. Iyer SS, He Q, Janczy JR, Elliott EI, Zhong Z, Olivier AK, et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity. 2013;39:311–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Busillo JM, Azzam KM, Cidlowski JA. Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. J Biol Chem. 2011;286:38703–13.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors (EC, JP and MMcD) are supported by the EU Horizon 2020 research and innovation program (ImmunAID; grant agreement number 779295); FR is supported the Foundation for Development of Internal Medicine in Europe (FDIME), the European Federation of Internal Medicine (EFIM) and the French National Society for Internal Medicine (SNFMI).

Immunome Project Consortium for Autoinflammatory Disorders (ImmunAID)

Emily A. Caseley1, James A. Poulter1, Michael F. McDermott1, Vassili Soumelis1

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Michael F. McDermott.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Members of the Immunome project consortium for Autoinflammatory Disorders (ImmunAID) are listed below Acknowledgements.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caseley, E.A., Poulter, J.A., Rodrigues, F. et al. Inflammasome inhibition under physiological and pharmacological conditions. Genes Immun 21, 211–223 (2020). https://doi.org/10.1038/s41435-020-0104-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-020-0104-x

This article is cited by

Search

Quick links