Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The many faces of tumor necrosis factor signaling in the intestinal epithelium

Abstract

The intestinal epithelium represents an exquisite complex combination of specialized cellular components, structural organization, as well as fine-tuned maintenance and renewal mechanisms that ensure its barrier and absorptive function. Defects in one or more of these components can lead to devastating consequences for the organisms, and when chronic, even develop into inflammatory diseases, such as Crohn’s disease or ulcerative colitis. In these scenarios, the cytokine TNF (Tumor Necrosis Factor α) appears to be a major inflammation-promoting and tissue damage-promoting effector molecule. Besides its role in inflammation and cell death, TNF presents a wide range of pleiotropic activities with implications in various cellular processes, including proliferation and differentiation. Moreover, more recent evidences suggest an anti-inflammatory role of TNF, mostly via the induction of local glucocorticoids synthesis in the intestinal epithelium. Thus, the outcome of TNF receptor signaling largely depends on various factors, like the TNFR composition and the precise cellular context or tissue type, which will determine the cellular fate. In this review, we discuss the molecular mechanisms and their potential crosstalk that regulate the different TNF-initiated cellular outcomes in the intestine, as well as possible applications for pharmacological interventions in the treatment of inflammatory disorders of the intestinal mucosa.

Highlights

  • TNF stimulation leads to survival, inflammation, apoptosis and necroptosis induction, depending on the cellular background and the disruption of specific checkpoints.

  • The intestinal epithelium is exquisitely sensitive to TNF-induced cell death.

  • TNF signaling involves early NF-κB-independent, as well as late NF-κB-dependent checkpoints.

  • TNF-induced cell death is often associated with intestinal immunopathologies, such as inflammatory bowel disease.

  • TNF induces local intestinal glucocorticoid synthesis, which regulates immune homeostasis in the intestinal mucosa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kato T, Owen RL. Structure and function of intestinal mucosal epithelium. In: Mucosal Immunology. 1. 3rd edn. Elsevier Academic Press; 2005.

  2. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.

    Article  CAS  PubMed  Google Scholar 

  3. Haegebarth A, Clevers H. Wnt signaling, lgr5, and stem cells in the intestine and skin. Am J Pathol. 2009;174:715–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheng H, Merzel J, Leblond CP. Renewal of Paneth cells in the small intestine of the mouse. Am J Anat. 1969;126:507–25.

    Article  CAS  PubMed  Google Scholar 

  5. Ireland H, Houghton C, Howard L, et al. Cellular inheritance of a Cre-activated reporter gene to determine Paneth cell longevity in the murine small intestine. Dev Dyn. 2005;233:1332–6.

    Article  CAS  PubMed  Google Scholar 

  6. Williams JM, Duckworth CA, Burkitt MD, et al. Epithelial cell shedding and barrier function: a matter of life and death at the small intestinal villus tip. Vet Pathol. 2015;52:445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Es JH, Clevers H. Paneth cells. Curr Biol. 2014;24:R547–R8.

    Article  CAS  PubMed  Google Scholar 

  8. Delgado ME, Grabinger T, Brunner T. Cell death at the intestinal epithelial front line. FEBS J. 2016;283:2701–19.

    Article  CAS  PubMed  Google Scholar 

  9. Gunther C, Neumann H, Neurath MF, et al. Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut. 2013;62:1062–71.

    Article  CAS  PubMed  Google Scholar 

  10. Mayhew TM, Myklebust R, Whybrow A, et al. Epithelial integrity, cell death and cell loss in mammalian small intestine. Histol Histopathol. 1999;14:257–67.

    CAS  PubMed  Google Scholar 

  11. Ng GZ, Sutton P. The MUC1 mucin specifically inhibits activation of the NLRP3 inflammasome. Genes Immun. 2016;17:203–6.

    Article  CAS  PubMed  Google Scholar 

  12. Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010;12:319–30.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pasparakis M. Role of NF-kappaB in epithelial biology. Immunol Rev. 2012;246:346–58.

    Article  CAS  PubMed  Google Scholar 

  14. Shires J, Theodoridis E, Hayday AC. Biological insights into TCRgammadelta+and TCRalphabeta+intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity. 2001;15:419–34.

    Article  CAS  PubMed  Google Scholar 

  15. Brunner T, Arnold D, Wasem C, et al. Regulation of cell death and survival in intestinal intraepithelial lymphocytes. Cell Death Differ. 2001;8:706–14.

    Article  CAS  PubMed  Google Scholar 

  16. Hoytema van Konijnenburg DP, Reis BS, Pedicord VA, et al. Intestinal Epithelial and Intraepithelial T Cell Crosstalk Mediates a Dynamic Response to Infection. Cell. 2017;171:783–94 e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheroutre H, Lambolez F, Mucida D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol. 2011;11:445–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuka M, Iannacone M. Intestinal flossing keeps pathogens at bay. Dev Cell. 2017;43:383–4.

    Article  CAS  PubMed  Google Scholar 

  19. Sheridan BS, Lefrancois L. Intraepithelial lymphocytes: to serve and protect. Curr Gastroenterol Rep. 2010;12:513–21.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Leppkes M, Roulis M, Neurath MF, et al. Pleiotropic functions of TNF-alpha in the regulation of the intestinal epithelial response to inflammation. Int Immunol. 2014;26:509–15.

    Article  CAS  PubMed  Google Scholar 

  21. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14:141–53.

    Article  CAS  PubMed  Google Scholar 

  22. Hussman JP, Beecham AH, Schmidt M, et al. GWAS analysis implicates NF-kappaB-mediated induction of inflammatory T cells in multiple sclerosis. Genes Immun. 2016;17:305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Corazza N, Eichenberger S, Eugster HP, et al. Nonlymphocyte-derived tumor necrosis factor is required for induction of colitis in recombination activating gene (RAG)2(-/-) mice upon transfer of CD4(+)CD45RB(hi) T cells. J Exp Med. 1999;190:1479–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neurath MF, Fuss I, Pasparakis M, et al. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol. 1997;27:1743–50.

    Article  CAS  PubMed  Google Scholar 

  25. Sedger LM, McDermott MFTNF. and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev. 2014;25:453–72.

    Article  CAS  PubMed  Google Scholar 

  26. Wang XB, Ellis JJ, Pennisi DJ, et al. Transcriptome analysis of ankylosing spondylitis patients before and after TNF-alpha inhibitor therapy reveals the pathways affected. Genes Immun. 2017;18:184–90.

    Article  CAS  PubMed  Google Scholar 

  27. Roulis M, Armaka M, Manoloukos M, et al. Intestinal epithelial cells as producers but not targets of chronic TNF suffice to cause murine Crohn-like pathology. Proc Natl Acad Sci USA. 2011;108:5396–401.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moss ML, Jin SL, Milla ME, et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 1997;385:733–6.

    Article  CAS  PubMed  Google Scholar 

  29. Black RA, Rauch CT, Kozlosky CJ, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997;385:729–33.

    Article  CAS  PubMed  Google Scholar 

  30. Chan FK, Chun HJ, Zheng L, et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science. 2000;288:2351–4.

    Article  CAS  PubMed  Google Scholar 

  31. Palladino MA, Bahjat FR, Theodorakis EA, et al. Anti-TNF-alpha therapies: the next generation. Nat Rev Drug Discov. 2003;2:736–46.

    Article  CAS  PubMed  Google Scholar 

  32. Hohmann HP, Remy R, Brockhaus M, et al. Two different cell types have different major receptors for human tumor necrosis factor (TNF alpha). J Biol Chem. 1989;264:14927–34.

    CAS  PubMed  Google Scholar 

  33. Fiers W. Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett. 1991;285:199–212.

    Article  CAS  PubMed  Google Scholar 

  34. Aggarwal BB, Eessalu TE, Hass PE. Characterization of receptors for human tumour necrosis factor and their regulation by gamma-interferon. Nature. 1985;318:665–7.

    Article  CAS  PubMed  Google Scholar 

  35. Wang F, Graham WV, Wang Y, et al. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol. 2005;166:409–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Musch MW, Clarke LL, Mamah D, et al. T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+-ATPase. J Clin Invest. 2002;110:1739–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grell M, Douni E, Wajant H, et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell. 1995;83:793–802.

    Article  CAS  PubMed  Google Scholar 

  38. Billmeier U, Dieterich W, Neurath MF, et al. Molecular mechanism of action of anti-tumor necrosis factor antibodies in inflammatory bowel diseases. World J Gastroenterol. 2016;22:9300–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aversa G, Punnonen J, de Vries JE. The 26-kD transmembrane form of tumor necrosis factor alpha on activated CD4+ T cell clones provides a costimulatory signal for human B cell activation. J Exp Med. 1993;177:1575–85.

    Article  CAS  PubMed  Google Scholar 

  40. Eissner G, Kolch W, Scheurich P. Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev. 2004;15:353–66.

    Article  CAS  PubMed  Google Scholar 

  41. Faustman DL, Davis M. TNF receptor 2 and disease: autoimmunity and regenerative medicine. Front Immunol. 2013;4:478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lavrik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci. 2005;118(Pt 2):265–7.

    Article  CAS  PubMed  Google Scholar 

  43. Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem Sci. 2002;27:19–26.

    Article  CAS  PubMed  Google Scholar 

  44. Gonzalvez F, Ashkenazi A. New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene. 2010;29:4752–65.

    Article  CAS  PubMed  Google Scholar 

  45. Fiandalo MV, Kyprianou N. Caspase control: protagonists of cancer cell apoptosis. Exp Oncol. 2012;34:165–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Piguet PF, Vesin C, Donati Y, et al. TNF-induced enterocyte apoptosis and detachment in mice: induction of caspases and prevention by a caspase inhibitor, ZVAD-fmk. Lab Invest. 1999;79:495–500.

    CAS  PubMed  Google Scholar 

  47. Piguet PF, Vesin C, Guo J, et al. TNF-induced enterocyte apoptosis in mice is mediated by the TNF receptor 1 and does not require p53. Eur J Immunol. 1998;28:3499–505.

    Article  CAS  PubMed  Google Scholar 

  48. Grabinger T, Bode KJ, Demgenski J, et al. Inhibitor of apoptosis protein-1 regulates tumor necrosis factor-mediated destruction of intestinal epithelial cells. Gastroenterology. 2017;152:867–79.

    Article  CAS  PubMed  Google Scholar 

  49. Naude PJ, den Boer JA, Luiten PG, et al. Tumor necrosis factor receptor cross-talk. FEBS J. 2011;278:888–98.

    Article  CAS  PubMed  Google Scholar 

  50. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90.

    Article  CAS  PubMed  Google Scholar 

  51. Wu GS, Burns TF, Zhan Y, et al. Molecular cloning and functional analysis of the mouse homologue of the KILLER/DR5 tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor. Cancer Res. 1999;59:2770–5.

    CAS  PubMed  Google Scholar 

  52. Ting AT, Bertrand MJM. More to Life than NF-kappaB in TNFR1 Signaling. Trends Immunol. 2016;37:535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Varfolomeev EE, Ashkenazi A. Tumor necrosis factor: an apoptosis JuNKie? Cell. 2004;116:491–7.

    Article  CAS  PubMed  Google Scholar 

  54. Harhaj EW, Dixit VM. Regulation of NF-kappaB by deubiquitinases. Immunol Rev. 2012;246:107–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vereecke L, Sze M, Mc Guire C, et al. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J Exp Med. 2010;207:1513–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang J, Stirling B, Temmerman ST, et al. Impaired regulation of NF-kappaB and increased susceptibility to colitis-associated tumorigenesis in CYLD-deficient mice. J Clin Invest. 2006;116:3042–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karatzas DN, Xanthopoulos K, Kotantaki P, et al. Inactivation of CYLD in intestinal epithelial cells exacerbates colitis-associated colorectal carcinogenesis - a short report. Cell Oncol. 2016;39:287–93.

    Article  CAS  Google Scholar 

  58. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol. 2002;3:221–7.

    Article  CAS  PubMed  Google Scholar 

  59. Falvo JV, Tsytsykova AV, Goldfeld AE. Transcriptional control of the TNF gene. Curr Dir Autoimmun. 2010;11:27–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sabio G, Davis RJ. TNF and MAP kinase signalling pathways. Semin Immunol. 2014;26:237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410:37–40.

    Article  CAS  PubMed  Google Scholar 

  62. Xia Y, Wu Z, Su B, et al. JNKK1 organizes a MAP kinase module through specific and sequential interactions with upstream and downstream components mediated by its amino-terminal extension. Genes Dev. 1998;12:3369–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mak TW, Yeh WC. Signaling for survival and apoptosis in the immune system. Arthritis Res. 2002;4(Suppl 3):S243–52.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23:2838–49.

    Article  CAS  PubMed  Google Scholar 

  65. Lasa M, Mahtani KR, Finch A, et al. Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol Cell Biol. 2000;20:4265–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Winzen R, Kracht M, Ritter B, et al. Thep38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J. 1999;18:4969–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wasserman JD, Freeman M. An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell. 1998;95:355–64.

    Article  CAS  PubMed  Google Scholar 

  68. Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995;270:1326–31.

    Article  CAS  PubMed  Google Scholar 

  69. De Smaele E, Zazzeroni F, Papa S, et al. Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature. 2001;414:308–13.

    Article  PubMed  Google Scholar 

  70. Wicovsky A, Muller N, Daryab N, et al. Sustained JNK activation in response to tumor necrosis factor is mediated by caspases in a cell type-specific manner. J Biol Chem. 2007;282:2174–83.

    Article  CAS  PubMed  Google Scholar 

  71. Papa S, Zazzeroni F, Pham CG, et al. Linking JNK signaling to NF-kappaB: a key to survival. J Cell Sci. 2004;117(Pt 22):5197–208.

    Article  CAS  PubMed  Google Scholar 

  72. Malinin NL, Boldin MP, Kovalenko AV, et al. MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature. 1997;385:540–4.

    Article  CAS  PubMed  Google Scholar 

  73. Zarnegar BJ, Wang Y, Mahoney DJ, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol. 2008;9:1371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Senftleben U, Cao Y, Xiao G, et al. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science. 2001;293:1495–9.

    Article  CAS  PubMed  Google Scholar 

  75. Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell. 2001;7:401–9.

    Article  CAS  PubMed  Google Scholar 

  76. Xiao G, Fong A, Sun SC. Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. J Biol Chem. 2004;279:30099–105.

    Article  CAS  PubMed  Google Scholar 

  77. Liao G, Zhang M, Harhaj EW, et al. Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem. 2004;279:26243–50.

    Article  CAS  PubMed  Google Scholar 

  78. Kim JY, Morgan M, Kim DG, et al. TNFalpha induced noncanonical NF-kappaB activation is attenuated by RIP1 through stabilization of TRAF2. J Cell Sci. 2011;124(Pt 4):647–56.

    Article  CAS  PubMed  Google Scholar 

  79. Yin L, Wu L, Wesche H, et al. Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science. 2001;291:2162–5.

    Article  CAS  PubMed  Google Scholar 

  80. Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell. 2008;133:693–703.

    Article  CAS  PubMed  Google Scholar 

  81. Lavrik IN, Mock T, Golks A, et al. CD95 stimulation results in the formation of a novel death effector domain protein-containing complex. J Biol Chem. 2008;283:26401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sprick MR, Rieser E, Stahl H, et al. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J. 2002;21:4520–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chun HJ, Zheng L, Ahmad M, et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature. 2002;419:395–9.

    Article  CAS  PubMed  Google Scholar 

  84. Krueger A, Schmitz I, Baumann S, et al. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem. 2001;276:20633–40.

    Article  CAS  PubMed  Google Scholar 

  85. Fricker N, Beaudouin J, Richter P, et al. Model-based dissection of CD95 signaling dynamics reveals both a pro- and antiapoptotic role of c-FLIPL. J Cell Biol. 2010;190:377–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Safa AR. c-FLIP, a master anti-apoptotic regulator. Exp Oncol. 2012;34:176–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Budd RC, Yeh WC, Tschopp J. cFLIP regulation of lymphocyte activation and development. Nat Rev Immunol. 2006;6:196–204.

    Article  CAS  PubMed  Google Scholar 

  88. Kavuri SM, Geserick P, Berg D, et al. Cellular FLICE-inhibitory protein (cFLIP) isoforms block CD95- and TRAIL death receptor-induced gene induction irrespective of processing of caspase-8 or cFLIP in the death-inducing signaling complex. J Biol Chem. 2011;286:16631–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hoffmann JC, Pappa A, Krammer PH, et al. A new C-terminal cleavage product of procaspase-8, p30, defines an alternative pathway of procaspase-8 activation. Mol Cell Biol. 2009;29:4431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lin Y, Devin A, Rodriguez Y, et al. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 1999;13:2514–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kataoka T, Tschopp J. N-terminal fragment of c-FLIP(L) processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-kappaB signaling pathway. Mol Cell Biol. 2004;24:2627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Neumann L, Pforr C, Beaudouin J, et al. Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Mol Syst Biol. 2010;6:352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lavrik IN, Krammer PH. Regulation of CD95/Fas signaling at the DISC. Cell Death Differ. 2012;19:36–41.

    Article  CAS  PubMed  Google Scholar 

  94. Micheau O, Lens S, Gaide O, et al. NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol. 2001;21:5299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kataoka T, Budd RC, Holler N, et al. The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. Curr Biol. 2000;10:640–8.

    Article  CAS  PubMed  Google Scholar 

  96. Chang L, Kamata H, Solinas G, et al. The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell. 2006;124:601–13.

    Article  CAS  PubMed  Google Scholar 

  97. Piao X, Komazawa-Sakon S, Nishina T, et al. c-FLIP maintains tissue homeostasis by preventing apoptosis and programmed necrosis. Sci Signal. 2012;5:ra93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Seidelin JB, Coskun M, Vainer B, et al. ERK controls epithelial cell death receptor signalling and cellular FLICE-like inhibitory protein (c-FLIP) in ulcerative colitis. J Mol Med. 2013;91:839–49.

    Article  CAS  PubMed  Google Scholar 

  99. Vandenabeele P, Declercq W, Van Herreweghe F, et al. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal. 2010;3:re4.

    Article  CAS  PubMed  Google Scholar 

  100. Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517:311–20.

    Article  CAS  PubMed  Google Scholar 

  101. Sun X, Yin J, Starovasnik MA, et al. Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem. 2002;277:9505–11.

    Article  CAS  PubMed  Google Scholar 

  102. Galluzzi L, Kepp O, Kroemer G. RIP kinases initiate programmed necrosis. J Mol Cell Biol. 2009;1:8–10.

    Article  CAS  PubMed  Google Scholar 

  103. Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Oberst A, Dillon CP, Weinlich R, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 2011;471:363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Feng S, Yang Y, Mei Y, et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal. 2007;19:2056–67.

    Article  CAS  PubMed  Google Scholar 

  106. O’Donnell MA, Perez-Jimenez E, Oberst A, et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol. 2011;13:1437–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wright A, Reiley WW, Chang M, et al. Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev Cell. 2007;13:705–16.

    Article  CAS  PubMed  Google Scholar 

  108. Pierdomenico M, Negroni A, Stronati L, et al. Necroptosis is active in children with inflammatory bowel disease and contributes to heighten intestinal inflammation. Am J Gastroenterol. 2014;109:279–87.

    Article  CAS  PubMed  Google Scholar 

  109. Gunther C, Martini E, Wittkopf N, et al. Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature. 2011;477:335–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Welz PS, Wullaert A, Vlantis K, et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature. 2011;477:330–4.

    Article  CAS  PubMed  Google Scholar 

  111. Henry CM, Martin SJ. Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory “FADDosome” Complex upon TRAIL Stimulation. Mol Cell. 2017;65:715–29 e5.

    Article  CAS  PubMed  Google Scholar 

  112. Caprioli F, Stolfi C, Caruso R, et al. Transcriptional and post-translational regulation of Flip, an inhibitor of Fas-mediated apoptosis, in human gut inflammation. Gut. 2008;57:1674–80.

    Article  CAS  PubMed  Google Scholar 

  113. Zhao Q, Yu X, Zhang H, et al. RIPK3 mediates necroptosis during embryonic development and postnatal inflammation in Fadd-deficient mice. Cell Rep. 2017;19:798–808.

    Article  CAS  PubMed  Google Scholar 

  114. Dondelinger Y, Aguileta MA, Goossens V, et al. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ. 2013;20:1381–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zelic M, Roderick JE, O’Donnell JA, et al. RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome. J Clin Invest. 2018;128:2064–75.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Newton K, Dugger DL, Maltzman A, et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 2016;23:1565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Takahashi N, Vereecke L, Bertrand MJ, et al. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature. 2014;513:95–9.

    Article  CAS  PubMed  Google Scholar 

  118. Dannappel M, Vlantis K, Kumari S, et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature. 2014;513:90–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lee TH, Shank J, Cusson N, et al. The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J Biol Chem. 2004;279:33185–91.

    Article  CAS  PubMed  Google Scholar 

  120. Berger SB, Kasparcova V, Hoffman S, et al. Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J Immunol. 2014;192:5476–80.

    Article  CAS  PubMed  Google Scholar 

  121. O’Donnell MA, Legarda-Addison D, Skountzos P, et al. Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr Biol. 2007;17:418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Newton K, Dugger DL, Wickliffe KE, et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science. 2014;343:1357–60.

    Article  CAS  PubMed  Google Scholar 

  123. Wang CY, Mayo MW, Korneluk RG, et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281:1680–3.

    Article  CAS  PubMed  Google Scholar 

  124. Van Antwerp DJ, Martin SJ, Kafri T, et al. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science. 1996;274:787–9.

    Article  PubMed  Google Scholar 

  125. Li X, Yang Y, Ashwell JD. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature. 2002;416:345–7.

    Article  PubMed  Google Scholar 

  126. Giampazolias E, Zunino B, Dhayade S, et al. Mitochondrial permeabilization engages NF-kappaB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19:1116–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Vlantis K, Wullaert A, Polykratis A, et al. NEMO Prevents RIP Kinase 1-Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF-kappaB-Dependent and -Independent Functions. Immunity. 2016;44:553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Greten FR, Eckmann L, Greten TF, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118:285–96.

    Article  CAS  PubMed  Google Scholar 

  129. Nenci A, Becker C, Wullaert A, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature. 2007;446:557–61.

    Article  CAS  PubMed  Google Scholar 

  130. Kajino-Sakamoto R, Inagaki M, Lippert E, et al. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. J Immunol. 2008;181:1143–52.

    Article  CAS  PubMed  Google Scholar 

  131. Vanlangenakker N, Vanden Berghe T, Bogaert P, et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ. 2011;18:656–65.

    Article  CAS  PubMed  Google Scholar 

  132. Legarda-Addison D, Hase H, O’Donnell MA, et al. NEMO/IKKgamma regulates an early NF-kappaB-independent cell-death checkpoint during TNF signaling. Cell Death Differ. 2009;16:1279–88.

    Article  CAS  PubMed  Google Scholar 

  133. Dondelinger Y, Jouan-Lanhouet S, Divert T, et al. NF-kappaB-Independent Role of IKKalpha/IKKbeta in Preventing RIPK1 Kinase-Dependent Apoptotic and Necroptotic Cell Death during TNF Signaling. Mol Cell. 2015;60:63–76.

    Article  CAS  PubMed  Google Scholar 

  134. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281:1305–8.

    Article  CAS  PubMed  Google Scholar 

  135. Schneider-Brachert W, Tchikov V, Neumeyer J, et al. Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity. 2004;21:415–28.

    Article  CAS  PubMed  Google Scholar 

  136. Siegmund D, Kums J, Ehrenschwender M, et al. Activation of TNFR2 sensitizes macrophages for TNFR1-mediated necroptosis. Cell Death Dis. 2016;7:e2375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rauert H, Wicovsky A, Muller N, et al. Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J Biol Chem. 2010;285:7394–404.

    Article  CAS  PubMed  Google Scholar 

  138. Wang K, Han G, Dou Y, et al. Opposite role of tumor necrosis factor receptors in dextran sulfate sodium-induced colitis in mice. PLoS One. 2012;7:e52924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nakai M, Sudo K, Yamada Y, et al. The role of the tumor necrosis factor receptor in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Dig Dis Sci. 2005;50:1669–76.

    Article  CAS  PubMed  Google Scholar 

  140. Dayer Schneider J, Seibold I, Saxer-Sekulic N, et al. Lack of TNFR2 expression by CD4(+) T cells exacerbates experimental colitis. Eur J Immunol. 2009;39:1743–53.

    Article  CAS  PubMed  Google Scholar 

  141. Su L, Nalle SC, Shen L, et al. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology. 2013;145:407–15.

    Article  CAS  PubMed  Google Scholar 

  142. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.

    Article  CAS  PubMed  Google Scholar 

  143. Medvedev AE, Sundan A, Espevik T. Involvement of the tumor necrosis factor receptor p75 in mediating cytotoxicity and gene regulating activities. Eur J Immunol. 1994;24:2842–9.

    Article  CAS  PubMed  Google Scholar 

  144. Borghi A, Verstrepen L, Beyaert R. TRAF2 multitasking in TNF receptor-induced signaling to NF-kappaB, MAP kinases and cell death. Biochem Pharmacol. 2016;116:1–10.

    Article  CAS  PubMed  Google Scholar 

  145. Li L, Soetandyo N, Wang Q, et al. The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. Biochim Biophys Acta. 2009;1793:346–53.

    Article  CAS  PubMed  Google Scholar 

  146. Erickson SL, de Sauvage FJ, Kikly K, et al. Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature. 1994;372:560–3.

    Article  CAS  PubMed  Google Scholar 

  147. Peschon JJ, Torrance DS, Stocking KL, et al. TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J Immunol. 1998;160:943–52.

    CAS  PubMed  Google Scholar 

  148. Wajant H. The TWEAK-Fn14 system as a potential drug target. Br J Pharmacol. 2013;170:748–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Vince JE, Chau D, Callus B, et al. TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. J Cell Biol. 2008;182:171–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Schneider P, Schwenzer R, Haas E, et al. TWEAK can induce cell death via endogenous TNF and TNF receptor 1. Eur J Immunol. 1999;29:1785–92.

    Article  CAS  PubMed  Google Scholar 

  151. Ikner A, Ashkenazi A. TWEAK induces apoptosis through a death-signaling complex comprising receptor-interacting protein 1 (RIP1), Fas-associated death domain (FADD), and caspase-8. J Biol Chem. 2011;286:21546–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Siegmund D, Ehrenschwender M, Wajant H. TNFR2 unlocks a RIPK1 kinase activity-dependent mode of proinflammatory TNFR1 signaling. Cell Death Dis. 2018;9:921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kiesslich R, Goetz M, Angus EM, et al. Identification of epithelial gaps in human small and large intestine by confocal endomicroscopy. Gastroenterology. 2007;133:1769–78.

    Article  PubMed  Google Scholar 

  154. McElroy SJ, Prince LS, Weitkamp JH, et al. Tumor necrosis factor receptor 1-dependent depletion of mucus in immature small intestine: a potential role in neonatal necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2011;301:G656–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zeissig S, Burgel N, Gunzel D, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56:61–72.

    Article  CAS  PubMed  Google Scholar 

  156. Park JH, Peyrin-Biroulet L, Eisenhut M, et al. IBD immunopathogenesis: a comprehensive review of inflammatory molecules. Autoimmun Rev. 2017;16:416–26.

    Article  CAS  PubMed  Google Scholar 

  157. Roda G, Sartini A, Zambon E, et al. Intestinal epithelial cells in inflammatory bowel diseases. World J Gastroenterol. 2010;16:4264–71.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Shaw KA, Cutler DJ, Okou D, et al. Genetic variants and pathways implicated in a pediatric inflammatory bowel disease cohort. Genes Immun. 2018. https://doi.org/10.1038/s41435-018-0015-2.

  159. Wallace KL, Zheng LB, Kanazawa Y, et al. Immunopathology of inflammatory bowel disease. World J Gastroenterol. 2014;20:6–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Komatsu M, Kobayashi D, Saito K, et al. Tumor necrosis factor-alpha in serum of patients with inflammatory bowel disease as measured by a highly sensitive immuno-PCR. Clin Chem. 2001;47:1297–301.

    CAS  PubMed  Google Scholar 

  161. Braegger CP, Nicholls S, Murch SH, et al. Tumour necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet. 1992;339:89–91.

    Article  CAS  PubMed  Google Scholar 

  162. Eichele DD, Kharbanda KK. Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol. 2017;23:6016–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sashio H, Tamura K, Ito R, et al. Polymorphisms of the TNF gene and the TNF receptor superfamily member 1B gene are associated with susceptibility to ulcerative colitis and Crohn’s disease, respectively. Immunogenetics. 2002;53:1020–7.

    Article  CAS  PubMed  Google Scholar 

  164. Pierik M, Vermeire S, Steen KV, et al. Tumour necrosis factor-alpha receptor 1 and 2 polymorphisms in inflammatory bowel disease and their association with response to infliximab. Aliment Pharmacol Ther. 2004;20:303–10.

    Article  CAS  PubMed  Google Scholar 

  165. Watts L, Karaderi T, Roberts A, et al. The severity of ankylosing spondylitis and responses to anti-tumour necrosis factor biologics are not influenced by the tumour necrosis factor receptor polymorphism incriminated in multiple sclerosis. Genes Immun. 2018. https://doi.org/10.1038/s41435-018-0017-0.

  166. Senhaji N, Serrano A, Badre W, et al. Association of inflammatory cytokine gene polymorphisms with inflammatory bowel disease in a Moroccan cohort. Genes Immun. 2016;17:60–5.

    Article  CAS  PubMed  Google Scholar 

  167. Holtmann MH, Douni E, Schutz M, et al. Tumor necrosis factor-receptor 2 is up-regulated on lamina propria T cells in Crohn’s disease and promotes experimental colitis in vivo. Eur J Immunol. 2002;32:3142–51.

    Article  CAS  PubMed  Google Scholar 

  168. Funderburg NT, Stubblefield Park SR, Sung HC, et al. Circulating CD4(+) and CD8(+) T cells are activated in inflammatory bowel disease and are associated with plasma markers of inflammation. Immunology. 2013;140:87–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Plevy SE, Landers CJ, Prehn J, et al. A role for TNF-alpha and mucosal T helper-1 cytokines in the pathogenesis of Crohn’s disease. J Immunol. 1997;159:6276–82.

    CAS  PubMed  Google Scholar 

  170. Li X, Kimberly RP. Targeting the Fc receptor in autoimmune disease. Expert Opin Ther Targets. 2014;18:335–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ha C, Mathur J, Kornbluth A. Anti-TNF levels and anti-drug antibodies, immunosuppressants and clinical outcomes in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol. 2015;9:497–505.

    Article  CAS  PubMed  Google Scholar 

  172. Connor V. Anti-TNF therapies: a comprehensive analysis of adverse effects associated with immunosuppression. Rheumatol Int. 2011;31:327–37.

    Article  CAS  PubMed  Google Scholar 

  173. Siegel SA, Shealy DJ, Nakada MT, et al. The mouse/human chimeric monoclonal antibody cA2 neutralizes TNF in vitro and protects transgenic mice from cachexia and TNF lethality in vivo. Cytokine. 1995;7:15–25.

    Article  CAS  PubMed  Google Scholar 

  174. Weinblatt ME, Kremer JM, Bankhurst AD, et al. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med. 1999;340:253–9.

    Article  CAS  PubMed  Google Scholar 

  175. Hutas G. Golimumab as the first monthly subcutaneous fully human anti-TNF-alpha antibody in the treatment of inflammatory arthropathies. Immunotherapy. 2010;2:453–60.

    Article  CAS  PubMed  Google Scholar 

  176. Sandborn WJ, Feagan BG, Stoinov S, et al. Certolizumab pegol for the treatment of Crohn’s disease. N Engl J Med. 2007;357:228–38.

    Article  CAS  PubMed  Google Scholar 

  177. Corazza N, Brunner T, Buri C, et al. Transmembrane tumor necrosis factor is a potent inducer of colitis even in the absence of its secreted form. Gastroenterology. 2004;127:816–25.

    Article  CAS  PubMed  Google Scholar 

  178. Perrier C, de Hertogh G, Cremer J, et al. Neutralization of membrane TNF, but not soluble TNF, is crucial for the treatment of experimental colitis. Inflamm Bowel Dis. 2013;19:246–53.

    Article  PubMed  Google Scholar 

  179. Chapman AP. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev. 2002;54:531–45.

    Article  CAS  PubMed  Google Scholar 

  180. Noti M, Corazza N, Mueller C, et al. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J Exp Med. 2010;207:1057–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Naito Y, Takagi T, Handa O, et al. Enhanced intestinal inflammation induced by dextran sulfate sodium in tumor necrosis factor-alpha deficient mice. J Gastroenterol Hepatol. 2003;18:560–9.

    Article  CAS  PubMed  Google Scholar 

  182. Zheng L, Fisher G, Miller RE, et al. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature. 1995;377:348–51.

    Article  CAS  PubMed  Google Scholar 

  183. Muller S, Rihs S, Schneider JM, et al. Soluble TNF-alpha but not transmembrane TNF-alpha sensitizes T cells for enhanced activation-induced cell death. Eur J Immunol. 2009;39:3171–80.

    Article  CAS  PubMed  Google Scholar 

  184. Zhou T, Edwards CK 3rd, Yang P, et al. Greatly accelerated lymphadenopathy and autoimmune disease in lpr mice lacking tumor necrosis factor receptor I. J Immunol. 1996;156:2661–5.

    CAS  PubMed  Google Scholar 

  185. Noti M, Corazza N, Tuffin G, et al. Lipopolysaccharide induces intestinal glucocorticoid synthesis in a TNFalpha-dependent manner. FASEB J. 2010;24:1340–6.

    Article  CAS  PubMed  Google Scholar 

  186. Buckingham JC. Glucocorticoids: exemplars of multi-tasking. Br J Pharmacol. 2006;147(Suppl 1):S258–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Noti M, Sidler D, Brunner T. Extra-adrenal glucocorticoid synthesis in the intestinal epithelium: more than a drop in the ocean? Semin Immunopathol. 2009;31:237–48.

    Article  CAS  PubMed  Google Scholar 

  188. Taves MD, Gomez-Sanchez CE, Soma KK. Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function. Am J Physiol Endocrinol Metab. 2011;301:E11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cima I, Corazza N, Dick B, et al. Intestinal epithelial cells synthesize glucocorticoids and regulate T cell activation. J Exp Med. 2004;200:1635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Atanasov AG, Leiser D, Roesselet C, et al. Cell cycle-dependent regulation of extra-adrenal glucocorticoid synthesis in murine intestinal epithelial cells. FASEB J. 2008;22:4117–25.

    Article  CAS  PubMed  Google Scholar 

  191. Lee YK, Choi YH, Chua S, et al. Phosphorylation of the hinge domain of the nuclear hormone receptor LRH-1 stimulates transactivation. J Biol Chem. 2006;281:7850–5.

    Article  CAS  PubMed  Google Scholar 

  192. Fayard E, Auwerx J, Schoonjans K. LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol. 2004;14:250–60.

    Article  CAS  PubMed  Google Scholar 

  193. Mueller M, Cima I, Noti M, et al. The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine. J Exp Med. 2006;203:2057–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Coste A, Dubuquoy L, Barnouin R, et al. LRH-1-mediated glucocorticoid synthesis in enterocytes protects against inflammatory bowel disease. Proc Natl Acad Sci USA. 2007;104:13098–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Huang J, Jia R, Brunner T. Local synthesis of immunosuppressive glucocorticoids in the intestinal epithelium regulates anti-viral immune responses. Cell Immunol. 2018;334:1–10.

    Article  CAS  PubMed  Google Scholar 

  196. Truelove SC, Witts LJ. Cortisone in ulcerative colitis; final report on a therapeutic trial. Br Med J. 1955;2:1041–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Castro-Santos P, Suarez A, Lopez-Rivas L, et al. TNFalpha and IL-10 gene polymorphisms in inflammatory bowel disease. Association of -1082 AA low producer IL-10 genotype with steroid dependency. Am J Gastroenterol. 2006;101:1039–47.

    Article  CAS  PubMed  Google Scholar 

  198. Dubois-Camacho K, Ottum PA, Franco-Munoz D, et al. Glucocorticosteroid therapy in inflammatory bowel diseases: From clinical practice to molecular biology. World J Gastroenterol. 2017;23:6628–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. McDonough AK, Curtis JR, Saag KG. The epidemiology of glucocorticoid-associated adverse events. Curr Opin Rheumatol. 2008;20:131–7.

    Article  PubMed  Google Scholar 

  200. Lee JM, Lee YK, Mamrosh JL, et al. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature. 2011;474:506–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the German Science Foundation to TB. MED received an Independent Research Grant from the University of Konstanz “Zukunftskolleg”.

Author contributions

MED and TB designed and discussed the manuscript. MED wrote the text, while TB edited it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eugenia Delgado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, M.E., Brunner, T. The many faces of tumor necrosis factor signaling in the intestinal epithelium. Genes Immun 20, 609–626 (2019). https://doi.org/10.1038/s41435-019-0057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-019-0057-0

This article is cited by

Search

Quick links