Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell death in cancer in the era of precision medicine

Abstract

Tumors constitute a large class of diseases that affect different organs and cell lineages. The molecular characterization of cancers of a given type has revealed an extraordinary heterogeneity in terms of genetic alterations and DNA mutations; heterogeneity that is further highlighted by single-cell DNA sequencing of individual patients. To address these issues, drugs that specifically target genes or altered pathways in cancer cells are continuously developed. Indeed, the genetic fingerprint of individual tumors can direct the modern therapeutic approaches to selectively hit the tumor cells while sparing the healthy ones. In this context, the concept of precision medicine finds a vast field of application. In this review, we will briefly list some classes of target drugs (Bcl-2 family modulators, Tyrosine Kinase modulators, PARP inhibitors, and growth factors inhibitors) and discuss the application of immunotherapy in tumors (T cell-mediated immunotherapy and CAR-T cells) that in recent years has drastically changed the prognostic outlook of aggressive cancers. We will also consider how apoptosis could represent a primary end point in modern cancer therapy and how “classic” chemotherapeutic drugs that induce apoptosis are still utilized in therapeutic schedules that involve the use of target drugs or immunotherapy to optimize the antitumor response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501:338–45.

    Article  CAS  PubMed  Google Scholar 

  2. Hiley CT, Le Quesne J, Santis G, Sharpe R, de Castro DG, Middleton G, et al. Challenges in molecular testing in non-small-cell lung cancer patients with advanced disease. Lancet. 2016;388:1002–11.

    Article  PubMed  Google Scholar 

  3. McGranahan N, Swanton C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell. 2015;27:15–26.

    Article  CAS  PubMed  Google Scholar 

  4. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sahin U, Tureci O. Personalized vaccines for cancer immunotherapy. Science. 2018;359:1355–60.

    Article  CAS  PubMed  Google Scholar 

  6. Birkeland E, Zhang S, Poduval D, Geisler J, Nakken S, Vodak D, et al. Patterns of genomic evolution in advanced melanoma. Nat Commun. 2018;9:2665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378:1396–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell. 2018;173:879–893 e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jacob J, Durand T, Feuvret L, Mazeron JJ, Delattre JY, Hoang-Xuan K. et al. Cognitive impairment and morphological changes after radiation therapy in brain tumors: a review. Radiother Oncol. 2018;28:221–228.

    Article  Google Scholar 

  10. Levis BE, Binkley PF, Shapiro CL. Cardiotoxic effects of anthracycline-based therapy: what is the evidence and what are the potential harms? Lancet Oncol. 2017;18:e445–e456.

    Article  CAS  PubMed  Google Scholar 

  11. Aguirre AJ, Nowak JA, Camarda ND, Moffitt RA, Ghazani AA, Hazar-Rethinam M. et al. Real-time genomic characterization of advanced pancreatic cancer to enable precision medicine. Cancer Discov. 2018;8:1096–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu C, Nikolova O, Basom RS, Mitchell RM, Shaw R, Moser RD, et al. Functional Precision Medicine Identifies Novel Druggable Targets and Therapeutic Options in Head and Neck Cancer. Clin Cancer Res. 2018;24:2828–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Yao Z, Jonsson P, Allen AN, Qin ACR, Uddin S. et al. A secondary mutation in BRAF confers resistance to RAF inhibition in a BRAF V600E-mutant brain tumor. Cancer Discov. 2018;8:1130–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Juratli TA, Stasik S, Zolal A, Schuster C, Richter S, Daubner D et al. TERT promoter mutation detection in cell-free tumor-derived DNA in patients with IDH wild-type glioblastomas - a pilot prospective study. Clin Cancer Res 2018. https://doi.org/10.1158/1078-0432.CCR-17-3717.

    Article  PubMed  Google Scholar 

  15. Kjaergaard J, Hatfield S, Jones G, Ohta A, Sitkovsky M. A2A adenosine receptor gene deletion or synthetic A2A antagonist liberate tumor-reactive CD8(+) T Cells from tumor-induced immunosuppression. J Immunol. 2018;201:782–91.

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka T, Nakajima-Takagi Y, Aoyama K, Tara S, Oshima M, Saraya A, et al. Internal deletion of BCOR reveals a tumor suppressor function for BCOR in T lymphocyte malignancies. J Exp Med. 2017;214:2901–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brasacchio D, Alsop AE, Noori T, Lufti M, Iyer S, Simpson KJ, et al. Epigenetic control of mitochondrial cell death through PACS1-mediated regulation of BAX/BAK oligomerization. Cell Death Differ. 2017;24:961–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan K, Lei Y, Chen HN, Chen Y, Zhang T, Li K, et al. HBV-induced ROS accumulation promotes hepatocarcinogenesis through Snail-mediated epigenetic silencing of SOCS3. Cell Death Differ. 2016;23:616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  20. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  21. Bell RAV, Megeney LA. Evolution of caspase-mediated cell death and differentiation: twins separated at birth. Cell Death Differ. 2017;24:1359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pihan P, Carreras-Sureda A, Hetz C. BCL-2 family: integrating stress responses at the ER to control cell demise. Cell Death Differ. 2017;24:1478–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van Aken O, Pogson BJ. Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death. Cell Death Differ. 2017;24:955–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL, et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell. 2011;44:517–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Opferman JT. Attacking cancer’s Achilles heel: antagonism of anti-apoptotic BCL-2 family members. FEBS J. 2016;283:2661–75.

    Article  CAS  PubMed  Google Scholar 

  26. Glab JA, Doerflinger M, Nedeva C, Jose I, Mbogo GW, Paton JC, et al. DR5 and caspase-8 are dispensable in ER stress-induced apoptosis. Cell Death Differ. 2017;24:944–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Anstee NS, Vandenberg CJ, Campbell KJ, Hughes PD, O’Reilly LA, Cory S. Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice. Cell Death Differ. 2017;24:397–408.

    Article  CAS  PubMed  Google Scholar 

  28. Carrington EM, Zhan Y, Brady JL, Zhang JG, Sutherland RM, Anstee NS, et al. Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death Differ. 2017;24:878–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cory S, Vaux DL, Strasser A, Harris AW, Adams JM. Insights from Bcl-2 and Myc: malignancy involves abrogation of apoptosis as well as sustained proliferation. Cancer Res. 1999;59(7 Suppl):1685s–1692s.

    CAS  PubMed  Google Scholar 

  30. Linette GP, Hess JL, Sentman CL, Korsmeyer SJ. Peripheral T-cell lymphoma in lckpr-bcl-2 transgenic mice. Blood. 1995;86:1255–60.

    CAS  PubMed  Google Scholar 

  31. Schwickart M, Huang X, Lill JR, Liu J, Ferrando R, French DM, et al. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature. 2010;463:103–7.

    Article  CAS  PubMed  Google Scholar 

  32. Karpel-Massler G, Ishida CT, Zhang Y, Halatsch ME, Westhoff MA, Siegelin MD. Targeting intrinsic apoptosis and other forms of cell death by BH3-mimetics in glioblastoma. Expert Opin Drug Discov. 2017;12:1031–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peperzak V, Slinger E, Ter Burg J, Eldering E. Functional disparities among BCL-2 members in tonsillar and leukemic B-cell subsets assessed by BH3-mimetic profiling. Cell Death Differ. 2017;24:111–9.

    Article  CAS  PubMed  Google Scholar 

  34. Rohrbeck L, Gong JN, Lee EF, Kueh AJ, Behren A, Tai L, et al. Hepatocyte growth factor renders BRAF mutant human melanoma cell lines resistant to PLX4032 by downregulating the pro-apoptotic BH3-only proteins PUMA and BIM. Cell Death Differ. 2016;23:2054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oliver CL, Bauer JA, Wolter KG, Ubell ML, Narayan A, O’Connell KM, et al. In vitro effects of the BH3 mimetic, (-)-gossypol, on head and neck squamous cell carcinoma cells. Clin Cancer Res. 2004;10:7757–63.

    Article  CAS  PubMed  Google Scholar 

  36. Park HA, Licznerski P, Mnatsakanyan N, Niu Y, Sacchetti S, Wu J, et al. Inhibition of Bcl-xL prevents pro-death actions of DeltaN-Bcl-xL at the mitochondrial inner membrane during glutamate excitotoxicity. Cell Death Differ. 2017;24:1963–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, et al. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell. 2013;152:519–31.

    Article  CAS  PubMed  Google Scholar 

  38. Xin M, Li R, Xie M, Park D, Owonikoko TK, Sica GL, et al. Small-molecule Bax agonists for cancer therapy. Nat Commun. 2014;5:4935.

    Article  CAS  PubMed  Google Scholar 

  39. Montero J, Letai A. Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ. 2018;25:56–64.

    Article  CAS  PubMed  Google Scholar 

  40. Adams JM, Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 2018;25:27–36.

    Article  CAS  PubMed  Google Scholar 

  41. Reed JC. Bcl-2 on the brink of breakthroughs in cancer treatment. Cell Death Differ. 2018;25:3–6.

    Article  CAS  PubMed  Google Scholar 

  42. Mayers JR. Metabolic markers as cancer clues. Science. 2017;358:1265.

    Article  PubMed  Google Scholar 

  43. Palazzo E, Kellett MD, Cataisson C, Bible PW, Bhattacharya S, Sun HW, et al. A novel DLX3-PKC integrated signaling network drives keratinocyte differentiation. Cell Death Differ. 2017;24:717–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pieraccioli M, Nicolai S, Pitolli C, Agostini M, Antonov A, Malewicz M, et al. ZNF281 inhibits neuronal differentiation and is a prognostic marker for neuroblastoma. Proc Natl Acad Sci USA. 2018;115:7356–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Almohazey D, Lo YH, Vossler CV, Simmons AJ, Hsieh JJ, Bucar EB, et al. The ErbB3 receptor tyrosine kinase negatively regulates Paneth cells by PI3K-dependent suppression of Atoh1. Cell Death Differ. 2017;24:855–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gnani D, Romito I, Artuso S, Chierici M, De Stefanis C, Panera N, et al. Focal adhesion kinase depletion reduces human hepatocellular carcinoma growth by repressing enhancer of zeste homolog 2. Cell Death Differ. 2017;24:889–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hyman DM, Piha-Paul SA, Won H, Rodon J, Saura C, Shapiro GI, et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature. 2018;554:189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tam CS, Anderson MA, Pott C, Agarwal R, Handunnetti S, Hicks RJ, et al. Ibrutinib plus Venetoclax for the Treatment of Mantle-Cell Lymphoma. N Engl J Med. 2018;378:1211–23.

    Article  CAS  PubMed  Google Scholar 

  49. Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB, et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood. 1997;90:4947–52.

    CAS  PubMed  Google Scholar 

  50. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–6.

    Article  CAS  PubMed  Google Scholar 

  51. O’Hare T, Walters DK, Deininger MW, Druker BJ. AMN107: tightening the grip of imatinib. Cancer Cell. 2005;7:117–9.

    Article  PubMed  CAS  Google Scholar 

  52. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305:399–401.

    Article  CAS  PubMed  Google Scholar 

  53. Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362:2202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vitali R, Mancini C, Cesi V, Tanno B, Piscitelli M, Mancuso M, et al. Activity of tyrosine kinase inhibitor Dasatinib in neuroblastoma cells in vitro and in orthotopic mouse model. Int J Cancer. 2009;125:2547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arai S, Jonas O, Whitman M, Corey E, Balk SP, Chen S. Tyrosine kinase inhibitors increase MCL1 degradation and in combination with BCLXL/BCL2 inhibitors drive prostate cancer apoptosis. Clin Cancer Res 2018. https://doi.org/10.1158/1078-0432.CCR-18-0549.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Reiff SD, Muhowski EM, Guinn D, Lehman A, Fabian CA, Cheney C. et al. Non-covalent inhibition of C481S Bruton’s tyrosine kinase by GDC-0853: a new treatment strategy for ibrutinib resistant CLL. Blood. 2018;132:1039–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhai W, Sun Y, Guo C, Hu G, Wang M, Zheng J, et al. LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor(AR)/miRNA-143-3p signals. Cell Death Differ. 2017;24:1502–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bassi C, Li YT, Khu K, Mateo F, Baniasadi PS, Elia A, et al. The acetyltransferase Tip60 contributes to mammary tumorigenesis by modulating DNA repair. Cell Death Differ. 2016;23:1198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24:679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chernova T, Sun XM, Powley IR, Galavotti S, Grosso S, Murphy FA, et al. Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease. Cell Death Differ. 2016;23:1152–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Menghi F, Barthel FP, Yadav V, Tang M, Ji B, Tang Z. et al. The Tandem duplicator phenotype is a prevalent genome-wide cancer configuration driven by distinct gene mutations. Cancer Cell. 2018;34:197–210.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aggarwal M, Saxena R, Sinclair E, Fu Y, Jacobs A, Dyba M, et al. Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth. Cell Death Differ. 2016;23:1615–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cammareri P, Vincent DF, Hodder MC, Ridgway RA, Murgia C, Nobis M, et al. TGFbeta pathway limits dedifferentiation following WNT and MAPK pathway activation to suppress intestinal tumourigenesis. Cell Death Differ. 2017;24:1681–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eritja N, Felip I, Dosil MA, Vigezzi L, Mirantes C, Yeramian A, et al. A Smad3-PTEN regulatory loop controls proliferation and apoptotic responses to TGF-beta in mouse endometrium. Cell Death Differ. 2017;24:1443–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ng KP, Hillmer AM, Chuah CT, Juan WC, Ko TK, Teo AS, et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med. 2012;18:521–8.

    Article  CAS  PubMed  Google Scholar 

  66. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481:287–94.

    Article  CAS  PubMed  Google Scholar 

  67. Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009;361:1475–85.

    Article  CAS  PubMed  Google Scholar 

  68. Gupta R, Somyajit K, Narita T, Maskey E, Stanlie A, Kremer M, et al. DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity. Cell. 2018;173:972–988 e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nicolai S, Rossi A, Di Daniele N, Melino G, Annicchiarico-Petruzzelli M, Raschella G. DNA repair and aging: the impact of the p53 family. Aging. 2015;7:1050–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Malewicz M, Perlmann T. Function of transcription factors at DNA lesions in DNA repair. Exp Cell Res. 2014;329:94–100.

    Article  CAS  PubMed  Google Scholar 

  71. Pieraccioli M, Nicolai S, Antonov A, Somers J, Malewicz M, Melino G, et al. ZNF281 contributes to the DNA damage response by controlling the expression of XRCC2 and XRCC4. Oncogene. 2016;35:2592–601.

    Article  CAS  PubMed  Google Scholar 

  72. Raschella G, Melino G, Malewicz M. New factors in mammalian DNA repair-the chromatin connection. Oncogene. 2017;36:4673–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hawley BR, Lu WT, Wilczynska A, Bushell M. The emerging role of RNAs in DNA damage repair. Cell Death Differ. 2017;24:580–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grigaravicius P, Kaminska E, Hubner CA, McKinnon PJ, von Deimling A, Frappart PO. Rint1 inactivation triggers genomic instability, ER stress and autophagy inhibition in the brain. Cell Death Differ. 2016;23:454–68.

    Article  CAS  PubMed  Google Scholar 

  75. Rustighi A, Zannini A, Campaner E, Ciani Y, Piazza S, Del Sal G. PIN1 in breast development and cancer: a clinical perspective. Cell Death Differ. 2017;24:200–11.

    Article  CAS  PubMed  Google Scholar 

  76. Baran K, Yang M, Dillon CP, Samson LL, Green DR. The proline rich domain of p53 is dispensable for MGMT-dependent DNA repair and cell survival following alkylation damage. Cell Death Differ. 2017;24:1925–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rodriguez-Vargas JM, Rodriguez MI, Majuelos-Melguizo J, Garcia-Diaz A, Gonzalez-Flores A, Lopez-Rivas A, et al. Autophagy requires poly(adp-ribosyl)ation-dependent AMPK nuclear export. Cell Death Differ. 2016;23:2007–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Purnell MR, Whish WJ. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem J. 1980;185:775–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Terada M, Fujiki H, Marks PA, Sugimura T. Induction of erythroid differentiation of murine erythroleukemia cells by nicotinamide and related compounds. Proc Natl Acad Sci USA. 1979;76:6411–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Delgado-Camprubi M, Esteras N, Soutar MP, Plun-Favreau H, Abramov AY. Deficiency of Parkinson’s disease-related gene Fbxo7 is associated with impaired mitochondrial metabolism by PARP activation. Cell Death Differ. 2017;24:120–31.

    Article  CAS  PubMed  Google Scholar 

  82. You MH, Kim BM, Chen CH, Begley MJ, Cantley LC, Lee TH. Death-associated protein kinase 1 phosphorylates NDRG2 and induces neuronal cell death. Cell Death Differ. 2017;24:238–50.

    Article  CAS  PubMed  Google Scholar 

  83. Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355:1152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373:1697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pujade-Lauraine E, Ledermann JA, Selle F, Gebski V, Penson RT, Oza AM, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18:1274–84.

    Article  CAS  PubMed  Google Scholar 

  86. de Bono J, Ramanathan RK, Mina L, Chugh R, Glaspy J, Rafii S, et al. Phase I, dose-escalation, two-part trial of the PARP inhibitor talazoparib in patients with advanced germline BRCA1/2 mutations and selected sporadic cancers. Cancer Discov. 2017;7:620–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S, Tharakan R, et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell. 2017;32:474–489 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Clement F, Xu X, Donini CF, Clement A, Omarjee S, Delay E, et al. Long-term exposure to bisphenol A or benzo(a)pyrene alters the fate of human mammary epithelial stem cells in response to BMP2 and BMP4, by pre-activating BMP signaling. Cell Death Differ. 2017;24:155–66.

    Article  CAS  PubMed  Google Scholar 

  89. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  90. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358:2039–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature. 2005;438:967–74.

    Article  CAS  PubMed  Google Scholar 

  92. Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet. 2016;388:518–29.

    Article  CAS  PubMed  Google Scholar 

  93. Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science. 1998;279:563–6.

    Article  CAS  PubMed  Google Scholar 

  94. LeRoith D, Helman L. The new kid on the block(ade) of the IGF-1 receptor. Cancer Cell. 2004;5:201–2.

    Article  CAS  PubMed  Google Scholar 

  95. Garcia-Echeverria C, Pearson MA, Marti A, Meyer T, Mestan J, Zimmermann J, et al. In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell. 2004;5:231–9.

    Article  CAS  PubMed  Google Scholar 

  96. Tanno B, Mancini C, Vitali R, Mancuso M, McDowell HP, Dominici C, et al. Down-regulation of insulin-like growth factor I receptor activity by NVP-AEW541 has an antitumor effect on neuroblastoma cells in vitro and in vivo. Clin Cancer Res. 2006;12:6772–80.

    Article  CAS  PubMed  Google Scholar 

  97. Agostini M, Romeo F, Inoue S, Niklison-Chirou MV, Elia AJ, Dinsdale D, et al. Metabolic reprogramming during neuronal differentiation. Cell Death Differ. 2016;23:1502–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G. Serine and glycine metabolism in cancer. Trends Biochem Sci. 2014;39:191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Amelio I, Melino G, Frezza C. Exploiting tumour addiction with a serine and glycine-free diet. Cell Death Differ. 2017;24:1311–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sciacovelli M, Frezza C. Fumarate drives EMT in renal cancer. Cell Death Differ. 2017;24:1–2.

    Article  CAS  PubMed  Google Scholar 

  101. Sciacovelli M, Goncalves E, Johnson TI, Zecchini VR, da Costa AS, Gaude E, et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature. 2016;537:544–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011;25:1041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Maddocks ODK, Athineos D, Cheung EC, Lee P, Zhang T, van den Broek NJF, et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature. 2017;544:372–6.

    Article  CAS  PubMed  Google Scholar 

  104. Bourdon JC, Laurenzi VD, Melino G, Lane D. p53: 25 years of research and more questions to answer. Cell Death Differ. 2003;10:397–9.

    Article  CAS  PubMed  Google Scholar 

  105. Rufini A, Niklison-Chirou MV, Inoue S, Tomasini R, Harris IS, Marino A, et al. TAp73 depletion accelerates aging through metabolic dysregulation. Genes Dev. 2012;26:2009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Seitz SJ, Schleithoff ES, Koch A, Schuster A, Teufel A, Staib F, et al. Chemotherapy-induced apoptosis in hepatocellular carcinoma involves the p53 family and is mediated via the extrinsic and the intrinsic pathway. Int J Cancer. 2010;126:2049–66.

    CAS  PubMed  Google Scholar 

  107. Niklison-Chirou MV, Erngren I, Engskog M, Haglof J, Picard D, Remke M, et al. TAp73 is a marker of glutamine addiction in medulloblastoma. Genes Dev. 2017;31:1738–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Marini A, Rotblat B, Sbarrato T, Niklison-Chirou MV, Knight JRP, Dudek K, et al. TAp73 contributes to the oxidative stress response by regulating protein synthesis. Proc Natl Acad Sci USA. 2018;115:6219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Field J, Fox A, Jordan MA, Baxter AG, Spelman T, Gresle M, et al. Interleukin-2 receptor-alpha proximal promoter hypomethylation is associated with multiple sclerosis. Genes Immun. 2017;18:59–66.

    Article  CAS  PubMed  Google Scholar 

  111. Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration. Nature. 2016;529:307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ng GZ, Sutton P. The MUC1 mucin specifically inhibits activation of the NLRP3 inflammasome. Genes Immun. 2016;17:203–6.

    Article  CAS  PubMed  Google Scholar 

  113. Smith LM, Weissenburger-Moser LA, Heires AJ, Bailey KL, Romberger DJ, LeVan TD. Epistatic effect of TLR-1, -6 and -10 polymorphisms on organic dust-mediated cytokine response. Genes Immun. 2017;18:67–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–30.

    Article  CAS  PubMed  Google Scholar 

  115. Garg AD, Romano E, Rufo N, Agostinis P. Immunogenic versus tolerogenic phagocytosis during anticancer therapy: mechanisms and clinical translation. Cell Death Differ. 2016;23:938–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. June CH, Sadelain M. Chimeric Antigen Receptor Therapy. N Engl J Med. 2018;379:64–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yamazaki T, Pitt JM, Vetizou M, Marabelle A, Flores C, Rekdal O, et al. The oncolytic peptide LTX-315 overcomes resistance of cancers to immunotherapy with CTLA4 checkpoint blockade. Cell Death Differ. 2016;23:1004–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. de Jong VM, van der Slik AR, Laban S, van ‘t Slot R, Koeleman BP, Zaldumbide A, et al. Survival of autoreactive T lymphocytes by microRNA-mediated regulation of apoptosis through TRAIL and Fas in type 1 diabetes. Genes Immun. 2016;17:342–8.

    Article  PubMed  CAS  Google Scholar 

  119. Hussman JP, Beecham AH, Schmidt M, Martin ER, McCauley JL, Vance JM, et al. GWAS analysis implicates NF-kappaB-mediated induction of inflammatory T cells in multiple sclerosis. Genes Immun. 2016;17:305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ise W, Kohyama M, Nutsch KM, Lee HM, Suri A, Unanue ER, et al. CTLA-4 suppresses the pathogenicity of self antigen-specific T cells by cell-intrinsic and cell-extrinsic mechanisms. Nat Immunol. 2010;11:129–35.

    Article  CAS  PubMed  Google Scholar 

  121. Lu X, Horner JW, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jena B, Dotti G, Cooper LJ. Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood. 2010;116:1035–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim MY, Yu KR, Kenderian SS, Ruella M, Chen S, Shin TH, et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell. 2018;173:1439–53 e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Numbenjapon T, Serrano LM, Chang WC, Forman SJ, Jensen MC, Cooper LJ. Antigen-independent and antigen-dependent methods to numerically expand CD19-specific CD8+T cells. Exp Hematol. 2007;35:1083–90.

    Article  CAS  PubMed  Google Scholar 

  126. Lingel H, Wissing J, Arra A, Schanze D, Lienenklaus S, Klawonn F, et al. CTLA-4-mediated posttranslational modifications direct cytotoxic T-lymphocyte differentiation. Cell Death Differ. 2017;24:1739–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD, et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med. 2018;378:1976–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kearney CJ, Lalaoui N, Freeman AJ, Ramsbottom KM, Silke J, Oliaro J. PD-L1 and IAPs co-operate to protect tumors from cytotoxic lymphocyte-derived TNF. Cell Death Differ. 2017;24:1705–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shen J, Ju Z, Zhao W, Wang L, Peng Y, Ge Z. et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med. 2018;24:556–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17:e542–e551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hedrick SM, Cohen DI, Nielsen EA, Davis MM. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature. 1984;308:149–53.

    Article  CAS  PubMed  Google Scholar 

  132. Yanagi Y, Yoshikai Y, Leggett K, Clark SP, Aleksander I, Mak TW. A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature. 1984;308:145–9.

    Article  CAS  PubMed  Google Scholar 

  133. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270:985–8.

    Article  CAS  PubMed  Google Scholar 

  134. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734–6.

    Article  CAS  PubMed  Google Scholar 

  135. Franckaert D, Collin R, Dooley J, Wallis RH, Poussier P, Liston A, et al. An orthologous non-MHC locus in rats and mice is linked to CD4(+) and CD8(+) T-cell proportion. Genes Immun. 2017;18:118–26.

    Article  CAS  PubMed  Google Scholar 

  136. Glodde N, Bald T, van den Boorn-Konijnenberg D, Nakamura K, O’Donnell JS, Szczepanski S, et al. Reactive neutrophil responses dependent on the receptor tyrosine kinase c-MET limit cancer immunotherapy. Immunity. 2017;47:789–802 e9.

    Article  CAS  PubMed  Google Scholar 

  137. Sukumaran S, Watanabe N, Bajgain P, Raja K, Mohammed S, Fisher WE. et al. Enhancing the potency and specificity of engineered T cells for cancer treatment. Cancer Discov. 2018;8:972–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rosenberg SA. Progress in human tumour immunology and immunotherapy. Nature. 2001;411:380–4.

    Article  CAS  PubMed  Google Scholar 

  139. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA. 1989;86:10024–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–5.

    Article  CAS  PubMed  Google Scholar 

  141. Bearoff F, Del Rio R, Case LK, Dragon JA, Nguyen-Vu T, Lin CY, et al. Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity. Genes Immun. 2016;17:386–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Furukawa H, Oka S, Tsuchiya N, Shimada K, Hashimoto A, Tohma S, et al. The role of common protective alleles HLA-DRB1*13 among systemic autoimmune diseases. Genes Immun. 2017;18:1–7.

    Article  CAS  PubMed  Google Scholar 

  143. Maldini CR, Ellis GI, Riley JL, CAR T. cells for infection, autoimmunity and allotransplantation. Nat Rev Immunol . 2018;18:605–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kawalekar OU, O’Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey AD Jr., et al. Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells. Immunity. 2016;44:380–90.

    Article  CAS  PubMed  Google Scholar 

  145. Horton B, Spranger S. A Tumor Cell-Intrinsic Yin-Yang Determining Immune Evasion. Immunity. 2018;49:11–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Anovazzi G, Medeiros MC, Pigossi SC, Finoti LS, Souza Moreira TM, Mayer MP, et al. Functionality and opposite roles of two interleukin 4 haplotypes in immune cells. Genes Immun. 2017;18:33–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fielding CA, Jones GW, McLoughlin RM, McLeod L, Hammond VJ, Uceda J, et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity. 2014;40:40–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Marwaha AK, Panagiotopoulos C, Biggs CM, Staiger S, Del Bel KL, Hirschfeld AF, et al. Pre-diagnostic genotyping identifies T1D subjects with impaired Treg IL-2 signaling and an elevated proportion of FOXP3(+)IL-17(+) cells. Genes Immun. 2017;18:15–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lovat PE, Ranalli M, Annichiarrico-Petruzzelli M, Bernassola F, Piacentini M, Malcolm AJ, et al. Effector mechanisms of fenretinide-induced apoptosis in neuroblastoma. Exp Cell Res. 2000;260:50–60.

    Article  CAS  PubMed  Google Scholar 

  150. Hu J, Sun C, Bernatchez C, Xia X, Hwu P, Dotti G, et al. T-cell homing therapy for reducing regulatory T Cells and preserving effector T-cell function in large solid tumors. Clin Cancer Res. 2018;24:2920–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR-T cells of defined CD4+:CD8+composition in adult B cell ALL patients. J Clin Invest. 2016;126:2123–38.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Medical Research Council, UK; grants from Associazione Italiana per la Ricerca contro il Cancro (AIRC): AIRC 2017 IG20473 (to G.M.) and Fondazione Roma malattie Non trasmissibili Cronico-Degenerative (NCD) Grant (to G.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Raschellà.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raschellà, G., Melino, G. & Gambacurta, A. Cell death in cancer in the era of precision medicine. Genes Immun 20, 529–538 (2019). https://doi.org/10.1038/s41435-018-0048-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-018-0048-6

This article is cited by

Search

Quick links