Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association between thyroglobulin polymorphisms and autoimmune thyroid disease: a systematic review and meta-analysis of case–control studies

Abstract

Emerging evidence revealed that thyroglobulin (TG) contributes to the development of autoimmune disease, and the relationship between TG and autoimmune thyroid disease (AITD) is still controversial. The aim of this study was to quantify the association between rs2076740, rs853326, rs180223, and rs2069550 TG polymorphisms and risk of AITD using a meta-analysis approach. We identified all studies that assessed the association between TG polymorphisms and AITD from PubMed, Embase, and Web of Science databases. A total of 3013 cases and 1812 controls from ten case–control studies were included. There was no significant associations found between rs2069550, rs180223, and rs853326 polymorphisms and AITD risk. The association between the rs2076740 polymorphism and AITD risk was significant in the codominant model (P = 0.005), suggesting the CC rs2076740 genotype might be a protective factor for AITD. Sensitivity analysis by removing one or two study changed the results in dominant rs2076740 and rs853326 and rs2069550 allele models (P = 0.016, 0.024, 0.027). Latitude and ethnicity significantly affected the association between rs2076740 and rs2069550 polymorphisms and AITD, indicating their protective effects in allele or dominant model (P = 0.012, 0.012, 0.012, 0.009, 0.009). The association between rs2076740, rs2069550, and rs853326 polymorphisms and AITD risk is significantly affected by study characteristics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang B, Shao X, Song R, Xu D, Zhang JA. The emerging role of epigenetics in autoimmune thyroid diseases. Front Immunol. 2017;8:396.

    PubMed  PubMed Central  Google Scholar 

  2. Coppede F. Epigenetics and autoimmune thyroid diseases. Front Endocrinol (Lausanne). 2017;8:149.

    Article  Google Scholar 

  3. Brown RS. Autoimmune thyroid disease: unlocking a complex puzzle. Curr Opin Pediatr. 2009;21:523–8.

    Article  Google Scholar 

  4. Ferrari SM, Fallahi P, Antonelli A, Benvenga S. Environmental issues in thyroid diseases. Front Endocrinol (Lausanne). 2017;8:50.

    Google Scholar 

  5. Mizuma T, Watanabe M, Inoue N, Arakawa Y, Tomari Tomari, Hidaka Y. et al. Association of the polymorphisms in the gene encoding thyroglobulin with the development and prognosis of autoimmune thyroid disease. Autoimmunity. 2017;50:386–92.

    Article  CAS  Google Scholar 

  6. Balazs C. The role of hereditary and environmental factors in autoimmune thyroid diseases. Orv Hetil. 2012;153:1013–22.

    Article  Google Scholar 

  7. Wiersinga WM. Clinical relevance of environmental factors in the pathogenesis of autoimmune thyroid disease. Endocrinol Metab (Seoul). 2016;31:213–22.

    Article  CAS  Google Scholar 

  8. Guarneri F, Benvenga S. Environmental factors and genetic background that interact to cause autoimmune thyroid disease. Curr Opin Endocrinol Diabetes Obes. 2007;14:398–409.

    Article  CAS  Google Scholar 

  9. Kus A, Arlukowicz-Grabowska M, Szymanski K, Wunsch E, Milkiewicz M, Ploski R, et al. Genetic risk factors for autoimmune thyroid disease might affect the susceptibility to and modulate the progression of primary biliary cholangitis. J Gastrointestin Liver Dis. 2017;26:245–52.

    PubMed  Google Scholar 

  10. Tomer Y. Genetic susceptibility to autoimmune thyroid disease: past, present, and future. Thyroid. 2010;20:715–25.

    Article  CAS  Google Scholar 

  11. Ramgopal S, Rathika C, Padma MR, Murali V, Arun K, Kamaludeen MN, et al. Interaction of HLA-DRB1* alleles and CTLA4 (+49 AG) gene polymorphism in autoimmune thyroid disease. Gene. 2017;642:430–8.

    Article  Google Scholar 

  12. Xiaoheng C, Yizhou M, Bei H, Huilong L, Xin W, Rui H, et al. General and specific genetic polymorphism of cytokines-related gene in AITD. Mediat Inflamm. 2017;2017:3916395.

    Article  Google Scholar 

  13. Ting WH, Chien MN, Lo FS, Wang CH, Huang CY, Lin CL, et al. Association of cytotoxic T-lymphocyte-associated protein 4 (CTLA4) gene polymorphisms with autoimmune thyroid disease in children and adults: case–control study. PLoS ONE. 2016;11:e0154394.

    Article  Google Scholar 

  14. Ban Y, Tozaki T, Taniyama M, Skrabanek L, Nakano Y, Ban Y, et al. Multiple SNPs in intron 41 of thyroglobulin gene are associated with autoimmune thyroid disease in the Japanese population. PLoS ONE. 2012;7:e37501.

    Article  CAS  Google Scholar 

  15. Rivolta CM, Targovnik HM. Molecular advances in thyroglobulin disorders. Clin Chim Acta. 2006;374:8–24.

    Article  CAS  Google Scholar 

  16. Kong YM, Brown NK, Morris GP, Flynn JC. The essential role of circulating thyroglobulin in maintaining dominance of natural regulatory T cell function to prevent autoimmune thyroiditis. Horm Metab Res. 2015;47:711–20.

    Article  CAS  Google Scholar 

  17. Gough S. The thyroglobulin gene: the third locus for autoimmune thyroid disease or a false dawn? Trends Mol Med. 2004;10:302–5.

    Article  CAS  Google Scholar 

  18. Collins JE, Heward JM, Howson JM, Foxall H, Carr-Smith J, Franklyn JA, et al. Common allelic variants of exons 10, 12, and 33 of the thyroglobulin gene are not associated with autoimmune thyroid disease in the United Kingdom. J Clin Endocrinol Metab. 2004;89:6336–9.

    Article  CAS  Google Scholar 

  19. Wang LQ, Wang TY, Sun QL, Qie YQ. Correlation between thyroglobulin gene polymorphisms and autoimmune thyroid disease. Mol Med Rep. 2015;12:4469–75.

    Article  CAS  Google Scholar 

  20. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423:506–11.

    Article  CAS  Google Scholar 

  21. Jacobson EM, Concepcion E, Ho K, Kopp P, Vono Toniolo J, Tomer Y. cDNA immunization of mice with human thyroglobulin generates both humoral and T cell responses: a novel model of thyroid autoimmunity. PLoS ONE. 2011;6:e19200.

    Article  CAS  Google Scholar 

  22. Kolypetri P, Noel NA, Carayanniotis KA, Carayanniotis G. Iodine content of thyroglobulin in Nod.H2h4 mice developing iodine-accelerated autoimmune thyroiditis. Hormones (Athens). 2010;9:151–60.

    Article  Google Scholar 

  23. Belguith-Maalej S, Hadj Kacem H, Rebai A, Mnif M, Abid M, Ayadi H. Thyroglobulin polymorphisms in Tunisian patients with autoimmune thyroid diseases (AITD). Immunobiology. 2008;213:577–83.

    Article  CAS  Google Scholar 

  24. Patel H, Mansuri MS, Singh M, Begum R, Shastri M, Misra A. Association of cytotoxic T-lymphocyte antigen 4 (CTLA4) and thyroglobulin (TG) genetic variants with autoimmune hypothyroidism. PLoS ONE. 2016;11:e0149441.

    Article  Google Scholar 

  25. Kotnik P, Debeljak M, Avbelj M, Hovnik T, Ursic Bratina N, Krzisnik C, et al. Lack of association of common allelic variants in the thyroglobulin gene with Hashimoto’s thyroiditis in young subjects with type 1 diabetes. Horm Res Paediatr. 2010;73:244–7.

    Article  CAS  Google Scholar 

  26. Gu LQ, Zhu W, Zhao SX, Zhao L, Zhang MJ, Cui B, et al. Clinical associations of the genetic variants of CTLA4, Tg, TSHR, PTPN22, PTPN12 and FCRL3 in patients with Graves’ disease. Clin Endocrinol (Oxf). 2010;72:248–55.

    Article  CAS  Google Scholar 

  27. Maierhaba M, Zhang JA, Yu ZY, Wang Y, Xiao WX, Quan Y, et al. Association of the thyroglobulin gene polymorphism with autoimmune thyroid disease in Chinese population. Endocrine. 2008;33:294–9.

    Article  CAS  Google Scholar 

  28. Hsiao JY, Tien KJ, Hsiao CT, Hsieh MC. Exon 33 T/T genotype of the thyroglobulin gene is a susceptibility gene for Graves’ disease in Taiwanese and exon 12 C/C genotype protects against it. Clin Exp Med. 2008;8:17–21.

    Article  CAS  Google Scholar 

  29. Ban Y, et al. Association of a thyroglobulin gene polymorphism with Hashimoto’s thyroiditis in the Japanese population. Clin Endocrinol (Oxf). 2004;61:263–8.

    Article  CAS  Google Scholar 

  30. Tomer Y, Greenberg D. The thyroglobulin gene as the first thyroid-specific susceptibility gene for autoimmune thyroid disease. Trends Mol Med. 2004;10:306–8.

    Article  CAS  Google Scholar 

  31. Ban Y, Tozaki T, Taniyama M, Tomita M, Ban Y. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci USA. 2003;100:15119–24.

    Article  CAS  Google Scholar 

  32. Stefan M, Jacobson EM, Huber AK, Greenberg DA, Li CW, Skrabanek L, et al. Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon alpha-modulated mechanism. J Biol Chem. 2011;286:31168–79.

    Article  CAS  Google Scholar 

  33. Brent GA. Environmental exposures and autoimmune thyroid disease. Thyroid. 2010;20:755–61.

    Article  Google Scholar 

  34. Martinez FD. Gene-environment interaction in complex diseases: asthma as an illustrative case. Novartis Found Symp. 2008;293:184–92. discussion192–7

    Article  CAS  Google Scholar 

  35. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nat Genet. 2001;29:306–9.

    Article  CAS  Google Scholar 

  36. Manji N, Carr-Smith JD, Boelaert K, Allahabadia A, Armitage M, Chatterjee VK, et al. Influences of age, gender, smoking, and family history on autoimmune thyroid disease phenotype. J Clin Endocrinol Metab. 2006;91:4873–80.

    Article  CAS  Google Scholar 

  37. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    Article  Google Scholar 

  38. Thakkinstian A, McElduff P, D’Este C, Duffy D, Attia J. A method for meta-analysis of molecular association studies. Stat Med. 2005;24:1291–306.

    Article  Google Scholar 

  39. Tizaoui K, Kaabachi W, Hamzaoui A, Hamzaoui K. Association between vitamin D receptor polymorphisms and multiple sclerosis: systematic review and meta-analysis of case–control studies. Cell Mol Immunol. 2015;12:243–52.

    Article  CAS  Google Scholar 

  40. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (no. 31570357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Xue Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ML., Zhang, Dm., Wang, CE. et al. Association between thyroglobulin polymorphisms and autoimmune thyroid disease: a systematic review and meta-analysis of case–control studies. Genes Immun 20, 484–492 (2019). https://doi.org/10.1038/s41435-018-0042-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-018-0042-z

This article is cited by

Search

Quick links