Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Primary immunodeficiency diseases in a tuberculosis endemic region: challenges and opportunities

Abstract

While individual primary immunodeficiency diseases (PIDs) are rare, collectively they represent a significant burden of disease. Recent estimates show that about one million people in Africa suffer from a PID. However, data from African PID registries reflect only a small percentage of the estimated prevalence. This disparity is partly due to the lack of PID awareness and the masking of PIDs by the endemic pathogens. Over three million tuberculosis (TB) cases were reported in Africa in 2016, with many of these from southern Africa. Despite concerted efforts to address this high burden of disease, the underlying genetic correlates of susceptibility to TB remain poorly understood. High penetrance mutations in immune system genes can cause PIDs that selectively predispose individuals to TB and other mycobacterial diseases. Additionally, the identification of individuals at a heightened risk of developing TB or of presenting with severe or disseminated TB due to their genetic ancestry is crucial to promote a positive treatment outcome. The screening for and identification of PID mutations in TB-endemic regions by next-generation sequencing (NGS) represents a promising approach to improve the understanding of what constitutes an effective immune response to TB, as well as the range of associated PIDs and phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Allenspach E, Torgerson TR. Autoimmunity and primary immunodeficiency disorders. J Clin Immunol. 2016;36:57–67.

    CAS  PubMed  Google Scholar 

  2. Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, et al. International Union of Immunological Societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. 2018;38:96–128.

    PubMed  Google Scholar 

  3. Casanova J-L, Conley ME, Seligman SJ, Abel L, Notarangelo LD. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J Exp Med. 2014;211:2137–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Casanova JL, Abel L. Human genetics of infectious diseases: a unified theory. EMBO J. 2007;26:915–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Notarangelo LD, Casanova J-L. Primary immunodeficiencies: increasing market share. Curr Opin Immunol. 2009;21:461–5.

    CAS  PubMed  Google Scholar 

  6. Notarangelo LD. Primary immunodeficiencies. J Allergy Clin Immunol. 2010;125:S182–194.

    PubMed  Google Scholar 

  7. Alcaïs A, Quintana-Murci L, Thaler DS, Schurr E, Abel L, Casanova J-L. Life-threatening infectious diseases of childhood: single-gene inborn errors of immunity? Ann N Y Acad Sci. 2010;1214:18–33.

    PubMed  Google Scholar 

  8. Eley B, Esser M. Investigation and management of primary immunodeficiency in South African children. SAMJ. 2014;104:793–793.

    Google Scholar 

  9. Bousfiha AA, Jeddane L, Ailal F, Benhsaien I, Mahlaoui N, Casanova J-L, et al. Primary immunodeficiency diseases worldwide: more common than generally thought. J Clin Immunol. 2012;33:1–7.

    PubMed  Google Scholar 

  10. Modell V, Knaus M, Modell F, Roifman C, Orange J, Notarangelo LD. Global overview of primary immunodeficiencies: a report from Jeffrey Modell Centers worldwide focused on diagnosis, treatment, and discovery. Immunol Res. 2014;60:132–44.

    CAS  PubMed  Google Scholar 

  11. Modell V, Quinn J, Orange J, Notarangelo LD, Modell F. Primary immunodeficiencies worldwide: an updated overview from the Jeffrey Modell Centers Global Network. Immunol Res. 2016;64:736–53.

    PubMed  Google Scholar 

  12. Modell V, Gee B, Lewis DB, Orange JS, Roifman CM, Routes JM, et al. Global study of primary immunodeficiency diseases (PI)—diagnosis, treatment, and economic impact: an updated report from the Jeffrey Modell Foundation. Immunol Res. 2011;51:61–70.

    PubMed  Google Scholar 

  13. WHO. Global tuberculosis report. 2016. http://www.who.int/tb/publications/global_report/en/. Accessed 20 Dec 2016.

  14. Picard C, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, Conley ME, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol. 2015;35:696–726.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Edgar JDM, Buckland M, Guzman D, Conlon NP, Knerr V, Bangs C, et al. The United Kingdom Primary Immune Deficiency (UKPID) Registry: report of the first 4 years’ activity 2008–2012. Clin Exp Immunol. 2014;175:68–78.

    CAS  PubMed  Google Scholar 

  16. Errante PR, Franco JL, Espinosa-Rosales FJ, Sorensen R, Condino-Neto A. Advances in primary immunodeficiency diseases in Latin America: epidemiology, research, and perspectives. Ann N Y Acad Sci. 2012;1250:62–72.

    CAS  PubMed  Google Scholar 

  17. Resnick ES, Bhatt P, Sidi P, Cunningham-Rundles C. Examining the use of ICD-9 diagnosis codes for primary immune deficiency diseases in New York state. J Clin Immunol. 2013;33:40–48.

    CAS  PubMed  Google Scholar 

  18. Latif AH, Tabassomi F, Abolhassani H, Hammarström L. Molecular diagnosis of primary immunodeficiency diseases in a developing country: Iran as an example. Expert Rev Clin Immunol. 2014;10:385–96.

    CAS  PubMed  Google Scholar 

  19. Milner JD, Holland SM. The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases. Nat Rev Immunol. 2013;13:635–48.

    CAS  PubMed  Google Scholar 

  20. van de Vosse E. Primary immunodeficiency leading to mycobacterial disease. Int J Mycobacteriology. 2015;4:63.

    Google Scholar 

  21. Duncan CJA, Hambleton S. Host genetic factors in susceptibility to mycobacterial disease. Clin Med. 2014;14(Suppl 6):s17–21.

    Google Scholar 

  22. Blischak JD, Tailleux L, Mitrano A, Barreiro LB, Gilad Y. Mycobacterial infection induces a specific human innate immune response. Sci Rep. 2015;5:16882.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ashraf Q, Galor O. The ‘Out of Africa’ hypothesis, human genetic diversity, and comparative economic development. Am Econ Rev. 2013;103:1–46.

    PubMed  PubMed Central  Google Scholar 

  24. Braun K, Wolfe J, Kiazyk S, Kaushal Sharma M. Evaluation of host genetics on outcome of tuberculosis infection due to differences in killer immunoglobulin-like receptor gene frequencies and haplotypes. BMC Genet. 2015;16:63.

    PubMed  PubMed Central  Google Scholar 

  25. Hoal EG, Dippenaar A, Kinnear C, van Helden PD, Möller M. The arms race between man and Mycobacterium tuberculosis: time to regroup. Infect Genet Evol. 2017. https://doi.org/10.1016/j.meegid.2017.08.021.

    PubMed  Google Scholar 

  26. Stead WW, Senner JW, Reddick WT, Lofgren JP. Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med. 1990;322:422–7.

    CAS  PubMed  Google Scholar 

  27. Gallant CJ, Cobat A, Simkin L, Black GF, Stanley K, Hughes J, et al. Tuberculin skin test and in-vitro assays provide complementary measures of anti-mycobacterial immunity in children and adolescents. Chest. 2009;137:1071–7.

    PubMed  Google Scholar 

  28. Stewart GR, Robertson BD, Young DB. Tuberculosis: a problem with persistence. Nat Rev Micro. 2003;1:97–105.

    CAS  Google Scholar 

  29. Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol. 2012;12:581–91.

    CAS  PubMed  Google Scholar 

  30. O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MPR. The immune response in tuberculosis. Annu Rev Immunol. 2013;31:475–527.

    PubMed  Google Scholar 

  31. Lerner TR, Borel S, Gutierrez MG. The innate immune response in human tuberculosis. Cell Microbiol. 2015;17:1277–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vynnycky E, Fine PE. The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol Infect. 1997;119:183–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Houben RMGJ, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 2016;13:e1002152.

    PubMed  PubMed Central  Google Scholar 

  34. Ferrara G, Murray M, Winthrop K, Centis R, Sotgiu G, Migliori GB, et al. Risk factors associated with pulmonary tuberculosis: smoking, diabetes and anti-TNFα drugs. Curr Opin Pulm Med. 2012;18:233–40.

    CAS  PubMed  Google Scholar 

  35. Abel L, Fellay J, Haas DW, Schurr E, Srikrishna G, Urbanowski M, et al. Genetics of human susceptibility to active and latent tuberculosis: present knowledge and future perspectives. Lancet Infect Dis. 2017;18:e64–e75.

    PubMed  PubMed Central  Google Scholar 

  36. Kinnear C, Hoal EG, Schurz H, van Helden PD, Möller M. The role of human host genetics in tuberculosis resistance. Expert Rev Respir Med. 2017;11:721–37.

    CAS  PubMed  Google Scholar 

  37. Abel L, El-Baghdadi J, Bousfiha AA, Casanova J-L, Schurr E. Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc B. 2014;369:20130428.

    Google Scholar 

  38. Daya M, van der Merwe L, van Helden PD, Möller M, Hoal EG. The role of ancestry in TB susceptibility of an admixed South African population. Tuberculosis. 2014;94:413–20.

    PubMed  Google Scholar 

  39. de Wit E, Delport W, Rugamika CE, Meintjes A, Möller M, van Helden PD, et al. Genome-wide analysis of the structure of the South African Coloured Population in the Western Cape. Hum Genet. 2010;128:145–53.

    PubMed  Google Scholar 

  40. Daya M, van der Merwe L, Galal U, Möller M, Salie M, Chimusa ER, et al. A panel of ancestry informative markers for the complex five-way admixed South African coloured population. PLoS ONE. 2013;8:e82224.

    PubMed  PubMed Central  Google Scholar 

  41. Uren C, Kim M, Martin AR, Bobo D, Gignoux CR, van Helden PD, et al. Fine-scale human population structure in Southern Africa reflects ecogeographic boundaries. Genetics. 2016;204:303–14.

    PubMed  PubMed Central  Google Scholar 

  42. Esser M, Banda E, Möller M, Nortje R. Primary immunodeficiency disease management in tuberculosis endemic regions—are we aware enough and how does a registry assist? Res Gate. 2015; 57–61.

  43. Bustamante J, Boisson-Dupuis S, Abel L, Casanova J-L. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol. 2014;26:454–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Boisson-Dupuis S, Bustamante J, El-Baghdadi J, Camcioglu Y, Parvaneh N, El Azbaoui S, et al. Inherited and acquired immunodeficiencies underlying tuberculosis in childhood. Immunol Rev. 2015;264:103–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile J-F, Newport M, et al. Interferon-γ-receptor deficiency in an infant with fatal bacille Calmette–Guérin infection. New Engl J Med. 1996;335:1956–62.

    CAS  PubMed  Google Scholar 

  46. Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondanèche MC, Tuerlinckx D, Blanche S, et al. Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette–Guérin infection and a sibling with clinical tuberculosis. J Clin Investig. 1997;100:2658–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jouanguy E, Lamhamedi-Cherradi S, Lammas D, Dorman SE, Fondanèche M-C, Dupuis S, et al. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet. 1999;21:370–8.

    CAS  PubMed  Google Scholar 

  48. Jouanguy E, Dupuis S, Pallier A, Döffinger R, Fondanèche M-C, Fieschi C, et al. In a novel form of IFN-γ receptor 1 deficiency, cell surface receptors fail to bind IFN-γ. J Clin Investig. 2000;105:1429–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R, et al. A mutation in the interferon-γ-receptor gene and susceptibility to mycobacterial infection. New Engl J Med. 1996;335:1941–9.

    CAS  PubMed  Google Scholar 

  50. Altare F, Durandy A, Lammas D, Emile J-F, Lamhamedi S, Deist FL, et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science. 1998;280:1432–5.

    CAS  PubMed  Google Scholar 

  51. Altare F, Lammas D, Revy P, Jouanguy E, Döffinger R, Lamhamedi S, et al. Inherited interleukin 12 deficiency in a child with bacille Calmette–Guérin and Salmonella enteritidis disseminated infection. J Clin Investig. 1998;102:2035–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jong R, de, Altare F, Haagen I-A, Elferink DG, Boer T, de, Vriesman PJC, van B, et al. Severe mycobacterial and salmonella infections in interleukin-12 receptor-deficient patients. Science. 1998;280:1435–8.

    PubMed  Google Scholar 

  53. Dorman SE, Holland SM. Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Investig. 1998;101:2364–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dupuis S, Dargemont C, Fieschi C, Thomassin N, Rosenzweig S, Harris J, et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science. 2001;293:300–3.

    CAS  PubMed  Google Scholar 

  55. Filipe-Santos O, Bustamante J, Haverkamp MH, Vinolo E, Ku C-L, Puel A, et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med. 2006;203:1745–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Vogt G, Bustamante J, Chapgier A, Feinberg J, Dupuis SB, Picard C, et al. Complementation of a pathogenic IFNGR2 misfolding mutation with modifiers of N-glycosylation. J Exp Med. 2008;205:1729–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol. 2011;12:213–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. New Engl J Med. 2011;365:127–38.

    CAS  PubMed  Google Scholar 

  59. Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science. 2012;337:1684–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kong X-F, Vogt G, Itan Y, Macura-Biegun A, Szaflarska A, Kowalczyk D, et al. Haploinsufficiency at the human IFNGR2 locus contributes to mycobacterial disease. Hum Mol Genet. 2013;22:769–81.

    CAS  PubMed  Google Scholar 

  61. Marciano BE, Huang C-Y, Joshi G, Rezaei N, Carvalho BC, Allwood Z, et al. BCG vaccination in patients with severe combined immunodeficiency: complications, risks, and vaccination policies. J Allergy Clin Immunol. 2014;133:1134–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med. 1993;178:2249–54.

    CAS  PubMed  Google Scholar 

  63. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158:670–89.

    CAS  PubMed  Google Scholar 

  64. Esteve-Solé A, Sologuren I, Martínez-Saavedra MT, Deyà-Martínez À, Oleaga-Quintas C, Martinez-Barricarte R. et al. Laboratory evaluation of the IFN-γ circuit for the molecular diagnosis of Mendelian susceptibility to mycobacterial disease. Crit Rev Clin Lab Sci.2018;55:184–204.

    PubMed  PubMed Central  Google Scholar 

  65. Picard C, Fieschi C, Altare F, Al Jumaah S, Al Hajjar S, Feinberg J, et al. Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet. 2002;70:336–48.

    CAS  PubMed  Google Scholar 

  66. Caragol I, Raspall M, Fieschi C, Feinberg J, Larrosa MN, Hernandez M, et al. Clinical tuberculosis in 2 of 3 siblings with interleukin-12 receptor beta1 deficiency. Clin Infect Dis. 2003;37:302–6.

    CAS  PubMed  Google Scholar 

  67. Ozbek N, Fieschi C, Yilmaz BT, de Beaucoudrey L, Demirhan B, Feinberg J, et al. Interleukin-12 receptor beta 1 chain deficiency in a child with disseminated tuberculosis. Clin Infect Dis. 2005;40:e55–8.

    PubMed  Google Scholar 

  68. Chapgier A, Wynn RF, Jouanguy E, Filipe-Santos O, Zhang S, Feinberg J, et al. Human complete Stat-1 deficiency is associated with defective type I and II IFN responses in vitro but immunity to some low virulence viruses in vivo. J Immunol. 2006;176:5078–83.

    CAS  PubMed  Google Scholar 

  69. Haapaniemi E. Genetic studies on primary immunodeficiency diseases. 2015. https://helda.helsinki.fi/handle/10138/155079. Accessed 14 Nov 2017.

  70. Tso HW, Lau YL, Tam CM, Wong HS, Chiang AK. Associations between IL12B polymorphisms and tuberculosis in the Hong Kong Chinese population. JInfectDis. 2004;190:913–9.

    CAS  Google Scholar 

  71. Sahiratmadja E, Baak-Pablo R, de Visser AW, Alisjahbana B, Adnan I, van Crevel R, et al. Association of polymorphisms in IL-12/IFN-γ pathway genes with susceptibility to pulmonary tuberculosis in Indonesia. Tuberculosis. 2007;87:303–11.

    CAS  PubMed  Google Scholar 

  72. Sánchez D, Lefebvre C, García LF, Barrera LF. Variants in the IFNγ transcription factor genes TBET, STAT1, STAT4, and HLX and the risk of pulmonary tuberculosis in a Colombian population: a case-control study. Biomedica. 2013;33:259–67.

    PubMed  Google Scholar 

  73. Lü J, Pan H, Chen Y, Tang S, Feng Y, Qiu S, et al. Genetic polymorphisms of IFNG and IFNGR1 in association with the risk of pulmonary tuberculosis. Gene. 2014;543:140–4.

    PubMed  Google Scholar 

  74. Lausch E, Janecke A, Bros M, Trojandt S, Alanay Y, De Laet C, et al. Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat Genet. 2011;43:132–7.

    CAS  PubMed  Google Scholar 

  75. Samuel CE. ADARs: viruses and innate immunity. Curr Top Microbiol Immunol. 2012;353:163–95.

    CAS  PubMed  Google Scholar 

  76. Kretschmer S, Wolf C, König N, Staroske W, Guck J, Häusler M, et al. SAMHD1 prevents autoimmunity by maintaining genome stability. Ann Rheum Dis. 2015;74:e17.

    PubMed  Google Scholar 

  77. Ho J, Pelzel C, Begitt A, Mee M, Elsheikha HM, Scott DJ, et al. STAT2 is a pervasive cytokine regulator due to its inhibition of STAT1 in multiple signaling pathways. PLoS Biol. 2016;14:e2000117.

    PubMed  PubMed Central  Google Scholar 

  78. Gobin K, Hintermeyer M, Boisson B, Chrabieh M, Gandil P, Puel A, et al. IRAK4 deficiency in a patient with recurrent pneumococcal infections: case report and review of the literature. Front Pediatr. 2017;5:83.

    PubMed  PubMed Central  Google Scholar 

  79. Jouanguy E, Gineau L, Cottineau J, Béziat V, Vivier E, Casanova J-L. Inborn errors of the development of human natural killer cells. Curr Opin Allergy Clin Immunol. 2013;13:589–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Schlechter N, Glanzmann B, Hoal EG, Schoeman M, Petersen B-S, Franke A, et al. Exome sequencing identifies a novel MAP3K14 mutation in recessive atypical combined immunodeficiency. Front Immunol. 2017;8:1624.

    PubMed  PubMed Central  Google Scholar 

  81. Sadeghi-Shabestari M, Rezaei N. Disseminated bacille Calmette–Guérin in Iranian children with severe combined immunodeficiency. Int J Infect Dis. 2009;13:e420–e423.

    PubMed  Google Scholar 

  82. Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, Conley ME, Cunningham-Rundles C. et al. Primary immunodeficiency diseases:an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2014;5:162

    PubMed  PubMed Central  Google Scholar 

  83. Lee PPW, Chan K-W, Chen T-X, Jiang L-P, Wang X-C, Zeng H-S. et al. Molecular diagnosis of severe combined immunodeficiency—identification of IL2RG, JAK3, IL7R, DCLRE1C,RAG1, and RAG2 mutations in a cohort of Chinese and Southeast Asian children. J Clin Immunol. 2010;31:281–96.

    CAS  PubMed  Google Scholar 

  84. Roos D, de Boer M. Molecular diagnosis of chronic granulomatous disease. Clin Exp Immunol. 2014;175:139–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mashruwala MA, Smith AK, Lindsey DR, Moczygemba M, Wetsel RA, Klein JR, et al. A defect in the synthesis of Interferon-γ by the T cells of Complement-C5 deficient mice leads to enhanced susceptibility for tuberculosis. Tuberculosis. 2011;91:S82–9.

    CAS  PubMed  Google Scholar 

  86. Actor JK, Breij E, Wetsel RA, Hoffmann H, Hunter RL, Jagannath C. A role for complement C5 in organism containment and granulomatous response during murine tuberculosis. Scand J Immunol. 2001;53:464–74.

    CAS  PubMed  Google Scholar 

  87. Chapel H, Prevot J, Gaspar HB, Español T, Bonilla FA, Solis L, et al. Primary immune deficiencies—principles of care. Front Immunol. 2014;5:627.

    PubMed  PubMed Central  Google Scholar 

  88. Posevitz-Fejfár A, Posevitz V, Gross CC, Bhatia U, Kurth F, Schütte V, et al. Effects of blood transportation on human peripheral mononuclear cell yield, phenotype and function: implications for immune cell biobanking. PLoS ONE. 2014;9:e115920.

    PubMed  PubMed Central  Google Scholar 

  89. Bousfiha A, Jeddane L, Al-Herz W, Ailal F, Casanova J-L, Chatila T, et al. The 2015 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol. 2015;35:727–38.

    PubMed  PubMed Central  Google Scholar 

  90. Conley ME, Casanova J-L. Discovery of single-gene inborn errors of immunity by next generation sequencing. Curr Opin Immunol. 2014;30:17–23.

    CAS  PubMed  Google Scholar 

  91. Fang M, Abolhassani H, Lim CK, Zhang J, Hammarström L. Next generation sequencing data analysis in primary immunodeficiency disorders—future directions. J Clin Immunol. 2016;36(Suppl 1):68–75.

    CAS  PubMed  Google Scholar 

  92. Itan Y, Casanova J-L. Novel primary immunodeficiency candidate genes predicted by the human gene connectome. Front Immunol. 2015;6:142.

    PubMed  PubMed Central  Google Scholar 

  93. Navin N, Hicks J. Future medical applications of single-cell sequencing in cancer. Genome Med. 2011;3:31.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Fokstuen S, Makrythanasis P, Nikolaev S, Santoni F, Robyr D, Munoz A, et al. Multiplex targeted high-throughput sequencing for Mendelian cardiac disorders. Clin Genet. 2014;85:365–70.

    CAS  PubMed  Google Scholar 

  95. Guilmatre A, Highnam G, Borel C, Mittelman D, Sharp AJ. Rapid multiplexed genotyping of simple tandem repeats using capture and high-throughput sequencing. Hum Mutat. 2013;34:1304–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chou J, Ohsumi TK, Geha RS. Use of whole exome and genome sequencing in the identification of genetic causes of primary immunodeficiencies. Curr Opin Allergy Clin Immunol. 2012;12:623–8.

    CAS  PubMed  Google Scholar 

  97. Nijman IJ, van Montfrans JM, Hoogstraat M, Boes ML, van de Corput L, Renner ED, et al. Targeted next-generation sequencing: a novel diagnostic tool for primary immunodeficiencies. J Allergy Clin Immunol. 2014;133:529–34.

    CAS  PubMed  Google Scholar 

  98. Ghosh S, Krux F, Binder V, Gombert M, Niehues T, Feyen O, et al. Array-based sequence capture and next-generation sequencing for the identification of primary immunodeficiencies. Scand J Immunol. 2012;75:350–4.

    CAS  PubMed  Google Scholar 

  99. Stoddard JL, Niemela JE, Fleisher TA, Rosenzweig SD. Targeted NGS: a cost-effective approach to molecular diagnosis of PIDs. Front Immunol. 2014;5:531.

    PubMed  PubMed Central  Google Scholar 

  100. Moens LN, Falk-Sörqvist E, Asplund AC, Bernatowska E, Smith CIE, Nilsson M. Diagnostics of primary immunodeficiency diseases: a sequencing capture approach. PLoS ONE. 2014;9:e114901.

    PubMed  PubMed Central  Google Scholar 

  101. Al-Mousa H, Abouelhoda M, Monies DM, Al-Tassan N, Al-Ghonaium A, Al-Saud B, et al. Unbiased targeted next-generation sequencing molecular approach for primary immunodeficiency diseases. J Allergy Clin Immunol. 2016;137:1780–7.

    CAS  PubMed  Google Scholar 

  102. Lazaridis KN, Schahl KA, Cousin MA, Babovic-Vuksanovic D, Riegert-Johnson DL, Gavrilova RH, et al. Outcome of whole exome sequencing for diagnostic odyssey cases of an individualized medicine clinic. Mayo Clin Proc. 2016;91:297–307.

    PubMed  Google Scholar 

  103. Hesseling AC, Marais BJ, Gie RP, Schaaf HS, Fine PE, Godfrey-Faussett P, et al. The risk of disseminated Bacille Calmette–Guerin (BCG) disease in HIV-infected children. Vaccine. 2007;25:14–18.

    PubMed  Google Scholar 

  104. Sandgren A, Cuevas LE, Dara M, Gie RP, Grzemska M, Hawkridge A, et al. Childhood tuberculosis: progress requires an advocacy strategy now. Eur Respir J. 2012;40:294–7.

    PubMed  PubMed Central  Google Scholar 

  105. Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014;312:1870–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhu X, Petrovski S, Xie P, Ruzzo EK, Lu Y-F, McSweeney KM, et al. Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios. Genet Med. 2015;17:774–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Retterer K, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016;18:696–704.

    CAS  PubMed  Google Scholar 

  108. Atwal PS, Brennan M-L, Cox R, Niaki M, Platt J, Homeyer M, et al. Clinical whole-exome sequencing: are we there yet? Genet Med. 2014;16:717–9.

    PubMed  Google Scholar 

Download references

Author contributions

BG, CU, MM, CK and NvD wrote the manuscript. AvC, RG, MU, EH and ME reviewed the manuscript.

Funding

This research was funded (partially or fully) by the South African government though the South African Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig J. Kinnear.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glanzmann, B., Uren, C., de Villiers, N. et al. Primary immunodeficiency diseases in a tuberculosis endemic region: challenges and opportunities. Genes Immun 20, 447–454 (2019). https://doi.org/10.1038/s41435-018-0041-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-018-0041-0

This article is cited by

Search

Quick links