Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Critical amino acid variations in HLA-DQB1* molecules confers susceptibility to Autoimmune Thyroid Disease in south India

Abstract

The HLA-DQB1* region exhibits complex associations with autoimmune thyroid disease (AITD). AITD patients (Hashimoto’s thyroiditis, HT = 180; Graves’ disease, GD = 55) and age/sex matched controls (n = 235) were genotyped for DQB1* alleles by PCR-SSP. Alleles DQB1*02:02, *06:03, *06:09, *03:02, and *03:03 showed an increased risk and *02:01, *05:02, and *06:02 showed a protection toward AITD. Multiple sequence alignment was used to find out the amino acid variations within the peptide-binding pockets of susceptible and/or protective DQB1* alleles. We observed susceptible associations for amino acids ‘Glu86(P < 0.0007)’ and ‘Leu87(P < 3.8 × 10−4)’ in P1, ‘Leu26(P < 4.0 × 10−12)’ in P4, ‘His9(P < 5.0 × 10−4)’ and ‘Ala57(P < 3.6 × 10−4)’ in P9 toward HT; and ‘Gly86(P < 0.0004)’ in P1 and ‘Asp57(P < 1.9 × 10−4)’ in P9 towards GD. Protective associations were observed for amino acids ‘Ala86(P < 8.2 × 10−6)’ and ‘Tyr87(P < 0.0003)’ in P1, ‘Gly26(P < 4.9 × 10−5)’ and ‘Ser74(P < 4.9 × 10−5)’ in P4, ‘Phe9(P < 0.0007)’ and ‘Ser57(P < 0.0016)’ in P9 towards HT. Thus, the present study revealed that DQB1* alleles and putative amino acid residues play an important role in susceptibility toward AITD in south India.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Prabhakar BS, Bahn RS, Smith TJ. Current perspective on the pathogenesis of Graves’ disease and ophthalmopathy. Endocr Rev. 2003;24:802–35.

    Article  CAS  Google Scholar 

  2. Dayan CM, Daniels GH. Chronic autoimmune thyroiditis. N Engl J Med. 1996;335:99–107.

    Article  CAS  Google Scholar 

  3. Unnikrishnan AG, Menon UV, Thyroid disorders in India: an epidemiological perspective. Indian J Endocrinol Metab. 2011;15:S78–S81.(Suppl2).

    Article  Google Scholar 

  4. Tomer Y, Davies TF. Searching for the autoimmune thyroid disease susceptibility genes: from gene mapping to gene function. Endocr Rev. 2003;24:694–717.

    Article  CAS  Google Scholar 

  5. Babbitt BP, Allen PM, Matsueda G, Haber E, Unanue ER. Binding of immunogenic peptides to Ia histocompatibility molecules. J Immunol. 2005;175:4163–5.

    CAS  PubMed  Google Scholar 

  6. Jacobson EM, Huber A, Tomer Y. The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. J Autoimmun. 2008;30:58–62.

    Article  CAS  Google Scholar 

  7. Ban Y, Davies TF, Greenberg DA, Concepcion ES, Osman R, Oashi T, et al. Arginine at position 74 of the HLA-DRb1 chain is associated with Graves’ disease. Genes Immun. 2004;5:203–8.

    Article  CAS  Google Scholar 

  8. Morel PA, Dorman JS, Todd JA, McDevitt HO, Trucco M. Aspartic acid at position 57 of the HLA DQ beta-chain protects against type I diabetes: a family study. Proc Natl Acad Sci USA. 1988;85:8111–5.

    Article  CAS  Google Scholar 

  9. Straumfors A, Johansen BH, Vartdal F, Sollid LM, Thorsby E, Buus S. A peptide-binding assay for the disease-associated HLA-DQ8 molecule. Scand J Immunol. 1998;47:561–7.

    Article  CAS  Google Scholar 

  10. Hanafusa T, Pujol BR, Chiovato L, Russell RC, Doniach D, Bottazzo GF. Aberrant expression of HLA-DR antigen on thyrocytes in Graves’ disease: relevance for autoimmunity. Lancet. 1983;2:1111–5.

    Article  CAS  Google Scholar 

  11. Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature. 1994;368:215–21.

    Article  CAS  Google Scholar 

  12. Wu Z, Stephens HA, Sachs JA, Biro PA, Cutbush S, Magzoub MM, et al. Molecular analysis of HLA-DQ and -DP genes in caucasoid patients with Hashimoto’s thyroiditis. Tissue Antigens. 1994;43:116–9.

    Article  CAS  Google Scholar 

  13. Zantut-Wittmann DE, Persoli L, Tambascia MA, Fischer E, Maldonado DF, Costa AM, et al. HLA-DRB1*04 and HLA-DQB1*03 association with the atrophic but not with the goitrous form of chronic autoimmune thyroiditis in a Brazilian population. Horm Metab Res. 2004;36:492–500.

    Article  CAS  Google Scholar 

  14. Orhan Y, Azezli A, Carin M, Aral F, Sencer E, Molvalilar S. Human lymphocyte antigens (HLA) and Graves’ disease in Turkey. J Clin Immunol. 1993;13:339–43.

    Article  CAS  Google Scholar 

  15. Santamaria P, Barbosa JJ, Lindstrom AL, Lemke TA, Goetz FC, Rich SS. HLA-DQB1-associated susceptibility that distinguishes Hashimoto’s thyroiditis from Graves’ disease in type I diabetic patients. J Clin Endocrinol Metab. 1994;78:878–83.

    CAS  PubMed  Google Scholar 

  16. Giza S, Galli-Tsinopoulou A, Lazidou P, Trachana M, Goulis D, HLA-DQB1*05 association with Hashimoto’s thyroiditis in children of Northern Greek origin. Indian Pediatr. 2008;45:493–6.

    PubMed  Google Scholar 

  17. Tamai H, Kimura A, Dong RP, Matsubayashi S, Kuma K, Nagataki S, Sasazuki T. Resistance to autoimmune thyroid disease is associated with HLA-DQ. J Clin Endocrinol Metab. 1994;78:94–7.

    CAS  PubMed  Google Scholar 

  18. Heward JM, Allahabadia A, Daykin J, Carr-Smith J, Daly A, Armitage M. Linkage disequilibrium between the human leukocyte antigen class II region of the major histocompatibility complex and Graves’ disease: replication using a population case control and family-based study. J Clin Endocrinol Metab. 1998;83:3394–7.

    CAS  PubMed  Google Scholar 

  19. Ghosh P, Amaya M, Mellins E, Wiley DC. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature. 1995;378:457–62.

    Article  CAS  Google Scholar 

  20. Rammensee HG, Friede T, Stevanoviíc S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995;41:178–228.

    Article  CAS  Google Scholar 

  21. Aitman TJ, Todd JA. Molecular genetics of diabetes mellitus. Baillière’s Clin Endocrinol Metab. 1995;9:631–56.

    Article  CAS  Google Scholar 

  22. Van den Driessche A, Eenkhoorn V, Van Gaal L, De Block C. Type 1 diabetes and autoimmune polyglandular syndrome: a clinical review. Neth J Med. 2009;67:376–87.

    PubMed  Google Scholar 

  23. Heuck CC, Kallner A, Kanagasabapathy AS, Riesen W. Diagnosis and monitoring of the disease of the thyroid. WHO Document 2000; WHO/DIL/00.4: 8-9.

  24. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.

    Article  CAS  Google Scholar 

  25. Scola L, Lio D, Candore G, Forte GI, Crivello A, Colonna-Romano G, et al. Analysis of HLA-DRB1, DQA1, DQB1 haplotypes in Sardinian centenarians. Exp Gerontol. 2008;43:114–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the various central facilities such as NRCBS, DBT-IPLS and Tissue Typing Service (KB) at Madurai Kamaraj University. We sincerely thank all the patients and paramedical staffs of hospitals from where we collected blood samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Balakrishnan.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramgopal, S., Rathika, C., Padma Malini, R. et al. Critical amino acid variations in HLA-DQB1* molecules confers susceptibility to Autoimmune Thyroid Disease in south India. Genes Immun 20, 32–38 (2019). https://doi.org/10.1038/s41435-017-0008-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-017-0008-6

This article is cited by

Search

Quick links