Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High resolution HLA analysis reveals independent class I haplotypes and amino-acid motifs protective for multiple sclerosis

A Correction to this article was published on 18 June 2018

This article has been updated

Abstract

We investigated association between HLA class I and class II alleles and haplotypes, and KIR loci and their HLA class I ligands, with multiple sclerosis (MS) in 412 European American MS patients and 419 ethnically matched controls, using next-generation sequencing. The DRB1*15:01~DQB1*06:02 haplotype was highly predisposing (odds ratio (OR) = 3.98; 95% confidence interval (CI) = 3–5.31; p-value (p) = 2.22E−16), as was DRB1*03:01~DQB1*02:01 (OR = 1.63; CI = 1.19–2.24; p = 1.41E−03). Hardy–Weinberg (HW) analysis in MS patients revealed a significant DRB1*03:01~DQB1*02:01 homozyote excess (15 observed; 8.6 expected; p = 0.016). The OR for this genotype (5.27; CI = 1.47–28.52; p = 0.0036) suggests a recessive MS risk model. Controls displayed no HW deviations. The C*03:04~B*40:01 haplotype (OR = 0.27; CI = 0.14–0.51; p = 6.76E−06) was highly protective for MS, especially in haplotypes with A*02:01 (OR = 0.15; CI = 0.04–0.45; p = 6.51E−05). By itself, A*02:01 is moderately protective, (OR = 0.69; CI = 0.54–0.87; p = 1.46E−03), and haplotypes of A*02:01 with the HLA-B Thr80 Bw4 variant (Bw4T) more so (OR = 0.53; CI = 0.35–0.78; p = 7.55E−04). Protective associations with the Bw4 KIR ligand resulted from linkage disequilibrium (LD) with DRB1*15:01, but the Bw4T variant was protective (OR = 0.64; CI = 0.49–0.82; p = 3.37–04) independent of LD with DRB1*15:01. The Bw4I variant was not associated with MS. Overall, we find specific class I HLA polymorphisms to be protective for MS, independent of the strong predisposition conferred by DRB1*15:01.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Change history

  • 18 June 2018

    Since the publication of this article, the authors have found that the numbers of patients and controls were reversed. This study included 412 MS patients and 419 controls. This correction applies to the Abstract, the final paragraph of the Introduction, and the first paragraph of the Materials and Methods. This was entirely a reporting error and does not impact the Results or Conclusions.

References

  1. Sawcer S, Franklin RJ, Ban M. Multiple sclerosis genetics. Lancet Neurol. 2014;13:700–9.

    Article  CAS  PubMed  Google Scholar 

  2. Bertrams J, Kuwert E, Liedtke U. HL-A antigens and multiple sclerosis. Tissue Antigens. 1972;2:405–8.

    Article  CAS  PubMed  Google Scholar 

  3. Naito S, Namerow N, Mickey MR, Terasaki PI. Multiple sclerosis: association with HL-A3. Tissue Antigens. 1972;2:1–4.

    Article  CAS  PubMed  Google Scholar 

  4. Barcellos LF, Oksenberg JR, Green AJ, Bucher P, Rimmler JB, Schmidt S, et al. Genetic basis for clinical expression in multiple sclerosis. Brain. 2002;125:150–8.

    Article  CAS  PubMed  Google Scholar 

  5. Marrosu MG, Murru MR, Costa G, Cucca F, Sotgiu S, Rosati G, et al. Multiple sclerosis in Sardinia is associated and in linkage disequilibrium with HLA-DR3 and -DR4 alleles. Am J Hum Genet. 1997;61:454–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Modin H, Olsson W, Hillert J, Masterman T. Modes of action of HLA-DR susceptibility specificities in multiple sclerosis. Am J Hum Genet. 2004;74:1321–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marrosu MG, Muntoni F, Murru MR, Spinicci G, Pischedda MP, Goddi F, et al. Sardinian multiple sclerosis is associated with HLA-DR4: a serologic and molecular analysis. Neurology. 1988;38:1749–53.

    Article  CAS  PubMed  Google Scholar 

  8. Yoshimura S, Isobe N, Yonekawa T, Matsushita T, Masaki K, Sato S, et al. Genetic and infectious profiles of Japanese multiple sclerosis patients. PLoS ONE. 2012;7:e48592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brassat D, Salemi G, Barcellos LF, McNeill G, Proia P, Hauser SL, et al. The HLA locus and multiple sclerosis in Sicily. Neurology. 2005;64:361–3.

    Article  CAS  PubMed  Google Scholar 

  10. Matsuoka T, Matsushita T, Osoegawa M, Kawano Y, Minohara M, Mihara F, et al. Association of the HLA-DRB1 alleles with characteristic MRI features of Asian multiple sclerosis. Mult Scler. 2008;14:1181–90.

    Article  CAS  PubMed  Google Scholar 

  11. Kwon OJ, Karni A, Israel S, Brautbar C, Amar A, Meiner Z, et al. HLA class II susceptibility to multiple sclerosis among Ashkenazi and non-Ashkenazi Jews. Arch Neurol. 1999;56:555–60.

    Article  CAS  PubMed  Google Scholar 

  12. International Multiple Sclerosis Genetics C, Wellcome Trust Case Control C, Sawcer S, Hellenthal G, Pirinen M, Spencer CC, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476:214–9.

    Article  CAS  Google Scholar 

  13. Cocco E, Sardu C, Pieroni E, Valentini M, Murru R, Costa G, et al. HLA-DRB1-DQB1 haplotypes confer susceptibility and resistance to multiple sclerosis in Sardinia. PLoS ONE. 2012;7:e33972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patsopoulos NA, Barcellos LF, Hintzen RQ, Schaefer C, van Duijn CM, Noble JA, et al. Fine-mapping the genetic association of the major histocompatibility complex in multiple sclerosis: HLA and non-HLA effects. PLoS Genet. 2013;9:e1003926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Isobe N, Gourraud PA, Harbo HF, Caillier SJ, Santaniello A, Khankhanian P, et al. Genetic risk variants in African Americans with multiple sclerosis. Neurology. 2013;81:219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karni A, Kohn Y, Safirman C, Abramsky O, Barcellos L, Oksenberg JR, et al. Evidence for the genetic role of human leukocyte antigens in low frequency DRB1*1501 multiple sclerosis patients in Israel. Mult Scler. 1999;5:410–5.

    CAS  PubMed  Google Scholar 

  17. Campbell RD, Trowsdale J. Map of the human MHC. Immunol Today. 1993;14:349–52.

    Article  CAS  PubMed  Google Scholar 

  18. Andersson G. Evolution of the human HLA-DR region. Front Biosci. 1998;27:d739–45.

    Article  Google Scholar 

  19. Erlich HA, Valdes AM, McDevitt SL, Simen BB, Blake LA, McGowan KR, et al. Next generation sequencing reveals the association of DRB3*02:02 with type 1 diabetes. Diabetes. 2013;62:2618–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao LP, Alshiekh S, Zhao M, Carlsson A, Larsson HE, Forsander G, et al. Next-generation sequencing reveals that HLA-DRB3, -DRB4, and -DRB5 may be associated with islet autoantibodies and risk for childhood type 1 diabetes. Diabetes. 2016;65:710–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Le WB, Shi JS, Zhang T, Liu L, Qin HZ, Liang S et al. HLA-DRB1*15:01 and HLA-DRB3*02:02 in PLA2R-related membranous nephropathy. J Am Soc Nephrol. 2017;28:1642–50.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mayo L, Quintana FJ, Weiner HL. The innate immune system in demyelinating disease. Immunol Rev. 2012;248:170–87.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gross CC, Schulte-Mecklenbeck A, Runzi A, Kuhlmann T, Posevitz-Fejfar A, Schwab N, et al. Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation. Proc Natl Acad Sci USA. 2016;113:E2973–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Backstrom E, Chambers BJ, Ho EL, Naidenko OV, Mariotti R, Fremont DH, et al. Natural killer cell-mediated lysis of dorsal root ganglia neurons via RAE1/NKG2D interactions. Eur J Immunol. 2003;33:92–100.

    Article  CAS  PubMed  Google Scholar 

  25. Backstrom E, Chambers BJ, Kristensson K, Ljunggren HG. Direct NK cell-mediated lysis of syngenic dorsal root ganglia neurons in vitro. J Immunol. 2000;165:4895–900.

    Article  CAS  PubMed  Google Scholar 

  26. Shi FD, Takeda K, Akira S, Sarvetnick N, Ljunggren HG. IL-18 directs autoreactive T cells and promotes autodestruction in the central nervous system via induction of IFN-gamma by NK cells. J Immunol. 2000;165:3099–104.

    Article  CAS  PubMed  Google Scholar 

  27. Vollmer TL, Liu R, Price M, Rhodes S, La Cava A, Shi FD. Differential effects of IL-21 during initiation and progression of autoimmunity against neuroantigen. J Immunol. 2005;174: 2696–701.

    Article  CAS  PubMed  Google Scholar 

  28. Colonna M, Borsellino G, Falco M, Ferrara GB, Strominger JL. HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1- and NK2-specific natural killer cells. Proc Natl Acad Sci USA. 1993;90:12000–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Winter CC, Gumperz JE, Parham P, Long EO, Wagtmann N. Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition. J Immunol. 1998;161:571–7.

    CAS  PubMed  Google Scholar 

  30. Carena I, Shamshiev A, Donda A, Colonna M, Libero GD. Major histocompatibility complex class I molecules modulate activation threshold and early signaling of T cell antigen receptor-gamma/delta stimulated by nonpeptidic ligands. J Exp Med. 1997;186: 1769–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cella M, Longo A, Ferrara GB, Strominger JL, Colonna M. NK3-specific natural killer cells are selectively inhibited by Bw4-positive HLA alleles with isoleucine 80. J Exp Med. 1994;180: 1235–42.

    Article  CAS  PubMed  Google Scholar 

  32. Carr WH, Pando MJ, Parham P. KIR3DL1 polymorphisms that affect NK cell inhibition by HLA-Bw4 ligand. J Immunol. 2005;175:5222–9.

    Article  CAS  PubMed  Google Scholar 

  33. Hansasuta P, Dong T, Thananchai H, Weekes M, Willberg C, Aldemir H, et al. Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific. Eur J Immunol. 2004;34:1673–9.

    Article  CAS  PubMed  Google Scholar 

  34. Morvan M, David G, Sebille V, Perrin A, Gagne K, Willem C, et al. Autologous and allogeneic HLA KIR ligand environments and activating KIR control KIR NK-cell functions. Eur J Immunol. 2008;38:3474–86.

    Article  CAS  PubMed  Google Scholar 

  35. Fauriat C, Ivarsson MA, Ljunggren HG, Malmberg KJ, Michaelsson J. Education of human natural killer cells by activating killer cell immunoglobulin-like receptors. Blood. 2010;115:1166–74.

    Article  CAS  PubMed  Google Scholar 

  36. Bottino C, Castriconi R, Moretta L, Moretta A. Cellular ligands of activating NK receptors. Trends Immunol. 2005;26:221–6.

    Article  CAS  PubMed  Google Scholar 

  37. Graef T, Moesta AK, Norman PJ, Abi-Rached L, Vago L, Older Aguilar AM, et al. KIR2DS4 is a product of gene conversion with KIR3DL2 that introduced specificity for HLA-A*11 while diminishing avidity for HLA-C. J Exp Med. 2009;206:2557–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lorentzen AR, Karlesen TH, Olsson m, Smestad C, Mero I-L, Woldseth B, et al. Killer immunoglobulin-lik receptor ligand HLA-Bw4 protects against multiple sclerosis. Ann Neurol. 2009;65:658–66.

    Article  CAS  PubMed  Google Scholar 

  39. Fusco C, Guerini FR, Nocera G, Ventrella G, Caputo D, Valentino MA, et al. KIRs and their HLA ligands in remitting-relapsing multiple sclerosis. J Neuroimmunol. 2010;229:232–7.

    Article  CAS  PubMed  Google Scholar 

  40. Garcia-Leon JA, Pinto-Medel MJ, Garcia-Trujillo L, Lopez-Gomez C, Oliver-Martos B, Prat-Arrojo I, et al. Killer cell immunoglobulin-like receptor genes in Spanish multiple sclerosis patients. Mol Immunol. 2011;48:1896–902.

    Article  CAS  PubMed  Google Scholar 

  41. Jelcic I, Hsu KC, Kakalacheva K, Breiden P, Dupont B, Uhrberg M, et al. Killer immunoglobulin-like receptor locus polymorphisms in multiple sclerosis. Mult Scler. 2012;18:951–8.

    Article  PubMed  Google Scholar 

  42. Gustavsen MW, Viken MK, Celius EG, Berge T, Mero IL, Berg-Hansen P, et al. Oligoclonal band phenotypes in MS differ in their HLA class II association, while specific KIR ligands at HLA class I show association to MS in general. J Neuroimmunol. 2014;274: 174–9.

    Article  CAS  PubMed  Google Scholar 

  43. Bettencourt A, Silva AM, Carvalho C, Leal B, Santos E, Costa PP, et al. The role of KIR2DS1 in multiple sclerosis—KIR in Portuguese MS patients. J Neuroimmunol. 2014;269:52–5.

    Article  CAS  PubMed  Google Scholar 

  44. Hollenbach JA, Pando MJ, Caillier SJ, Gourraud PA, Oksenberg JR. The killer immunoglobulin-like receptor KIR3DL1 in combination with HLA-Bw4 is protective against multiple sclerosis in African Americans. Genes Immun. 2016;17:199–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Olerup O, Hillert J. HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens. 1991;38:1–15.

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt H, Williamson D, Ashley-Koch A. HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am J Epidemiol. 2007;165:1097–109.

    Article  PubMed  Google Scholar 

  47. Oksenberg JR, Barcellos LF, Cree BA, Baranzini SE, Bugawan TL, Khan O, et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am J Hum Genet. 2004;74:160–7.

    Article  CAS  PubMed  Google Scholar 

  48. Lampis R, Morelli L, Congia M, Macis MD, Mulargia A, Loddo M, et al. The inter-regional distribution of HLA class II haplotypes indicates the suitability of the Sardinian population for case-control association studies in complex diseases. Hum Mol Genet. 2000;9:2959–65.

    Article  CAS  PubMed  Google Scholar 

  49. Agrawal S, Srivastava SK, Borkar M, Chaudhuri TK. Genetic affinities of north and northeastern populations of India: inference from HLA-based study. Tissue Antigens. 2008;72:120–30.

    Article  CAS  PubMed  Google Scholar 

  50. Papassavas EC, Spyropoulou-Vlachou M, Papassavas AC, Schipper RF, Doxiadis IN, Stavropoulos-Giokas C. MHC class I and class II phenotype, gene, and haplotype frequencies in Greeks using molecular typing data. Hum Immunol. 2000;61:615–23.

    Article  CAS  PubMed  Google Scholar 

  51. Doherty DG, Vaughan RW, Donaldson PT, Mowat AP. HLA DQA, DQB, and DRB genotyping by oligonucleotide analysis: distribution of alleles and haplotypes in British caucasoids. Hum Immunol. 1992;34:53–63.

    Article  CAS  PubMed  Google Scholar 

  52. Uinuk-Ool TS, Takezaki N, Derbeneva OA, Volodko NV, Sukernik RI. Variation of HLA class II genes in the Nganasan and Ket, two aboriginal Siberian populations. Eur J Immunogenet. 2004;31:43–51.

    Article  CAS  PubMed  Google Scholar 

  53. Moutsianas L, Jostins L, Beecham AH, Dilthey AT, Xifara DK, Ban M, et al. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat Genet. 2015;47:1107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barcellos LF, Sawcer S, Ramsay PP, Baranzini SE, Thomson G, Briggs F, et al. Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum Mol Genet. 2006;15:2813–24.

    Article  CAS  PubMed  Google Scholar 

  55. Dyment DA, Herrera BM, Cader MZ, Willer CJ, Lincoln MR, Sadovnick AD, et al. Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance. Hum Mol Genet. 2005;14:2019–26.

    Article  CAS  PubMed  Google Scholar 

  56. Ramagopalan SV, Anderson C, Sadovnick AD, Ebers GC. Genomewide study of multiple sclerosis. N Engl J Med. 2007;357: 2199–200. author reply 2200-1

    Article  CAS  PubMed  Google Scholar 

  57. Fogdell-Hahn A, Ligers A, Gronning M, Hillert J, Olerup O. Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens. 2000;55:140–8.

    Article  CAS  PubMed  Google Scholar 

  58. Harbo HF, Lie BA, Sawcer S, Celius EG, Dai KZ, Oturai A, et al. Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens. 2004;63:237–47.

    Article  CAS  PubMed  Google Scholar 

  59. Brynedal B, Duvefelt K, Jonasdottir G, Roos IM, Akesson E, Palmgren J, et al. HLA-A confers an HLA-DRB1 independent influence on the risk of multiple sclerosis. PLoS ONE. 2007;2:e664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bergamaschi L, Leone MA, Fasano ME, Guerini FR, Ferrante D, Bolognesi E, et al. HLA-class I markers and multiple sclerosis susceptibility in the Italian population. Genes Immun. 2010;11: 173–80.

    Article  CAS  PubMed  Google Scholar 

  61. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476:214–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Goris A, van Setten J, Diekstra F, Ripke S, Patsopoulos NA, Sawcer SJ, et al. No evidence for shared genetic basis of common variants in multiple sclerosis and amyotrophic lateral sclerosis. Hum Mol Genet. 2014;23:1916–22.

    Article  CAS  PubMed  Google Scholar 

  63. Yeo TW, De Jager PL, Gregory SG, Barcellos LF, Walton A, Goris A, et al. A second major histocompatibility complex susceptibility locus for multiple sclerosis. Ann Neurol. 2007;61: 228–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Rioux JD, Goyette P, Vyse TJ, Hammarstrom L, Fernando MM, Green T, et al. Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc Natl Acad Sci USA. 2009;106:18680–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mack SJ, Tu B, Lazaro A, Yang R, Lancaster AK, Cao K, et al. HLA-A, -B, -C, and -DRB1 allele and haplotype frequencies distinguish Eastern European Americans from the general European American population. Tissue Antigens. 2009;73:17–32.

    Article  CAS  PubMed  Google Scholar 

  66. Mack SJ, Tu B, Yang R, Masaberg C, Ng J, Hurley CK. Human leukocyte antigen-A, -B, -C, -DRB1 allele and haplotype frequencies in Americans originating from southern Europe: contrasting patterns of population differentiation between Italian and Spanish Americans. Hum Immunol. 2011;72:144–9.

    Article  CAS  PubMed  Google Scholar 

  67. Mandelboim O, Reyburn HT, Sheu EG, Vales-Gomez M, Davis DM, Pazmany L, et al. The binding site of NK receptors on HLA-C molecules. Immunity. 1997;6:341–50.

    Article  CAS  PubMed  Google Scholar 

  68. Fadda L, O′Connor GM, Kumar S, Piechocka-Trocha A, Gardiner CM, Carrington M, et al. Common HIV-1 peptide variants mediate differential binding of KIR3DL1 to HLA-Bw4 molecules. J Virol. 2011;85:5970–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS, Jia X, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet. 2012;44:291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Natarajan K, Li H, Mariuzza RA, Margulies DH. MHC class I molecules, structure and function. Rev Immunogenet. 1999;1: 32–46.

    CAS  PubMed  Google Scholar 

  71. Smith KJ, Pyrdol J, Gauthier L, Wiley DC, Wucherpfennig KW. Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein. J Exp Med. 1998;188:1511–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dos Santos EJ, McCabe A, Gonzalez-Galarza FF, Jones AR, Middleton D. Allele frequencies net database: improvements for storage of individual genotypes and analysis of existing data. Hum Immunol. 2016;77:238–48.

    Article  CAS  PubMed  Google Scholar 

  73. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol. 2005;58:840–6.

    Article  PubMed  Google Scholar 

  74. Houtchens KA, Nichols RJ, Ladner MB, Boal HE, Sollars C, Geraghty DE, et al. High-throughput killer cell immunoglobulin-like receptor genotyping by MALDI-TOF mass spectrometry with discovery of novel alleles. Immunogenetics. 2007;59:525–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hollenbach JA, Ladner MB, Saeteurn K, Taylor KD, Mei L, Haritunians T, McGovern DP, Erlich HA, Rotter JI, Trachtenberg EA. Susceptibility to Crohn’s disease is mediated by KIR2DL2/KIR2DL3 heterozygosity and the HLA-C ligand. Immunogenetics. 2009;61:663–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bentley G, Higuchi R, Hoglund B, Goodridge D, Sayer D, Trachtenberg EA, et al. High-resolution, high-throughput HLA genotyping by next-generation sequencing. Tissue Antigens. 2009;74:393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Trachtenberg E, Holcomb CL. Next-Generation HLA Sequencing Using the 454 GS FLX System. In: Zachary AA, Leffell MS, editors. Transplantation immunology: methods and protocols, second edition, methods in molecular biology. New York, NY: Springer Science+Business Media, LLC; 2013. vol. 1034.

  78. Moonsamy PV, Williams T, Bonella P, Holcomb CL, Hoglund BN, Hillman G, et al. High throughput HLA genotyping using 454 sequencing and the Fluidigm Access Array System for simplified amplicon library preparation. Tissue Antigens. 2013;81: 141–9.

    Article  CAS  PubMed  Google Scholar 

  79. Holcomb CL, Hoglund B, Anderson MW, Blake LA, Bohme I, Egholm M, et al. A multi-site study using high-resolution HLA genotyping by next generation sequencing. Tissue Antigens. 2011;77:206–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cereb N, Kim HR, Ryu J, Yang SY. Advances in DNA sequencing technologies for high resolution HLA typing. Hum Immunol. 2015;76:923–7.

    Article  CAS  PubMed  Google Scholar 

  81. Pappas DJ, Marin W, Hollenbach JA, Mack SJ. Bridging ImmunoGenomic Data Analysis Workflow Gaps (BIGDAWG): an integrated case-control analysis pipeline. Hum Immunol. 2016;77:283–7.

    Article  CAS  PubMed  Google Scholar 

  82. Hollenbach JA, Mack SJ, Thomson G, Gourraud PA. Analytical methods for disease association studies with immunogenetic data. Methods Mol Biol. 2012;882:245–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lancaster AK, Single RM, Solberg OD, Nelson MP, Thomson G. PyPop update—a software pipeline for large-scale multilocus population genomics. Tissue Antigens. 2007;69 Suppl 1:192–7.

    Article  CAS  PubMed  Google Scholar 

  84. Guo SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics. 1992;48: 361–72.

    Article  CAS  PubMed  Google Scholar 

  85. Chen JJ, Thomson G. The variance for the disequilibrium coefficient in the individual Hardy-Weinberg test. Biometrics. 1999;55:1269–72.

    Article  CAS  PubMed  Google Scholar 

  86. Chen JJ, Hollenbach JA, Trachtenberg EA, Just JJ, Carrington M, Ronningen KS, et al. Hardy-Weinberg testing for HLA class II (DRB1, DQA1, DQB1, and DPB1) loci in 26 human ethnic groups. Tissue Antigens. 1999;54:533–42.

    Article  CAS  PubMed  Google Scholar 

  87. Lewontin RC. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics. 1964;49:49–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Single RM, Strayer N, Thomson G, Paunic V, Albrecht M, Maiers M. Asymmetric linkage disequilibrium: tools for assessing multiallelic LD. Hum Immunol. 2016;77:288–94.

    Article  CAS  PubMed  Google Scholar 

  89. Thomson G, Single RM. Conditional asymmetric linkage disequilibrium (ALD): extending the biallelic r2 measure. Genetics. 2014;198:321–31.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Earlbaum Associates; 1988. p 20–26.

Download references

Acknowledgements

This work was supported National Institutes of Health (NIH) National Institute of Allergy and Infectious Disease (NIAID) grants U01AI067068 (Supplement) “The Role of KIR and HLA in Multiple Sclerosis” (E.A.T.) and R01AI28775 (S.J.M.), National Institute of General Medical Sciences (NIGMS) grant R01GM109030 (S.J.M.) and National Institute of Neurological Disorders and Stroke (NINDS) grant R01NS026799 (J.R.O.). The content is solely the responsibility of the authors and does not necessarily reflect the official views of the NIAID, NIGMS, NINDS NIH, or United States Government. We thank President Barack H. Obama for his support and appreciation of American science and basic research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Mack.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mack, S.J., Udell, J., Cohen, F. et al. High resolution HLA analysis reveals independent class I haplotypes and amino-acid motifs protective for multiple sclerosis. Genes Immun 20, 308–326 (2019). https://doi.org/10.1038/s41435-017-0006-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-017-0006-8

This article is cited by

Search

Quick links