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Cell based therapies are being assessed for their therapeutic potential across a variety of diseases. Gestational tissues are attractive
sources for cell therapy. The large number of births worldwide ensures sufficient access to gestational tissues, however, limited
information has been reported around the impact of birth trends, delivery methods and pregnancy conditions on perinatal stem
cell banking. This review describes the current state of banking of gestational tissues and their derived perinatal stem cells,
discusses why the changes in birth trends and delivery methods could affect gestational tissue banking practices, and further
explores how common pregnancy complications can potentially influence perinatal stem cell banking.
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INTRODUCTION
Cell based therapies have been heralded as the latest pillar of
modern medicine [1] and are currently being assessed for their
suitability in treating a variety of diseases. Stem cells for therapeutic
purposes can be isolated from a number of sources including
induced pluripotent stem cells and embryonic, fetal, adult and
gestational tissue. Gestational tissues comprise the placenta, includ-
ing the amnion and chorion, and umbilical cord tissue and umbilical
cord blood. Gestational tissues are an attractive source for stem and
stem-like cells as they are rich in regenerative cell types without legal,
ethical or moral concerns. We recognise that the regenerative cell
types found within gestational tissues include both stem and stem-
like cells. Throughout this review, we will refer to them collectively as
‘perinatal stem cells’. While there is a multitude of pre-clinical studies
and clinical trials investigating the potential of perinatal stem cells,
the impact of birth trends, delivery methods and pregnancy
conditions on perinatal stem cells is limited. We will discuss changes
in birth trends and explore how common maternal-fetal complica-
tions can potentially influence perinatal stem cell banking practices
and stem cell quality attributes.

CLINICAL USE OF PERINATAL STEM CELLS
Gestational tissues give rise to stem cell types such as
hematopoietic stem/progenitor cells (HSCs/HPCs), endothelial
progenitor cells (EPCs), mesenchymal stem/stromal cells (MSCs)
and human amnion epithelial cells (hAECs) (Fig. 1). HSCs/HPCs are
an FDA approved cellular therapy product used clinically for a
number of indications including bone marrow failure, haemato-
logical malignancies, congenital immunodeficiency syndromes,
hemoglobinopathies and inherited metabolic diseases [2–5]. The
use of HSCs for non-homologous applications, and other perinatal
cell types are still under investigation.

Our appreciation of the potential of perinatal stem cells has
improved significantly in the past decade. For example, cord
blood is now understood to contain a mixture of stem cells
including HSCs, EPCs and MSCs. HSCs are the most commonly
studied stem cell population in cord blood, approved for
treatment of some haematological, genetic and immunodefi-
ciency diseases. Additionally, the therapeutic potential of cord
blood has been investigated in disorders [6] such as hypoxic-
ischemic encephalopathy [7], stroke [8], autism [9], and cerebral
palsy [10]. Similarly, umbilical cord derived MSCs were reportedly
therapeutic in disease settings such as rheumatoid arthritis [11]
myocardial infarction [12], heart failure [13], and hypoxic ischemic
encephalopathy [14]. Recently, fetal-liver-derived MSCs were used
for in utero and postnatal treatment for osteogenesis imperfecta
[15]. Compared to most other perinatal cell types, hAEC can be
isolated in sufficient numbers for clinical use without the need for
expansion [16]. hAECs are in clinical testing for diseases including
stroke [17], bronchopulmonary dysplasia [18, 19], end-stage liver
diseases (ACTRN 12616000437460) and Crohn’s disease-related
perianal fistulas (ACTRN 12618001883202). Clinical trials employ-
ing the above cell types are summarised in Fig. 2 (data derived
from https://www.clinicaltrials.gov).

IMPACT OF PREGNANCY HEALTH AND MODE OF DELIVERY ON
PERINATAL CELL PRODUCTS
There are more than 2000 clinical trials in the United States alone
using perinatal stem cells, however, there is a scarcity of
information around the impact of birth trends and delivery
methods on the quality attributes of perinatal stem cells.
Furthermore, allogeneic perinatal stem cells are largely limited
to donations from healthy pregnancies. In this section, we will
explore the impact of birth trends, delivery methods, and
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maternal-fetal health complications on perinatal stem cell banking
practices and their therapeutic potential.

Current state of banking of gestational tissues and their
derived perinatal stem cells
The first clinical use of perinatal stem cells was the HSC fraction of
cord blood for the correction of Fanconi’s anaemia [20], and it
remains the only FDA approved perinatal stem cell therapy.
Consequently, only umbilical cord blood is collected and stored in
not-for-profit, government-funded cell banks. In contrast, other
gestational tissues and their derived stem cells are banked within
clinical centers, research organizations and privately funded
companies.
The world’s first public umbilical cord blood bank was

established in 1993 at The New York Blood Centre after the first
successful cord blood derived HSC transplantation [21]. In the last
3 decades, the number of cord blood banks has grown
significantly. At the time of writing this review, there are
approximately 450 public and private cord blood banks worldwide
[22]. A major debate in banking gestational tissues is public
banking or private banking, which leads to the discussion of using
autologous versus allogeneic cells for clinical translation, where
private banks are largely built around autologous use business
models.
Professional societies including the American Academy of

Pediatrics, the American Society for Blood and Marrow transplan-
tation, the International Federation of Gynecology and Obstetrics,
and the United Kingdom’s Royal College of Obstetricians and
Gynecologists have indicated a preference of public cord blood
banking to private banking [23, 24] as public cord blood banking
is free of charge to the donors and can be accessed to anyone
who needs it. In contrast, private cord blood banks have a low
percentage of use (about 1 in 1000) [25], are expensive to access
(~2000 USD for collection and ~150 USD annual storage fee) [26],
and provide limited family-only access. Consequently, private cord
blood banking has not been recommended to families without a
current or potential need for stem cell transplantation. Indeed,
cord blood banking is only suggested when a family member has
been identified as having a disease that is amenable to cord blood
transplantation [27]. Nevertheless, more cord blood units are
stored in private cord blood banks compared to public banks. By
2017, there were approximately 800,000 cord blood units stored in
public cord blood banks [24], and more than 5 million cord blood
units in private cord blood banks. This could be considered a

waste of cord blood units that are banked privately at significant
cost, with slim chances of being used. In contrast, 30-fold more
cord blood units have been released for clinical purposes from
public cord blood banks [25].
Given the significantly higher use of cord blood units from

public banks, one can infer that there are also significantly more
allogeneic cord blood transplantation cases compared to auto-
logous. While the efficacy of autologous and allogeneic cord
blood has not been compared within a single clinical study, cord
blood from both sources have been found to improve the
outcomes in cerebral palsy patients [10, 28–30]. In contrast,
allogeneic cord blood but not autologous, has been shown to
have therapeutic effect in Type I diabetes [31–33]. Thus, there is
currently an absence of evidence to suggest that autologous cord
blood transplantation achieves superior clinical outcomes.
There are increasingly more cord blood banks using hybrid

models that combine aspects of both the public and private
banking systems. There are two common hybrid models – one
offers parents both public and private donation options, while the
other makes privately stored cord blood available to the public
[34]. Although there are concerns around technologies, standards,
logistics, regulations and corporate ethics, these hybrid models
address the gap between private and public banking [34, 35]. The
emergent private-public banking model adds more privately
banked cord blood units to the public pool, which increases the
chance of being used either by patients or researchers [36]. It also
improves transplantation opportunities for private patients when
pooled cord blood is needed from multiple donors. In addition, it
provides private banks with additional technical support from
public banks and eases the pressure of staffing shortages [36].
The rate of cord blood banking varies across globally. Among

the 54 countries that were taken into account by Cell Trials, the
rate of cord blood banking ranged from 0.3% in UK to 30% in
Singapore, with 27 countries reporting rates under 1% (https://
celltrials.org). NetCord and the Foundation for the Accreditation of
Cellular Therapy (NetCord-FACT) International Standards for cord
blood collection, banking, and release for administration [37]
suggests that donor criteria exclude genetic diseases, malignant
diseases, inherited disorders, communicable diseases and human
transmissible spongiform encephalopathy. However, there are no
donor criteria around common pregnancy disorders and risk
factors such as gestational diabetes, hypertensive disorders,
preterm labour, smoking during pregnancy, and overweight or
obesity. Whether gestational tissues from these common

Fig. 1 Schematic diagram of perinatal stem cells.
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pregnancy disorders can be used as sources for perinatal stem
cells depends on whether the potency of perinatal stem cells from
these complicated pregnancies are affected in disease status.
These are elaborated in detail in “The impact of pregnancy
complications on perinatal cell banking”.
The NetCord-FACT criteria for cord blood units stored for

allogeneic clinical use include the total nucleated cell (TNC) count

≥ 5.0 × 108 with ≥ 60% recovery rate and ≥ 85% viability, viable
CD34+ count ≥ 1.25 × 106 with post-thaw viability ≥ 70%, and
colony forming units [37]. Notably, these requirements vary
between countries and banks. For instance, the requirements for
cord blood banking in Japan is expected to rise to TNC of 10 × 108

per cord blood unit, because of the anticipated increased need in
adult populations due to haematological malignancies in their

Fig. 2 Clinical trials employing perinatal stem cells (data derived from https://www.clinicaltrials.gov).
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aging population [38]. An Italian cord blood bank has adopted a
cut-off value of 8 × 108 nucleated cells and a volume ≥60 mL [39].
A Mexican public cord bank sets cut-off values of ≥80mL volume
and ≥8 × 108 TNCs [40]. Overall, the relevance of the cord blood
volume and TNC numbers is dependent on the recipient and
clinical indication. One can appreciate that the cord blood volume
and TNC needed for haematological transplantation in a 5-year-
old child will be different to that needed for an adult. Notably,
partially HLA-matched cord blood units can be combined to
overcome cell-dose limitations [41]. Furthermore, ex vivo expan-
sion methods have been evaluated in an effort to achieve higher
cell numbers from single-cord blood units. These include the use
of HSC expansion cytokine cocktails comprising of granulocyte
colony-stimulating factor (G-CSF), thrombopoietin (TPO), and Flt-3
ligand (Flt-3L) [42], reagents such as copper chelators [43] and
nicotinamide [44], and bioreactor culture systems [45, 46]. While 2-
to 400- fold expansion were reported pre-clinically and clinically
[47], more clinical studies are needed to truly determine the
feasibility and reproducibility of cord blood expansion.
Numerous cord blood banks also offer perinatal tissue banking,

which includes umbilical cord tissue, placental tissue, and
amniotic membrane. These tissues can be used for the derivation
of EPCs, hAECs and MSCs. Concomitant collection of cord blood
and birth tissues may be an economic approach for perinatal stem
cell banking, where only a single donor would be screened for all
the products [48]. NetCord-FACT standards of cord tissue
collection and storage apply only to tissue samples collected for
testing or research purposes, and FACT common standards for
cellular therapies apply to birth tissues collected and stored for
therapeutic intent [37]. Notably, there are no common criteria for
donor selection, cell isolation and expansion from gestational
tissues, or the clinical use of stored gestational tissues and their
derived cells. Moreover, cell transplantations using hAECs and
MSCs are usually for allogeneic use, and sometimes pooled cells
from multiple donors are needed for sufficient doses.

The impact of birth trends on perinatal stem cell banking
While global births have been stable in the last 30 years with a
total of 138 million in 1980 and 141 million in 2015 (https://
worldpopulationreview.com), maternal age has risen. In Australia,
the median age of all mothers has increased from 26.3 years for all
births registered in 1988, to 31.4 years in 2018 (https://
www.abs.gov.au). The fertility rate of women aged 35–39 more
than doubled in 2017, and for women aged 40–44, it tripled in the
past 30 years in Australia. This has resulted in the birthing rates of
mothers aged 35 years and over, increasing from 10% in 1978 to
24% in 2018 (https://www.abs.gov.au). In the USA, the average age
of mothers was 28.8 years old in 2017. A similar trend in birth rates
was observed with 5.3 births per 1000 mothers occurring in the
35–39 age group and 0.7/1000 in the 40–44 age group in 1987,
which has increased by more than 10-fold to 52.3 and 11.6,
respectively in 2017 [49].
To date, there have been limited reports on the impact of

advanced maternal age on the functional activity of perinatal stem
cells indicating a current gap that needs to be addressed. A recent
study on placenta-derived mesenchymal stem cells from women
aged >35 years showed lower self-renewal properties and
proliferative capacity and lower expression of pluripotency and
multipotency markers compared to women aged <35 [50].
Another recent study on Wharton’s Jelly-derived stem cells also
showed significantly lower SOX2 gene expression in mothers aged
>34 years indicating a negative correlation between maternal age
and SOX2 gene expression [51]. SOX2 gene expression indicates
stemness, proliferative and adhesion properties and cell migration
in Wharton’s Jelly-derived stem cells. Similarly, another study
reported a negative correlation between maternal age and gene
expression of umbilical cord derived-MSC markers CD105 and
CD29 [52].

Studies on the impact of advanced maternal age on the yield of
perinatal stem cells are inconclusive. Some studies report no effect
on TNC or CD34+ mononucleated cells in the cord blood units
collected from mothers aged 35–40 years compared to mother
aged 25–35 years [53]. While others report TNC of cord blood units
from mothers aged over 30 years to be either similar or higher
compared to younger mothers [38]. These results are aligned with
another study reporting increased TNC in cord blood units from
mothers aged between 20 to 37 years compared to women aged
<20 and >37 years of age. This study also showed a negative
correlation between the concentration of hematopoietic stem
cells, regulatory T-cells (CD45+/CD4+/CD3+) and all lymphocytes
(CD45+) in umbilical cord blood cell population and maternal age
[54]. It is noteworthy, however, that advanced maternal age over
40 years, is an independent risk factor for preterm delivery,
pregnancy-related hypertension disorders, gestational diabetes
and abnormal fetal presentation [55, 56]. Further, advanced
maternal age is associated with an increased risk of stillbirth,
fetal growth restriction, and neonatal death [57, 58]. The potential
impact of pregnancy disorders and risk factors on perinatal stem
cells will be discussed later in this review “The impact of
pregnancy complications on perinatal cell banking”.

The impact of delivery methods on perinatal cell banking
Another consideration is the limitation placed on perinatal stem
cell banking due to the method of delivery. Currently, cord blood
can be collected from both vaginal and caesarean births. However,
public donations of other gestational tissues usually require sterile
collection from caesarean sections in an effort to avoid microbial
contamination. Furthermore, majority of births including those
that happen in hospitals are vaginal deliveries. In the USA, 68% of
hospital births in 2017 were vaginal deliveries with 26% being
low-risk cases [49]. In the same year, the rate of vaginal deliveries
in Australia was similar, at ~70% (https://www.aihw.gov.au).
Considering that most low-risk pregnancies are delivered vagin-
ally, and majority of the research to date has focused on perinatal
stem cells from healthy pregnancies, this severely limits the
availability of potential donors for gestational tissues other than
cord blood. While private banks offering tissue collection along-
side with cord blood collection claim to bank tissues from both
vaginal and caesarean births, there are concerns about sterility
and perinatal stem cell quality when standardised collection
procedures for vaginal births are lacking. At the time of writing,
there are no published guidelines on bioburden reduction or
indicating the time between collection and processing for tissues
banked from vaginal births. Standard collection procedures should
be developed in order to increase researcher access to tissues
from low-risk/healthy pregnancies and standardise public and
private banking procedures.
A further consideration with regards to the impact of delivery,

specifically on cord blood collection, is the increasing trend of
delayed cord clamping, where a delay of 60 s has been reported to
significantly reduce blood volume collected and cell count [59].
Gestational tissues from home births are less likely to impact
perinatal stem cell banking due to the low rates of home births.
Home births remains below 5% in most countries despite a recent
increase with 1.6% in US [60], 4% in New Zealand [61] in 2017, and
0.48% in Australia between 2000 and 2015 [62]. Home births are
more common in countries like The Netherlands, accounting for
approximating 20% of all births [63]. However, there are clear
challenges in the sterile collection of gestational tissues in home
birth settings, and timely processing for cell isolation.

The impact of pregnancy complications on perinatal cell
banking
Given that limited research has been undertaken to understand
the impact of pregnancy complications and maternal health on
perinatal stem cells, it is important to consider the significant
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proportion of caesarean deliveries that are affected by complica-
tions of maternal-fetal health.

Preterm birth. Preterm birth is defined as a live birth occurring
before 37 weeks of pregnancy and is a common pregnancy
complication, ranging from 5% to 18% of all the births in 2018
[64]. In 2016, preterm births accounted for 9.93% of all births in
the US [49]. The most obvious impact of preterm birth on
gestational tissue-derived stem cells is less starting material for
cell isolation. Studies have shown that the volume of umbilical
cord blood increases with gestational age where 21–62mL of cord
blood can be obtained from infants born at 22–33 weeks of
gestational age and 49–90mL from infants born at 34–37 weeks,
compared to an average of 102 mL from term infants [65, 66].
Notably, TNC numbers also increased with gestational age where
2-3 × 108 TNC could be collected from infants born at 22–33 weeks,
5–7 × 108 TNC from infants born at 34–37 weeks, compared to an
average of 11 × 108 TNC from term infants [65, 66].
CD34 is a marker for haematopoietic progenitor cells in cord

blood. The number of CD34+ cells in a cord blood unit is
associated with engraftment, and it is superior indicator compared
to TNC numbers for predicting engraftment [67, 68]. Notably, the
concentration of CD34+ cells was found to be higher in cord blood
collected from preterm infants, where the total number of CD34+

cells in cord blood units were similar in those collected from
infants born between 22 and 36 weeks and those collected from
term-born infants [66]. Others found that total CD34+ counts were
highest in infants born at 34–37 weeks of gestation compared to
those who were born at 28–33 weeks and 38–41 weeks [65]. The
proliferative and self-renewal capacity of CD34+ cells in cord
blood collected from preterm infants have been shown to be
higher than that in term-born infants [69]. Similarly, endothelial
colony-forming cells (ECFC) from preterm cord blood were greater
in number and had higher proliferation rates compared to ECFCs
from term cord blood [70]. In contrast, MSCs derived from term
and preterm umbilical cords had similar proliferation rate and
colony-forming unit efficiency [71]. Nevertheless, there are
controversies on the potency of perinatal stem cells from preterm
birth. While conditioned media from preterm umbilical cord-
derived MSCs has been reported to ameliorate alveolar simplifica-
tion and pulmonary inflammation in hyperoxia-induced lung
injury, prematurity has also been reported to negatively impact
regenerative properties of perinatal stem cells [72]. In an ovine
model of preterm perinatal brain injury, both preterm and term
cord blood cells were able to reduce cell death, white matter
injury and inflammation, while term cord blood cells were more
effective at reducing oxidative stress than their preterm counter-
parts [73]. A similar study showed that hAECs isolated from
preterm gestational tissues were shown to be less effective in lung
repair [74].
As discussed earlier, umbilical cord blood from preterm birth

could be banked for hematopoietic disorders such as leukemia,
anaemia and autoimmune disorders. Indeed, there have been
some feasibility clinical studies using autologous preterm cord
blood transfusion for anaemia with contradicting conclusions.
Some claimed autologous cord blood as an effective therapeutic
with limited side effects [75] while others suggest that autologous
cord blood from preterm infants cannot replace 60–70% of
allogeneic transfusions due to the low volume [76, 77]. Selective
preterm cord blood banking may be promising, but prospective
collection and cord blood banking technology must be improved,
and clinical efficacy should be confirmed through larger-scale
clinical trials.

Hypertension disorders during pregnancy. Hypertension disorders
during pregnancy (HDP) accounts for 3–16% maternal mortality
[78, 79] and precedes 7% of early neonatal deaths [78]. The
histological abnormalities in placentas from HDP include reduced

vascularity, greater placental infarction, villous fibrinoid necrosis,
and villous hypermaturity [80]. These findings indicate placental
ischemia, leading to oxidative stress and chronic-fetal hypoxemia.
HDP includes chronic hypertension, gestational hypertension,
preeclampsia/eclampsia, and preeclampsia superimposed on
chronic hypertension [81]. Preeclampsia affects 6% of all deliveries
according to a global survey representing 39 million women from
40 countries [82]. It is one of the main causes for maternal, fetal
and neonatal mortality and the only effective treatment is delivery
of the fetus and placenta [83].
The number of EPCs isolated from umbilical cord blood was

reportedly lower in preeclamptic patients compared to healthy
patients, and the proliferation, migration and vasculogenic capa-
cities of EPCs were impaired by preeclampsia [84]. However, others
have shown that EPC numbers from maternal peripheral blood did
not change and EPC proliferation was actually higher in preeclamp-
tic women [85]. Studies have also shown that preeclampsia can
affect other perinatal stem cells. Blood volume, number of TNCs and
colony forming units were reduced in preeclamptic umbilical cord
blood compared to healthy term cord blood, however, the
expression of cell adhesion molecules such as lymphocyte
function-associated antigen-1(LFA-1), very late activin antigen-4
(VLA-4) and L-selectin were unchanged. Also, placental decidua-
derived MSCs, but not amniotic membrane-derived MSCs, from
preeclamptic placentae had reportedly lower levels of soluble
intracellular adhesion molecule-1 (sICAM-1) and stromal-derived
factor-1 (SDF-1) [86] which may explain a reduction in MSC
migration to sites of injury. Decidua basalis-derived MSCs isolated
from preeclamptic placentae expressed significantly lower aldehyde
dehydrogenase enzyme activity which is associated with its ability to
respond to oxidative damage, a hallmark of preeclampsia [87]. There
are yet no in vivo studies to further assess the therapeutic effect of
perinatal stem cells from preeclamptic pregnancies.

Gestational diabetes. The global median estimates of gestational
diabetes mellitus (GDM) range from 6% to 13% [88]. While there
are limited studies on the impact of gestational diabetes on
perinatal stem cells, one study reported reduced numbers of
circulating EPCs in cord blood from GDM affected pregnancies
[89]. Umbilical cord derived MSCs from GDM affected pregnancies
have reportedly low proliferative rates, reduced cell viability,
increased cell death, and low mitochondrial activity [90, 91].
Furthermore, placental MSCs from GDM-affected pregnancies
were found to be insulin-resistant and exhibited decreased
clonogenicity and angiogenic potential [92]. Chorionic MSCs from
GDM-affected pregnancies had increased adipogenic potential
but similar ability to suppress T cell proliferation compared to
MSCs from healthy pregnancies [93]. These limited studies
indicate that GDM may influence subpopulations of perinatal
stem cells differently and it is yet unknown how disease
management can influence cell yield and quality. The impact of
insulin or metformin on one of more stem cells may be different
to dietary modification. Knowledge in this area will be critical in
developing donor criteria for perinatal stem cell banking.

Smoking during pregnancy. While the global prevalence of
smoking is generally low, 1 in 14 women (7.2%) birthed in the
US in 2016 reported smoking during pregnancy [94]. Women who
smoked for more than 3 months before pregnancy accounts for
9% of all pregnancies in US in 2017 [49]. Prevalence of smoking
was highest among women aged 20–24 (10.7%), followed by
women aged 15–19 (8.5%) and 25–29 (8.2%) [94]. In addition to
the known effects of maternal smoking on fetal health, one study
showed that maternal smoking correlated with lower mono-
nuclear cell viability and increased oxidative stress proteins
products in the umbilical cord blood [95]. However, there has
been no study to date describing the effects of maternal smoking
on the yield or potency of perinatal stem cells.
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Intrauterine growth restriction. Intrauterine growth restriction
(IUGR) is a complex maternal, fetal and placental-related condition
leading to an increased risk of perinatal mortality and morbidity.
Infants born with IUGR have an estimated weight less than the
10th percentile caused by insufficient transfer of oxygen, nutrients
and metabolites in the uterus [96]. While the prevalence of IUGR is
between 5–15% in US and Europe, developing countries report a
wide range of 10 to 55% prevalence [97]. A comparison between
the amniotic membrane-derived MSCs isolated from IUGR
compared to healthy placenta indicates a lower level of cell
proliferation, angiogenesis capacity and restricted multipotency.
While IUGR derived MSCs showed a higher differentiation capacity
to adipose tissue in vitro, their capacity to differentiate toward
endothelial cell lineage was reduced [98]. Cord blood-derived
EPCs from IUGR pregnancies have also been shown to be fewer in
number and less vasculogenic compared to healthy pregnancies,
due to over expressing genes such as thrombospondin-1 [99, 100].
Comparison of stem cells isolated from healthy term pregnancies
against IUGR pregnancies may be challenging due to the
differences in gestational ages, however this is an area where
further research is warranted.
Apart from the major pregnancy disorders that have been

mentioned above, there are other conditions that may affect the
banking of perinatal stem cells. For example, the incidence of
pregnancies resulting from infertility treatment has grown in
recent years. It accounts for 1.87% of total births and approxi-
mately 20% of all multiple births in US [101]. In UK, 12.5% women
were reportedly infertile [102], and 4.2% of women aged 40–55
reported that they had achieved at least one pregnancy from
infertility treatment [103]. There has been over 8 million babies
born from in vitro fertilization (IVF) treatment worldwide [104],
and the majority of infertility treatment usually requires the use of
drugs and medical procedures. It is unclear if either or both impact
the therapeutic potential of perinatal stem cells. Moreover, studies
showed that there was higher risk of adverse pregnancy outcomes
from infertility treatment, such as GDM, HDP, very low birthweight,
very preterm birth and neonatal death [105, 106].
The use of medications for pre-existing diseases during

pregnancy should also be considered. For example, women with
systemic lupus erythematosus (SLE), asthma, and hypothyroidism
are advised to continue medications including hydroxychloro-
quine, corticosteroid, or thyroxine during pregnancy. While no
significant increase in adverse pregnancy outcomes has been
identified [107–109], it is worth noting that the impact of chronic
diseases and long-term medication on perinatal stem cells has not
been investigated.

CONCLUSION
Gestational tissues are attractive sources for stem cells. The large
number of births that occur globally ensures sufficient access to
gestational tissues, however, the increasing trend in maternal age
demands future research on the impact of geriatric pregnancies
on perinatal stem cell yield and quality. Furthermore, standard
collection procedures should be developed for gestational tissues
from vaginal birth, beyond umbilical cord blood. This would
enable the collection of gestational tissues from majority of births,
rather than limiting collections to caesarean sections. Importantly,
further research on the functional activity and therapeutic
potential of perinatal stem cell derived from unhealthy pregnan-
cies or women with advanced maternal age is needed to
investigate the impact of perinatal stem cell banking practices
on the efficacy of cell therapies. These studies should include
experimental testing of the perinatal stem cells in disease models,
and potentially, large-scale clinical studies to provide valuable
information for development of donor criteria with regards to
perinatal stem cell banking.
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