Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vitro evaluation of a lentiviral two-step transcriptional amplification system using GAL4FF transactivator for gene therapy applications in bone repair

Abstract

In this study, we developed a lentiviral two-step transcriptional amplification (TSTA) system expressing bone morphogenetic protein-2 (BMP-2) under the control of a GAL4FF transactivator to enhance gene expression and limit toxicity for bone repair applications. To this end human MSCs, isolated from bone marrow or adipose tissue, were transduced overnight with a LV-TSTA system (GAL4FF or GAL4vp16) expressing BMP-2 or GFP and evaluated in vitro for transduction efficiency, mean fluorescence intensity, cell viability, and BMP-2 production. FACS analysis of GFP-transduced MSCs confirmed successful transduction with the GAL4FF+GFP vector. Moreover, ELISA demonstrated abundant BMP-2 production by GAL4FF+BMP2-transduced human MSCs over a period of 8 weeks, with minimal cytotoxicity at all time points. Compared to GAL4vp16, GAL4FF was superior with respect to BMP production at 1, 2, 4, 6, and 8 weeks in BMSCs. In ASCs, GAL4FF was still associated with higher BMP-2 production at weeks 2–8, but this difference was not as prominent as in BMSCs. To our knowledge, this is the first report of GAL4FF-mediated BMP-2 production by human BMSCs and ASCs. Compared to the standard GAL4vp16TSTA vector, GAL4FF was associated with lower cytotoxicity and higher in vitro gene expression in both BMSCs and ASCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Evans CH. Gene delivery to bone. Adv Drug Deliv Rev. 2012;64:1331–40.

    Article  CAS  Google Scholar 

  2. Evans CH, Huard J. Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol. 2015;11:234–42.

    Article  CAS  Google Scholar 

  3. Pensak MJ, Lieberman JR. Gene therapy for bone regeneration. Curr Pharm Des. 2013;19:3466–73.

    Article  CAS  Google Scholar 

  4. Sugiyama O, An DS, Kung SP, Feeley BT, Gamradt S, Liu NQ, et al. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther. 2005;11:390–8.

    Article  CAS  Google Scholar 

  5. Feeley BT, Conduah AH, Sugiyama O, Krenek L, Chen IS, Lieberman JR. In vivo molecular imaging of adenoviral versus lentiviral gene therapy in two bone formation models. J Orthop Res. 2006;24:1709–21.

    Article  CAS  Google Scholar 

  6. Virk MS, Conduah A, Park SH, Liu N, Sugiyama O, Cuomo A, et al. Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone. 2008;42:921–31.

    Article  CAS  Google Scholar 

  7. Seeherman HJ, Li XJ, Bouxsein ML, Wozney JM. RhBMP-2 induces transient bone resorption followed by bone formation in a nonhuman primate core-defect model. J Bone Jt Surg Am. 2010;92:411–26.

    Article  Google Scholar 

  8. Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science. 1995;270:404–10.

    Article  CAS  Google Scholar 

  9. Dai Y, Schwarz EM, Gu D, Zhang WW, Sarvetnick N, Verma IM. Cellular and humoral immune responses to adenoviral vector containing factor IX gene: tolerization of factor IX and vector antigens allows for longterm expression. Proc Natl Acad Sci USA. 1995;92:1401–5.

    Article  CAS  Google Scholar 

  10. Wilson JM. Adenoviruses as gene-delivery vehicles. N Engl J Med. 1996;334:1185–7.

    Article  CAS  Google Scholar 

  11. Iyer M, Wu L, Carey M, Wang Y, Smallwood A, Gambhir SS. Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci USA. 2001;98:14595–14600.

    Article  CAS  Google Scholar 

  12. Virk MS, Sugiyama O, Park SH, Gambhir SS, Adams DJ, Drissi H, et al. “Same day” ex-vivo regional gene therapy: a novel strategy to enhance bone repair. Mol Ther. 2011;19:960–8.

    Article  CAS  Google Scholar 

  13. Alaee F, Bartholomae C, Sugiyama O, Virk MS, Drissi H, Wu Q, et al. Biodistribution of LV-TSTA transduced rat bone marrow cells used for “ex-vivo” regional gene therapy for bone repair. Curr Gene Ther. 2015;15:481–91.

    Article  CAS  Google Scholar 

  14. Bougioukli S, Sugiyama O, Pannell W, Ortega BA, Tan MH, Tang AH, et al. Gene therapy for bone repair using human cells: superior osteogenic potential of BMP-2 transduced mesenchymal stem cells derived from adipose tissue compared to bone marrow. Hum Gene Ther. 2018;29:507–19.

    Article  CAS  Google Scholar 

  15. Sadowski I, Ma J, Triezenberg S, Ptashne M. GAL4-VP16 is an unusually potent transcriptional activator. Nature. 1988;335:563–4.

    Article  CAS  Google Scholar 

  16. Gill G, Ptashne M. Negative effect of the transcriptional activator GAL4. Nature. 1988;334:721–4.

    Article  CAS  Google Scholar 

  17. Köster RW, Fraser SE. Tracing transgene expression in living zebrafish embryos. Dev Biol. 2001;233:329–46.

    Article  Google Scholar 

  18. Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, et al. Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA. 2008;105:1255–60.

    Article  CAS  Google Scholar 

  19. Franceschi RT, Yang S, Rutherford RB, Krebsbach PH, Zhao M, Wang D. Gene therapy approaches for bone regeneration. Cells Tissues Organs. 2004;176:95–108.

    Article  CAS  Google Scholar 

  20. Phillips JE, Gersbach CA, García AJ. Virus-based gene therapy strategies for bone regeneration. Biomaterials. 2007;28:211–29.

    Article  CAS  Google Scholar 

  21. Carofino BC, Lieberman JR. Gene therapy applications for fracture-healing. J Bone Jt Surg Am. 2008;90:99–110.

    Article  Google Scholar 

  22. Oakes DA, Lieberman JR. Osteoinductive applications of regional gene therapy: ex vivo gene transfer. Clin Orthop Relat Res. 2000;379:S101–112.

    Article  Google Scholar 

  23. Hsu WK, Sugiyama O, Park SH, Conduah A, Feeley BT, Liu NQ, et al. Lentiviral mediated BMP-2 gene transfer enhances healing of segmental femoral defects in rats. Bone. 2007;40:931–8.

    Article  CAS  Google Scholar 

  24. Bougioukli S, Jain A, Sugiyama O, Tinsley BA, Tang AH, Tan MH, et al. Combination therapy with BMP-2 and a systemic RANKL inhibitor enhances bone healing in a mouse critical-sized femoral defect. Bone. 2016;84:93–103.

    Article  CAS  Google Scholar 

  25. Pensak M, Hong S, Dukas A, Tinsley B, Drissi H, Tang A, et al. The role of transduced bone marrow cells overexpressing BMP-2 in healing critical-sized defects in a mouse femur. Gene Ther. 2015;22:467–75.

    Article  CAS  Google Scholar 

  26. Miyazaki M, Sugiyama O, Tow B, Zou J, Morishita Y, Wei F, et al. The effects of lentiviral gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Spinal Disord Tech. 2008;21:372–9.

    Article  Google Scholar 

  27. Argenton F, Arava Y, Aronheim A, Walker MD. An activation domain of the helix-loop-helix transcription factor E2A shows cell type preference in vivo in microinjected zebrafish embryos. Mol Cell Biol. 1996;16:1714–21.

    Article  CAS  Google Scholar 

  28. Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, Xiao T, et al. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods. 2007;4:323–6.

    Article  CAS  Google Scholar 

  29. Dragoo JL, Choi JY, Lieberman JR, Huang J, Zuk PA, Zhang J, et al. Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res. 2003;21:622–9.

    Article  CAS  Google Scholar 

  30. Stender S, Murphy M, O’Brien T, Stengaard C, Ulrich-Vinther M, Soballe K, et al. Adeno-associated viral vector transduction of human mesenchymal stem cells. Eur Cell Mater. 2007;13:93–9.

    Article  CAS  Google Scholar 

  31. Alaee F, Sugiyama O, Virk MS, Tang Y, Wang B, Lieberman JR. In vitro evaluation of a double-stranded self-complementary adeno-associated virus type2 vector in bone marrow stromal cells for bone healing. Genet Vaccin Ther. 2011;9:4.

    Article  CAS  Google Scholar 

  32. Muto A, Kawakami K. Imaging functional neural circuits in zebrafish with a new GCaMP and the Gal4FF-UAS system. Commun Integr Biol. 2011;4:566–8.

    Article  CAS  Google Scholar 

  33. Lee O, Tyler CR, Kudoh T. Development of a transient expression assay for detecting environmental oestrogens in zebrafish and medaka embryos. BMC Biotechnol. 2012;12:32.

    Article  CAS  Google Scholar 

  34. Moreman J, Lee O, Trznadel M, David A, Kudoh T, Tyler CR. Acute toxicity, teratogenic, and estrogenic effects of bisphenol A and its alternative replacements bisphenol S, bisphenol F, and bisphenol AF in zebrafish embryo-larvae. Environ Sci Technol. 2017;51:12796–805.

    Article  CAS  Google Scholar 

  35. Zhu M, Heydarkhan-Hagvall S, Hedrick M, Benhaim P, Zuk P. Manual isolation of adipose-derived stem cells from human lipoaspirates. J Vis Exp. 2013;79:e50585.

  36. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–9.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Institutes of Health grant to J.R.L. [R01AR057076]. The GAL4FF plasmid was kindly provided by Dr. Koichi Kawakami, National Institute of Genetics, Japan. The authors would also like to thank Frank Gonsalves of the Keck Hospital of USC and Judy Yoho of Dr. Yoho’s Cosmetic surgery practice for their valuable assistance in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay R. Lieberman.

Ethics declarations

Conflict of interest

S.B., O.S., R.K.A., R.Y., and D.A.O. have no conflicts to report. J.R.L. has received royalties and has served as a paid consultant for Depuy, is a shareholder in Hip Innovation Technologies, Inc. and has received royalties, financial or material support from Elsevier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bougioukli, S., Sugiyama, O., Alluri, R.K. et al. In vitro evaluation of a lentiviral two-step transcriptional amplification system using GAL4FF transactivator for gene therapy applications in bone repair. Gene Ther 25, 260–268 (2018). https://doi.org/10.1038/s41434-018-0024-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-018-0024-9

This article is cited by

Search

Quick links