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Visual fields under mesopic and scotopic lighting are increasingly being used for macular functional assessment. This review 
evaluates its statistical significance and clinical relevance, and the optimal testing protocol for early/intermediate age-related 
macular degeneration (AMD). PubMed and Embase were searched from inception to 14/05/2022. All quality assessments were 
performed according to GRADE guidelines. The primary outcome was global mean sensitivity (MS), further meta-analysed by: AMD 
classification scheme, device, test pattern, mesopic/scotopic lighting, stimuli size/chromaticity, pupil dilation, testing radius (area), 
background luminance, adaptation time, AMD severity, reticular pseudodrusen presence, and follow-up visit. From 1489 studies 
screened, 42 observational study results contributed to the primary meta-analysis. Supported by moderate GRADE certainty of the 
evidence, global MS was significantly reduced across all devices under mesopic and scotopic lighting with large effect size (−0.9 
[−1.04, −0.75] Hedge’s g, P < 0.0001). The device (P < 0.01) and lighting (P < 0.05) used were the only modifiable factors affecting 
global MS, whereby the mesopic MP-1 and MAIA produced the largest effect sizes and exceeded test-retest variabilities. Global MS 
was significantly affected by AMD severity (intermediate versus early AMD; −0.58 [−0.88, −0.29] Hedge’s g or −2.55 [3.62, −1.47] 
MAIA-dB) and at follow-up visit (versus baseline; −0.62 [−0.84, −0.41] Hedge’s g or −1.61[−2.69, −0.54] MAIA-dB). Magnitudes of 
retinal sensitivity changes in early/intermediate AMD are clinically relevant for the MP-1 and MAIA devices under mesopic lighting 
within the central 10° radius. Other factors including pupil dilation and dark adaptation did not significantly affect global MS in 
early/intermediate AMD.

Eye; https://doi.org/10.1038/s41433-024-03033-0

INTRODUCTION
Vision-related, functional changes in age-related macular 
degeneration (AMD) begin from the early stages [1–4] and 
eventually lead to severe functional and quality-of-life (QoL) 
impairment [5–8]. Consequently, many studies [9–20] including 
recent interventional trials [18, 21] have proposed using visual 
fields for functional testing of AMD due to its sensitive, 
repeatable, and clinically accessible nature [14]. Visual fields 
have facilitated greater understanding of the vision-related 
spatial function and QoL impact of AMD [22]. However, its “… 
role in clinical practice has yet to be specifically defined” [23], 
and there is a paucity of protocol standardisation across research 
groups utilising visual field assessment under mesopic or 
scotopic lighting for AMD.

It is essential that the results between individual studies be 
formally meta-analysed for clear interpretation and future 
development of standardised guidelines. Regarding the use of 
visual field testing under mesopic/scotopic lighting for early/ 
intermediate AMD, however, it has not yet been determined 
whether mean sensitivity changes across studies are statistically 
significant and clinically relevant. Specifically, statistical signifi-
cance denotes an arbitrary mean sensitivity difference and sample 

size between AMD and normal eyes, while the clinical relevance 
requires effect sizes to at least exceed test-retest variability [24]. It 
is also unclear how the many aspects of visual field testing such as 
the device [25–27], test pattern [14], stimuli size [28–32] and 
chromaticity [33, 34], pupil size [35], eccentricity [36–38], and 
background adaptation time [39, 40] used may influence 
outcomes.

Thus, this systematic review and meta-analysis aims to 
consolidate the literature to facilitate the highest level of 
evidence [41] to address: 1) whether visual field defects under 
mesopic and scotopic lighting are statistically significant and 
clinically relevant for use in early/intermediate AMD [42–44], and 
2) what the optimal testing protocol is for early/ 
intermediate AMD.

METHODS
This systematic review was registered prospectively via the 
International Prospective Register of Systematic Reviews (PROS-
PERO, CRD42022333929) [45] without amendment, and adhered 
to the reporting guidelines of the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) statement [46].
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Eligibility criteria and literature search
Included studies performed visual fields (automated perimetry) 
under mesopic (0.005 to 5 cd/m2) or scotopic ( < 0.005 cd/m2) 
conditions [47–51] on comparative groups including treatment- 
naïve early and/or intermediate AMD eyes. Visual field testing was 
any systematic testing on a device that measured differential light 
sensitivities across pre-determined spaces in the visual field [52], 
including but not limited to commercial or modified static 
perimetry, flicker perimetry, and microperimetry/fundus-con-
trolled perimetry. Early and intermediate AMD were defined 
according to the Beckman Initiative classification [53], although 
any study that used a commensurate classification was included 
[54, 55].

Literature searches were defined a priori [45] and performed via 
PubMed and Embase (OVID) for all published journal articles in 
English from inception to 14th May 2022, using the respective 
search strings: “macular degeneration”[MeSH Terms] AND (“visual 
field tests”[MeSH Terms] OR “visual fields”[MeSH Terms] OR 
“contrast sensitivity”[MeSH Terms] OR “flicker fusion”[MeSH 
Terms]); and (exp age-related macular degeneration/ OR exp 
retina macula age-related degeneration/) AND (exp visual field/ or 
exp visual field defect/ OR exp perimeter/ OR exp perimetry/ OR 
exp contrast sensitivity/ OR exp critical flicker fusion/)). Reference 
lists of included studies and relevant review studies were 
searched. Search results were exported into Zotero 6.0.7 
(Corporation for Digital Scholarship, VA, USA), duplicates were 
removed, and unique results exported into Microsoft Excel 
Version 2107 (Microsoft Corporation, WA, USA).

Outcomes
The primary outcome was global mean sensitivity (MS), defined as 
average sensitivity in decibels (dB) across a total retinal area [52], 
in early/intermediate AMD versus normal eyes. Alternate labels 
for global MS with identical definitions, e.g., average threshold, 
were included. The secondary outcome was any real-world 
patient outcome such as quality of life and/or activities of daily 
living indices.

Study selection
Unique search results were screened independently by two 
authors (MT and LNS) for title/abstract then full text if required. All 
discrepancies for study selection and assessments were resolved 
by discussion and consensus.

Data extraction and quality assessment
Included studies underwent quality assessment by MT and LNS 
according to an adaptation of the ‘Users’ Guides to the Medical 
literature’ [44, 56]. This included consideration of study validity, 
results, and external validity [44, 56]. The data extracted for 
assessment is seen in Supplementary Table 1.

Risk of bias was assessed unblinded [57] according to the 
‘QUADAS-2: A revised Tool for the Quality Assessment of 
Diagnostic Accuracy Studies’ [58] and ‘Newcastle-Ottawa Scale 
for Assessing the Quality of Non-randomised Studies in Meta- 
analyses’ [59]. The overall certainty of the evidence was assessed 
independently using the GRADE approach for observational 
studies [60, 61]. Qualitative data synthesis was summarised in 
tables of relevant study characteristics and outcomes, funding 
and conflict of interest statements, risk of bias assessment, and 
GRADE assessment.

Data synthesis and quantitative assessment
Quantitative data synthesis and analysis, i.e., meta-analyses, 
were performed using Meta-Essentials (Erasmus Research 
Institute of Management, Rotterdam, The Netherlands) [62] 
and Review Manager (RevMan) version 5.4.1 (The Cochrane 
Collaboration, 2020) where at least three individual results per 
group or sub-group were available. Studies with identical data 

(e.g., from one clinical trial across multiple studies) were used 
once. Primary meta-analysis was followed by further meta- 
analyses according to between-study sub-groups, meta-regres-
sions, and within-study sub-groups. Uni-variable (linear) meta- 
regression was performed when ≥10 studies [63] were pooled 
[64], and when pooling studies for longitudinal follow-up 
versus baseline meta-analysis. Time to follow-up visit (years) 
was used as the moderator in lieu of determining correlation 
coefficients (r) for dependent data. Sensitivity analyses were 
then performed to assess the robustness of all meta-analyses 
[63]: 

● With repeated populations (tested under varying conditions) versus 
without repeated populations. Within study sub-groups [65, 66], 
data was selected from conditions expected to produce more 
conservative measures. Between study sub-groups, data was used 
from the larger sample to mitigate under-sampling/under-powering 
[67].

● With both eyes sampled versus without both eyes sampled.
● With no age-adjusted/controlled versus age-adjusted/controlled 

groups.
● With no cataract/pseudophakic-adjusted/controlled versus cataract/ 

pseudophakic-adjusted/controlled groups.

Effect sizes were calculated using a random-effects model 
considering studies’ various contexts of data collection (mostly 
convenience samples) [68] and reported as standardised mean 
differences (Hedge’s g [95% CI]), where >0.8 Hedge’s g was 
considered a large effect size [41]. An outline of meta-analysis 
statistical interpretations is presented in Supplementary Table 2. 
Sub-groups’ effect sizes and heterogeneity were compared using 
Cochran’s Q test [69, 70], with P values considered after 
Bonferroni correction for multiple sub-group comparisons [71]. 
Publication bias was assessed using a funnel plot with trim and 
fill method using the linear estimator for missing studies, 
confirmed via Egger regression (testing significance between 
effect sizes and standard error) [72, 73] and Begg and Mazumdar 
rank correlation (testing significance between ranks of effect 
sizes and ranks of variance) [73, 74]. Statistical significance was 
defined as P < 0.05.

RESULTS
Eligible studies
Searches resulted in 1489 studies and 1407 unique studies. Full- 
text screening was performed for 147 studies, and 36 studies 
underwent two rounds of discussion before consensus (Fig. 1). A 
total of 67/147 studies were included from electronic database 
searches (reasoning for exclusions in Supplementary Table 3). 
Searches through reference lists of included studies and relevant 
review studies yielded 10 additional eligible studies [75–85]. Thus, 
77 studies were included in this review (Fig. 1).

Qualitative assessment
A detailed summary of all study characteristics and outcomes is 
presented in Supplementary Table 4, with reported source(s) of 
funding (65/77 studies) and potential conflict(s) of interest (67/ 
77 studies) presented verbatim in Supplementary Table 5. All 
study designs were observational. The most commonly used AMD 
classification scheme was from the Beckman Initiative [53] (39/77). 
AMD and normal group sample sizes ranged from three to 319 
eyes. Some studies used multiple testing conditions on a single 
population, i.e., from 77 studies there were 101 different visual 
field protocols. The most used device was the Macular Integrity 
Assessment (MAIA; 37/101). Background luminance was more 
commonly set as mesopic (0.801 to 5 cd/m2, 74/101) than 
scotopic lighting (0 or 0.0032 cd/m2, 27/101).

Most studies (74/77) had at least one domain with a high risk of 
bias (Supplementary Table 6). For the domain ‘patient selection’, 
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64/77 studies had a high risk of bias while for the domain 
‘comparability of study groups’, 35/77 had a high risk of bias.

Quantitative assessment
A summary forest plot of meta-analyses is presented in Fig. 2, 
with full forest plots available in Supplementary Figs. 1–5.

Primary meta-analysis – early/intermediate AMD 
versus Normal
From 77 eligible studies, 42 provided adequate data for the 
calculation of global MS between early/intermediate AMD versus 
normal eyes. Most studies excluded from primary meta-analysis 
were due to not having a comparative normal group 

Fig. 1 Preferred reporting Items for systematic reviews and meta-analyses (PRISMA) flow diagram for study selection and analyses.
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(Supplementary Table 4). Global MS in early/intermediate AMD 
eyes (n = 2587) was significantly reduced compared to normal 
eyes (n = 1348) with a large effect size of −0.9 [−1.04, −0.75] 
Hedge’s g (P < 0.0001), which may have represented substantial 
heterogeneity (Q(41) 133.04, P < 0.0001, Tau2 0.14, I2 69%; Fig. 2
and Supplementary Fig. 1).

Potential confounding
Further meta-analyses by within-study sub-groups were per-
formed to identify potential confounding (categorical) factors, 
including AMD classification scheme, device, test pattern, 
mesopic/scotopic lighting, stimuli size and chromaticity, and 
pupil dilation. Only the device used significantly affected 
outcomes for early/intermediate AMD versus normal (P < 0.01, 
Supplementary Table 7). All subsequent analyses were then 
adjusted for the device used, and included conversion from 
Hedge’s g to device-specific dB for clinical context [32, 86].

Meta-regression was also performed to identify potential 
confounding (continuous) factors, including testing radius (area), 
background luminance, and adaptation time. None of these 
factors significantly affected outcomes for early/intermediate 
AMD versus normal (P = 0.24 to 0.84, Supplementary Table 7).

Dose-response relationships
Meta-analyses by between-study sub-groups were then performed 
to assess dose-response relationships. This included comparisons 
of global MS against: AMD severity, reticular pseudodrusen (RPD) 
presence, and at longitudinal follow-up versus baseline.

For AMD severity, a comparison of intermediate AMD versus 
early AMD (Fig. 2 and Supplementary Fig. 2) demonstrated 
significantly reduced global MS with a medium effect size of 
−0.58 [−0.88, −0.29] Hedge’s g. Converted to device-specific dB, 
this was equivalent to −2.55 [−3.62, −1.47] MAIA-dB, P < 0.001 
(Q(5) 10.43, P = 0.06, Tau2 0.07, I2 52.88%; n = 465 intermediate 
AMD versus 247 early AMD). Only one device sub-group could be 
formed using the MAIA.

For RPD presence versus absence, a meta-analysis could not be 
formed due to an insufficient number of results per device sub- 
group. The five individual results using the Medmont DACP, 
MAIA, and MP-1 devices showed generally reduced global MS in 
the presence of RPD (−0.58 [−1.1, −0.07] to −1.55 [−2.43, −0.68] 
Hedge’s g; Supplementary Fig. 3).

For longitudinal follow-up versus baseline (Fig. 2 and Supple-
mentary Fig. 4), global MS was significant reduced with a medium 
effect size of −0.62 [−0.84, −0.41] Hedge’s g or −1.61 [−2.69, 

−0.54] MAIA-dB, P < 0.0001 (Q(3) 4.5, P = 0.21, Tau2 0.02, I2 33%; 
n = 260 follow-up versus 426 baseline) though only one device 
sub-group could be formed using the MAIA. Additional adjust-
ment for follow-up time via meta-regression showed the rate of 
change to be −0.09 [−0.28, 0.1] Hedge’s g or −0.23 [−0.9, 0.13] 
MAIA-dB per year, without statistical significance (P = 0.12).

Post hoc lighting analysis (photopic versus mesopic versus 
scotopic)
To explore the modulating effect of lighting against current 
clinical visual field devices which operate under photopic lighting, 
external meta-analysis data from photopic visual field testing was 
included [87] with adjustments for the device used. There were 
significant sub-group differences between photopic (n = 234 
AMD and 221 normal) versus mesopic (n = 1777 AMD and 922 
normal) versus scotopic (n = 353 AMD and 341 normal) results 
(P < 0.05, Fig. 2 and Supplementary Fig. 5). The greatest effect 
sizes (with varying heterogeneities) were observed from the 
mesopic MP-1 (−1.72 [−2.34, −1.1] Hedge’s g; −5.25 [−6.03, 
−4.48] MP-1 dB) and MAIA devices ((−0.99 [−1.26, −0.72] 
Hedge’s g; −2.9 [−3.88, −1.93] MAIA dB).

Sensitivity analysis
Sensitivity analysis revealed robust meta-analyses results, 
whereby inclusion versus exclusion of meta-data with repeated 
populations (tested under varying conditions), both eyes (rather 
than single eyes) sampled, no age-adjusted/controlled (versus 
age-adjusted/controlled) groups, and no cataract/pseudophakic- 
adjusted/controlled (versus cataract/pseudophakic-adjusted/con-
trolled) groups, did not alter any effect sizes (P = 0.38 to 1).

Publication bias
The funnel plot of the primary outcome demonstrated slight 
asymmetry to the left, implying that effect sizes were borderline 
biased towards being over-estimated (Egger regression P = 0.17, 
Begg and Mazumdar rank correlation P = 0.03; Supplementary 
Fig. 6). Four theoretical individual results were imputed to the 
right from trim and fill analysis, resulting in a medium adjusted 
effect size of −0.57 [−0.75, −0.4] Hedge’s g, rather than a large 
observed effect size of −0.9 [−1.04, −0.75] Hedge’s g for primary 
meta-analysis.

GRADE assessment and summary of findings
Studies included in primary meta-analysis demonstrated an 
overall moderate level of certainty of evidence, that global MS 

Fig. 2 Summary forest plot of meta-analyses. Negative values indicate reduced global MS. Summary data presented as standardised Hedge’s 
g [CI] and converted to device-specific dB where available. For meta-analysis between lighting conditions, photopic device was depicted in white, 
mesopic devices in light grey, and scotopic devices in dark grey. Note devices can have more than one background luminance setting. The full 
forest plots for each meta-analysis are presented in Supplementary Figs. 1–5. Vs versus, i.e., meta-analysis comparison.
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was significantly reduced across all devices under mesopic and 
scotopic lighting with large effect size (Supplementary Table 8) 
[60, 61].

Secondary outcome – real-world patient outcomes
Eight studies (one with identical data) [88, 89] reported a linkage 
between the mesopic global MS in early/intermediate AMD and 
any real-world patient outcome (Supplementary Table 9), the 
latter of which was derived from three unique questionnaires 
[90–92] and two series of computerised visual tasks [93, 94]. 
Generally, correlations ranged from non-significant to moderate, 
and results were unclear whether microperimetry reflected these 
outcomes better, worse, or similar to other diagnostic modalities.

DISCUSSION
This systematic review and meta-analysis found that with 
moderate GRADE certainty of the evidence, global retinal 
sensitivity changes under mesopic and scotopic lighting are 
statistically significant in early/intermediate AMD. Specifically, the 
magnitudes of changes are clinically relevant for the mesopic MP- 
1 and MAIA devices within the central 10° radius. The device and 
adapting light levels used were the only modifiable factors 
affecting outcomes, with other commonly considered factors 
such as pupil dilation and dark adaptation time insignificantly 
affecting global MS. Further research is needed to understand 
how mesopic and scotopic testing may link to real-world patient 
outcomes.

Visual fields under mesopic lighting is statistically significant 
and clinically relevant for AMD assessment
Our results highlighted that most visual field devices under 
mesopic lighting were statistically valid for the assessment of 
early/intermediate AMD [42, 95]. Specifically, eyes with inter-
mediate AMD demonstrated reduced global MS that was 
statistically significant and large effect sized (>0.8 Hedge’s g) 
[96–98] for the MP-1, MAIA, Medmont flicker, and S-MAIA devices 
under mesopic lighting. This was strengthened by dose- 
dependent relationships, however, a significant yearly rate of 
change could not be established due to a paucity of studies with 
longer (than mostly 12month) follow-up times. More longitudinal 
studies are required to extrapolate the optimal frequency with 
which visual fields under mesopic lighting may need to be 
performed in patients with AMD.

It is well established that effect sizes are a statistical concept 
and regardless of the large magnitudes we observed, findings 
should be further interpreted in a clinical context [99]. For visual 
fields, minimal clinical significance is commonly defined as 
sensitivities exceeding visual field device/protocol test-retest 
variability [100]. From this review, the mean sensitivity losses 
detected by the MP-1 (−1.72 Hedge’s g or −5.25 dB) and MAIA 
(−0.99 Hedge’s g or −2.9 dB) exceeded intra-session and inter- 
session test-retest variabilities of corresponding populations of 
1.1 to 1.56 dB (Supplementary Table 10) [101, 102]. Whilst other 
devices such as the Medmont flicker and S-MAIA also demon-
strated large effect sizes, direct interpretation of their clinical 
relevance was limited by a lack of relevant test-retest variability 
data in normal and early/intermediate AMD populations.

Standardisation of visual field protocol for early/intermediate 
AMD requires consideration of the device and lighting used
The validation of a ‘new diagnostic’ test requires methodological 
standardisation [103, 104] to ensure consistent quality of output 
and efficient use of resources (especially time) [105–107]. This 
review assessed if the selected device [25–27], test pattern [14], 
stimuli size [28–32] and chromaticity [33, 34], pupil size [35], light 
levels [108, 109], eccentricity [36–38], and background adaptation 
time [39, 40] may affect global MS in the early/intermediate AMD 

population, to determine the optimal testing protocol. At the 
summary level, we found that almost all the above modifiable 
factors were insignificant, as validated in other studies 
[14, 110, 111]. This is particularly relevant for research groups 
seeking to validate functional endpoints for AMD (e.g., the 
ALSTAR2 [20] and MACUSTAR groups) [112], whereby the time 
saved from not performing protracted dark adaptation for 
mesopic testing, in particular, could be redirected elsewhere. 
Consistent application of testing protocol at the individual patient 
level (within populations) is likely still important 
[14, 25–30, 32–40, 108, 109].

The only modifiable factors that significantly altered effect sizes 
were the device and lighting used between studies. These effects 
ranged from very large in the MP-1 to medium in the MP-1S, 
despite very similar testing properties (see Pfau et al. [14] for a 
detailed summary of inter-device differences). This has been 
corroborated within study populations showing inter-device 
differences in measured outcomes [25–27]. This may reflect 
effects from other parameters such as test pattern design [113], 
eye/image tracking frequency and software, ambient screen 
lighting, calibration and precision, etc., or simply be due to the 
under-sampling of meta-analysis sub-groups [67]. Nevertheless, 
caution is recommended when comparing results between 
devices in practice. Continued development of visual field 
technology and processes including time-saving threshold 
estimation strategies [114], test grid density [115], and frontload-
ing tests [116, 117] will also need to be considered for further 
optimisation of visual field testing in AMD.

Understanding the need to test under mesopic lighting in 
AMD
We confirmed that visual field defects were generally greater 
under mesopic lighting than photopic lighting, supporting the 
concept that photoreceptor diseases such as AMD are light- 
adaptation dependent. That is, functional defects can be more 
greatly appreciated under lower (mesopic or scotopic versus 
photopic) light levels, previously modelled as the threshold- 
versus-intensity curve (Supplementary Fig. 7) [50, 108, 118, 119]. 
Greater threshold changes under mesopic versus photopic 
lighting may also have related to changes in spatial summation, 
which alters with differing background luminances [120, 121].

Interestingly, rod susceptibility in AMD [122–124] implied that 
differences in retinal sensitivity should have also been greater 
when probing rod (scotopic) versus cone (mesopic) function. 
However, there were no differences in global MS when 
comparing scotopic versus mesopic lighting [125, 126], nor when 
comparing cyan versus red stimuli [127–129], even when 
repeating analyses using within-study sub-groups to eliminate 
between-study differences in the testing protocol (data not 
shown). Effect sizes were also, surprisingly, generally greater 
under mesopic than scotopic lighting. These findings were likely 
influenced by the visual field testing patterns in this review which 
did not capture areas of peak rod density beyond the macula 
[123, 124]. Whilst we could not draw definitive conclusions 
regarding whether mesopic testing was superior to scotopic 
testing due to potential under-powering of our sub-group and 
post hoc analyses [67], the evidence supports the need for testing 
under lower (than photopic, standard automated perimetry 
[10 cd/m2]) light levels, which can be accessed through most 
microperimeters (1.27 cd/m2 and below) [14], the Octopus 
perimeter (1.27 cd/m2) [35], the Medmont perimeter (3.2 cd/m2) 
[35], and virtual reality-based perimetry (1 cd/m2) [130].

Limitations and future research
The main limitation of this review lies in the argument that there 
are several other less onerous measures of low-light function such 
as low-luminance visual acuity and deficit which may produce 
similar sensitivity/specificity regarding AMD [131]. However, these 
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measures are yet to be systematically reviewed and are spatially 
indiscriminate. Visual fields can map functional changes in 
concordance with spatial patterns of AMD structural changes 
[132–134], providing spatial structure-function context as to 
which neuronal/synaptic, vascular, and/or physiological mechan-
isms may be impacted. As aforementioned, visual fields have not 
necessarily been propositioned to replace other diagnostic tools 
(such as colour fundus photography) for early/intermediate AMD, 
but rather as a supplementary tool to enhance diagnostic 
confidence and provide prognostic information in consideration 
of patients’ visual function and QoL [42, 95].

Additionally, there was a dearth of data regarding downstream 
effects of performing visual fields on patient-relevant outcomes 
[42, 44, 135]. The data suggested that current measures of 
patient-relevant outcomes in the early stages of AMD may be 
insensitive to the magnitude and/or scope of changes, though 
this does not preclude patient relevance, particularly as the 
disease progresses in severity. Research that explores the 
advantage of performing a spatially delineated functional test in 
association with more practical scenarios, e.g., whether visual 
fields can predict orientation and mobility [136] or driving 
capabilities [137–140], could be more beneficial in future.

CONCLUSIONS
This systematic review highlighted with moderate certainty of the 
evidence, that global retinal sensitivity changes under mesopic 
and scotopic lighting are statistically significant in early/inter-
mediate AMD. Specifically, the magnitudes of changes are 
clinically relevant for the mesopic MP-1 and MAIA devices within 
the central 10° radius. Other factors such as pupil dilation and 
dark adaptation did not significantly affect global MS and may be 
unnecessary to consider in future testing protocol of early/ 
intermediate AMD eyes. Future research should explore how 
testing may link to real-world patient outcomes.

DATA AVAILABILITY
Specific meta-analyses data is available upon reasonable request to the authors. 
Supplementary Material is available at Eye’s website.
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