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Abstract
Purpose The purpose of this study is to develop and assess the accuracy of a new intraocular lens (IOL) power calculation
method based on machine learning techniques.
Methods The following data were retrieved for 260 eyes of 260 patients undergoing cataract surgery: preoperative simulated
keratometry, mean keratometry of posterior surface, axial length, anterior chamber depth, lens thickness, and white-to-white
diameter; model and power of implanted IOL; and subjective refraction at 3 months post surgery. These data were used to
train different machine learning models (k-Nearest Neighbor, Artificial Neural Networks, Support Vector Machine, Random
Forest, etc). Implanted lens characteristics and biometric data were used as input to predict IOL power and refractive
outcomes. For external validation, a dataset of 52 eyes was used. The accuracy of the trained models was compared with that
of the power formulas Holladay 2, Haigis, Barrett Universal II, and Hill-RBF v2.0.
Results The SD of the prediction error in order of lowest to highest was the new method (designated Karmona) (0.30),
Haigis (0.36), Holladay 2 (0.38), Barrett Universal II (0.38), and Hill-RBF v2.0 (0.40). Using the Karmona method, 90.38%
and 100% of eyes were within ±0.50 and ±1.00 D respectively.
Conclusions The method proposed emerged as the most accurate to predict IOL power.

Introduction

When planning cataract surgery, there are many formulas
and methods available to calculate the refractive power of
an intraocular lens (IOL). These calculation methods can
be divided into three broad groups based on Gaussian-
beam optics, real ray tracing, or artificial intelligence
algorithms. However, there is no consensus regarding the
best formula to use, as no single formula has proved to be
highly accurate across a range of eye characteristics.
According to most authors, the formula selected needs
to be based on the anatomical and optical parameters of
the patient.

In a study by Melles et al. [1] conducted in 18,501 eyes,
SDs of the prediction error for the different formulas were

from lowest to highest: Barrett Universal II (0.404), Olsen
(0.424), Haigis (0.437), Holladay 2 (0.450), Holladay 1
(0.453), SRK/T (0.463), and Hoffer Q (0.473). Values
reported by Cooke et al. [2] for 9 IOL power formulas in
1079 eyes were as follows: OlsenStandalone (0.361), Bar-
rett Universal II (0.365), Haigis (0.393), Super Formula
(0.403), Holladay 2 (0.404), Holladay 1 (0.408), Hoffer Q
(0.428), and SRK/T (0.433).

According to the recent literature, the formulas and meth-
ods providing the most predictable outcomes are Barrett
Universal II, Haigis, Holladay 2, Olsen, and Hill-RBF [3–6].
Fourth- and fifth-generation formulas can use as many as
seven variables to predict effective lens position and IOL
power. For example, Holladay 2 uses keratometry, axial
length (AXL), anterior chamber depth (ACD), lens thickness
(LT), white-to-white (WTW), age, and preoperative refraction.

Hill-RBF [7] v2.0 is a data-driven IOL calculation
approach and is therefore free of the limitation of lens-
position estimation. Its most recent update from 3445 to
12,419 eyes has meant a significant improvement [8]. The
novelty of this method is that it is based on machine
learning techniques and, therefore, the model learns and
improves as more cases are introduced. The Hill-RBF
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method has an outlier detection feature that excludes certain
cases in which the calculator is likely to be out of bounds.

The new IOL power calculation method proposed here is
also data driven. It is an ensembled model that combines
predictions from separate models. Unlike Hill’s model,
WTW distance and central LT are taken into account, and it
also includes a variable defined as the ratio between the
curvature of the anterior and posterior surface of the cornea.

In the present study, the new model is developed and its
predictive accuracy is compared to that offered by the
popular methods Holladay 2, Barret Universal II, Haigis,
and Hill-RBF.

Materials and methods

This retrospective study was performed at the Hospital
Universitario QuironSalud, Madrid, Spain. The study pro-
tocol adhered to ethics codes based on the tenets of the
Declaration of Helsinki and received institutional review
board approval (Ref. EO153-18_HUQM).

Data were retrieved for 260 eyes of 260 patients under-
going uneventful cataract surgery. The preoperative bio-
metric data collected were simulated keratometry, mean
keratometry of posterior corneal surface, AXL, ACD, LT,
and WTW distance. Further data recorded for each eye were
the model and power of the IOL implanted, and subjective
refraction 3 months after cataract surgery.

Patient exclusion criteria were amblyopia, corneal
astigmatism > 1 D measured with simulated keratometry
(simk), and a history of ocular disease or surgery and
intraoperative or postoperative complications.

Ten different models of non-toric IOLs were implanted
in the capsular bag. The lens constants used were those
optimized by each surgeon for each IOL during their routine
clinical practice. All patients were operated on with pha-
coemulsification (Centurion Alcon, Inc., Fort Worth, USA).
Surgery was performed through a clear 2.2 mm temporal
corneal incision.

Preoperative biometric measurements were made by two
optometrists using the IOL Master 700 (Carl Zeiss Meditec
AG, Jena, Germany) and corneal topography with the Pen-
tacam v1.20r87 (Oculus Optikgerate, Wetzlar, Germany).

Follow-up visits were scheduled for 1 day, 1 month, and
3 months after surgery. In the 3-month visit, subjective
refraction and best-corrected distant visual acuity were
measured by an optometrist. The target of IOL power cal-
culation was always emmetropia.

Model variables

Biometric variables for the whole study sample are provided
Table 1. Anterior segment depth (ASD) was calculated as

the sum of ACD and LT. The variable R_B/F defined as the
ratio of the back to front corneal surface central radius was
also introduced in the model. Therefore, the average radius
in the 3 mm zone on the anterior and posterior corneal
surfaces were measured with Pentacam. For example:
Radius back= 6.88 mm and Radius front= 7.80 mm, R_B/
F= 6.88/8.30= 0.83

Refractive outcomes

The refraction prediction error (RPE) was calculated as the
difference between the postoperative spherical equivalent
and that predicted by each formula. In addition, the mean
absolute error (MAE) or absolute value of the predictive
error and the median of the absolute error (MedAE) were
determined for the new model and the rest of the formulas.
The percentage of eyes within ±0.50 D, ±0.75 D, and ±1.00
D was also calculated for each formula.

The mean values of RPE for each formula were zeroed
out [9, 10] to eliminate the systematic error derived from the
different constants used in the calculation and their possible
non-optimization. After adjustment, MAE and MedAE were
recalculated for each formula.

Modeling

We worked with RStudio version 1.1.423 (R Foundation,
Boston, USA) and the caret library (Classification And
REgression Training) of Max Kuhn [11] for development,
adjustment, validation, and comparison of each model.
The RStudio software was also used for comparative
statistical analysis of the new model with the rest of the
formulas.

The total sample was randomized and split into two
stages: training (on 208 eyes) and external validation (on 52
eyes) following an 80/20 ratio. Thus, 52 eyes were used for
comparisons between the new model and the remaining
formulas. The validation dataset provides an unbiased
assessment of model fit on the training dataset, while tuning

Table 1 Descriptive statistics for the biometric variables examined
(n= 260).

Biometric Variables Mean ± SD Range

Ratio B/Fx100 82.80 ± 1.73 [77.88, 88.04]

AXL (mm) 23.41 ± 1.51 [19.33, 28.67]

ACD (mm) 3.10 ± 0.41 [1.96, 4.19]

LT (mm) 4.57 ± 0.38 [3.18, 5.52]

WTW (mm) 11.94 ± 0.41 [10.90, 13.60]

K-mean anterior (mm) 7.73 ± 0.28 [6.68, 8.76]

K-mean posterior (mm) 6.40 ± 0.28 [5.54, 7.41]

ASD (mm) 7.66 ± 0.38 [6.96, 8.85]
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the model’s hyperparameters. The model (e.g., a neural
network or k-Nearest Neighbors (KNN)) is trained on the
training dataset using a supervised learning method.

Eleven nonlinear regression models based on machine
learning techniques were constructed: generalized linear
model, KNN, linear discriminant analysis, Support Vector
Machines (SVMs) with radial basis function (RBF), SVM
with linear kernel, neural networks testing several hidden
layers, random forest, decision trees, LASSO regression,
multivariate adaptive regression spline (MARS), and sto-
chastic gradient boosting.

Of these 11 models, we selected the two that showed
best performance. The first of these models is based on
SVM with a Gaussian kernel RBF and the second one is
based on MARS with second-order polynomials. These
two models were hyperparametrized and tuned to optimize
their performance, improving their metrics with respect to
raw models. Finally, an ensembled model was generated
by combining the two models through a stacking technique
[12] and designated Karmona. Ensembles are machine
learning methods that combine predictions from separate
models.

Although it is known that validating a model by means of
cross-validation or bootstrapping techniques yields a good
estimate of the model error, a final prediction based on new
non-touch observations (test sample) serves to ensure that
no overfitting has been generated during the optimization
procedure.

As the resampling method, we used LOOCV (leave-one-
out cross-validation) also known as “jacknife”. LOOCV
involves separating the data so that for each iteration we
have a single sample for the test data and the rest comprises
the training data.

Statistical analysis

The normality of RPE, MAE, and medAE between formulas
and methods was assessed using the Kolmogorov–Smirnov
test with Lilliefors correction followed by the paired t- and
the Wilcoxon signed-rank tests. Finally, a non-parametric
Friedman test was used as suggested by Aristomeu et al. [13]
and Benavoli et al. [14]. For post-hoc analysis, we used
a Nemenyi test for multiple comparisons. All statistical
tests were performed using the package RStudio version
1.1.423 (R Foundation, Boston, USA). Significance was set at
p < 0.05.

Results

The proposed Karmona stacked regression model showed
an R2 of 0.9955 and a root mean square error of 0.3808.

For the external validation of Karmona and comparisons
with each formula, we used a test dataset (52 eyes). Refractive
prediction errors for each formula with and without adjusting
mean RPE to zero are provided in Fig. 1.

The formula Holladay 2 resulted in the highest mean
myopic predictive error (−0.19 ± 0.38 D), followed by Hill-
RBF, which gave rise to a mean hyperopic predictive error
of +0.17 ± 0.40 D (p= 0.7147). The Karmona method
achieved the lowest RPE, MAE, and MedAE (0.07 ± 0.30
D, 0.24 ± 0.19 D, and 0.18 D, respectively). Our new model
also returned the lowest SD and lowest maximum error,
regardless of whether or not we adjusted for residual
predictive errors. In terms of RPE without adjustment,
differences were detected for Karmona (p < 0.05) vs. the
other formulas. Pairwise comparisons using the Nemenyi

Fig. 1 Refractive predictions and mean absolute errors with and without adjussting the mean numerical refractive prediction to zero.
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multiple comparison test for MAE and MedAE revealed
significant differences between Karmona and Hill-RBF
(p= 0.012).

Figure 1 provides a boxplot of RPE and MAE with and
without zero adjustment. The solid line shows 0.00 D as the
optimal level. The dashed line represents the Karmona
median, aiding comparisons with each formula. The dots
indicate the means of each category represented. In the
case of Karmona, both means and medians were below
those provided by the remaining formulas. The interquartile
range for Karmona was the smallest in the two categories
analyzed (RPE and MAE).

Figure 2a, b shows the percentage of eyes in the ranges
±0.25 D, ±0.50 D, and ±1.00 D, respectively. Highest per-
centages in the three dioptric ranges analyzed, both with and
without zero adjustment, were obtained using Karmona
(p < 0.05). The second best formula in the ±0.25 D and

±0.50 D ranges was Haigis (53.85% and 86.54%, respec-
tively), followed by Barrett Universal II and Holladay 2,
which yielded similar percentages. The worst performance
was observed for Hill-RBF at 40.38% and 78.85% of eyes
in the ranges ±0.25 D and ±0.50 D, respectively.

In Table 2, we provide the categories analyzed for all the
formulas and their rank order by SD.

DISCUSSION

This study examines the accuracy of a new data-driven IOL
power calculation method and compares it with other for-
mulas in terms of predicted refractive outcomes. A major
difference between our method, Karmona, and other for-
mulas, is the incorporation of the ratio between the curva-
tures of the posterior and anterior corneal surfaces. As far as

Fig. 2 Percentages of eyes within the ranges. a Percentages of eyes
with refractive (spherical equivalent) prediction errors within ±0.25 D,
±0.50 D, and ±1.00 D; mean numerical refractive prediction errors

adjusted to zero. b Percentages of eyes with refractive (spherical
equivalent) prediction errors within ±0.25 D, ±0.50 D, and ±1.00 D; no
adjustment.
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we are aware, no other formula takes into account the
posterior corneal surface. Another important predictor that
was introduced in the model was ASD, which replaces LT
and ACD as independent variables, acquiring more specific
weight in the radial kernel SVM model than mean kerato-
metry itself. Interestingly, the predictive model of Hill, also
based on machine learning, does not take into account
WTW distance, central corneal thickness, or central LT.
Although these parameters are requested in the calculator
data entry form, they have no weight in the calculation.

Our performance indicators contrast with those repor-
ted in other recent studies. In a sample of 3122 eyes, Kane
et al. [15] recorded MAE values for the formulas Holladay
2, Haigis, Barrett Universal II, and Hill-RBF of 0.410,
0.409, 0.381, and 0.407 D, respectively (SDs were not
specified). In our study, MAE values were lower at
0.27 D, 0.28 D, 0.29 D, and 0.30 D for the same formulas.
These authors identified Barrett Universal II as the best
formula out of 9 examined, 72.80% of eyes being in the
range ±0.50 D using this formula compared with 82.69%
found in the present study. As may be observed in
Table 2, Barrett Universal II occupied third place below
Haigis and Holladay 2, and Karmona obtained higher
values in all performance indicators than the values
obtained in Kane’s work.

In the comparison by Melles et al. [1] of 8 formulas in a
sample of 18,501 eyes, MAE ± SD (MedAE) were 0.350 ±
0.45 (0.29) D, 0.338 ± 0.44 (0.28) D, and 0.311 ± 0.40
(0.25) D for Holladay 2, Haigis, and Barrett Universal II,
respectively. Hill-RBF was not included. These values are
also higher than those obtained here of 0.27 ± 0.38 (0.25)
for Holladay 2, 0.28 ± 0.36 (0.24) for Haigis, and 0.29 ±
0.38 (0.22) for Barrett Universal II. Moreover, our MAE ±
SD (MedAE) of 0.24 ± 0.30 (0.18) for Karmona is better
than those reported by Melles’ group.

Roberts et al. [5] obtained in 400 eyes, MAE ± SD
(MedAE was not included) values of 0.32 ± 0.27 D for
Holladay 2, 0.32 ± 0.24 D for Hill-RBF, and best values of
0.30 ± 0.24 D for Barrett Universal II. Haigis was not
included. We obtained similar MAE ± SD values for Barrett
Universal II (0.29 ± 0.38) and also a similar percentage of
eyes in the range ±0.50 D, 82.69% compared with 81% in
the study by Roberts et al. [5]. The new Karmona method

offered better MAE ± SD and higher percentages of eyes in
the ranges ±0.25 D, ±0.50 D, and ±1.00 D.

If we compare our data with those reported by Cooke
et al. [2], who examined the accuracy of 9 formulas in 1079
eyes and obtained MAE ± SD (MedAE) of 0.33 ± 0.42
(0.29), 0.32 ± 0.40 (0.27), and 0.31 ± 0.39 (0.26), and per-
centages of 79.30%, 79.80%, and 80.60% in the range
±0.50 D for Holladay 2, Haigis, and Barrett Universal II,
respectively, again Karmona emerged as the more accurate
IOL power calculation method.

Study limitations

Our sample of 260 eyes was split 80 : 20. Eighty percent of
eyes were used for model training and 20% for validation or
testing. Therefore, the final model obtained was based on
data for 208 eyes and the external validation sample used
for comparison with the rest of the formulas consisted of a
small random dataset derived from 52 eyes. For our whole
study sample, AXL was above 25.00 mm (25.00–28.67) in
35 eyes, below 22.00 mm (19.33–22.00) in 31 eyes, and
between 22.00 and 25 mm (normal) in the remaining 194
eyes. We are presently expanding the sample size of the
model to enhance its prediction power.

Another limitation of our work is that we did not
stratify the data by eye length. In future work, we will
segment the population under study according to axial and
keratometric characteristics to analyse the real potential of
the proposed model.

In favor of the Karmona model, we could say that its
performance was excellent despite the small dataset on
which it was based. The addition of further data is likely to
improve its accuracy even more. In addition, the high var-
iation of data included in the model such as ten monofocal
IOLs used is a strong point.

Conclusions

The Karmona model proposed here emerged as more
accurate than the third-generation formula Haigis, the fourth
generation Holladay 2 and Barrett Universal II, and the
fifth-generation Hill-RBF. We are presently preparing an

Table 2 Refractive outcomes sorted by SD after adjusting the mean to zero.

Formula MPE (D) SD (D) MAE (D) MedAE (D) MaxError (D) ±0.25 D (%) ±0.50 D (%) ±1.00 D (%) Ranking

Karmona 0.00 0.30 0.24 0.18 0.79 65.38 90.38 100 1

Haigis 0.00 0.36 0.28 0.24 1.20 53.85 90.38 96.15 2

Holladay 2 0.00 0.38 0.27 0.25 1.55 46.15 86.54 98.08 3

Barrett U2 0.00 0.38 0.29 0.22 1.09 51.92 82.69 98.08 4

Hill-RBF 0.00 0.40 0.30 0.26 0.97 48.08 80.77 100 5
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open source web site where an updated version of Karmona
will be available in Shiny from RStudio [16].

Summary

What was known before

● Intraocular lens power calculation methods and formulas.

What this study adds

● To develop and assess a new intraocular lens power
calculation method based on machine learning techniques.
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