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Abstract
Admixture mapping has led to the discovery of many genes associated with differential disease risk by ancestry, highlighting
the importance of ancestry-based approaches to association studies. However, the potential of admixture mapping in
deciphering the interplay between genes and environment exposures has been seldom explored. Here we performed a
genome-wide screening of local ancestry–smoking interactions for five spirometric lung function phenotypes in 3300
African Americans from the COPDGene study. To account for population structure and outcome heterogeneity across
exposure groups, we developed a multi-component linear mixed model for mapping gene–environment interactions and
empirically showed its robustness and increased power. When applied to the COPDGene study, our approach identified two
11p15.2-3 and 2q37 loci, exhibiting local ancestry–smoking interactions at genome-wide significant level, which would
have been missed by standard single-nucleotide polymorphism analyses. These two loci harbor the PARVA and RAB17
genes previously recognized to be involved in smoking behavior. Overall, our study provides the first evidence for potential
synergistic effects between African ancestry and smoking on pulmonary function, and underlines the importance of ethnic
diversity in genetic studies.

Introduction

The study of genetically diverse populations has become a
priority in public health research. Several major initiatives
started in the past few years, including the National Institute

of Health (NIH) Trans-Omics in Precision Medicine Pro-
gram, which aims to sequence over a hundred of thousands
of whole genomes from a variety of ancestries. These
initiatives compensate for the lack of participants of non-
European ancestries in genetic studies [1–3]. Besides
addressing health disparities among ethnic groups, studies
of multi-ethnic cohorts and admixed populations can pro-
vide important information about the biology of complex
diseases and help to identify associated genes [4]. Recently,
admixed populations, such as African Americans, represent
a special case of multi-ethnic cohorts with mosaic chro-
mosomes derived from several ancestral populations.
Admixture mapping, often applied to recently admixed
populations, searches for genomic loci of unusual local
ancestry at a putative disease risk locus compared with the
genome-wide average [5]. Findings for respiratory disease,
chronic renal disease, prostate cancer, and systemic lupus
erythematosus have been reported as results of admixture
mapping [6–11].

The data analysis in admixture mapping consists of two
main steps: inferring local ancestry and testing for asso-
ciation between every local ancestry segment and an
observed phenotype. Given unobservable ancestry
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information, current methods on ancestry inference prob-
abilistically define the location of every ancestral switch
using genotyping array data, reference haplotypes, and
algorithms, based on hidden Markov models (HMM)
[12, 13]. These methods were empirically shown to produce
reliable results on African Americans [14], as they represent
a relatively simple two-way admixture and are well-
modeled by available reference panels [15]. The standard
approach for association testing is similar to genome-wide
association studies (GWAS) on single-nucleotide poly-
morphisms (SNPs) and runs linear regression to estimate the
correlation between local ancestry and phenotype. To avoid
confounding due to population structure that is inherently
present in admixed individuals, most studies also included
global ancestry components (i.e., the genome-wide pro-
portions of ancestry derived from each ancestral population)
as covariates. Going beyond linear regression, the frame-
work of linear mixed models (LMMs) was applied to
quantify individual similarities by ancestry, showing how
the phenotypic variance is explained by local ancestry [16]
and linking it to the heritability of complex traits estimated
from SNP data [17]. Notably, several admixture mapping
studies applied LMMs to control for family structure (kin-
ship), household groups, and census blocks [18, 19], but
modeling individual relationships through local ancestry
genome-wide has not be explored yet, despite potential
mapping improvements [13].

Recently, we found that the correlation between local
ancestry and untyped causal variants can be leveraged to
detect distant gene–gene interactions in admixed popula-
tions through local ancestry–local ancestry screening [20].
That work also demonstrated that the power of such
admixture mapping increases with the number of causal
variants within local ancestry tested and with the degree of
differentiation of variants between the ancestral popula-
tions. Here we suggest that the same principle can be
applied to search for gene–environment interactions.
Regarding previous studies of gene–environment interac-
tions, most works focused on interactions between the
global ancestry and environmental factors using linear
regression [17, 21–23]. As here we sought to screen for
local ancestry–environment interactions, a type of admix-
ture mapping seldom explored, we argue that such appli-
cation might face multiple methodological challenges due to
both population stratification and outcome heterogeneity
among individual groups stratified by environmental
exposure. Hence, the use of LMMs will be particularly
appropriate to account for complex genetic and environ-
mental relationships in admixed individuals.

Application of admixture mapping to lung function
phenotypes in African Americans is especially relevant
[24]. European Americans and African Americans are well
known to show differences in spirometric measures of lung

function such as forced expiratory volume in one second
(FEV1) and forced vital capacity (FVC) with higher values
for these two traits for European Americans. Factors par-
tially responsible for these differences include body habitus,
early-life development conditions, socioeconomic status,
and other environmental factors [25, 26]. Previous studies
showed strong evidence that the proportion of African
global ancestry is associated with lower lung function for a
given ranges of height and age [21, 24]. Also, the higher
proportion of African ancestry in African Americans was
associated with an additional decrease in lung function for
smokers [27].

To address the aforementioned methodological chal-
lenges, we used real data and proceed in a stepwise
assessment of multi-component LMM, to define a robust
interaction test of association. More precisely, we con-
ducted a genome-wide scan of local ancestry–smoking
interactions for five spirometric lung function phenotypes
available in 3300 African Americans from the Genetic
Epidemiology of COPD (COPDGene) study [28]. The
search for gene–environment interactions related to pul-
monary function phenotypes in the COPDGene study is
markedly relevant, as it is one of the largest studies of
African American smokers. In result, our application of the
proposed LMM identified two genome-wide significant and
five suggestive loci that would have been missed in standard
single SNP-based approaches.

Materials and methods

The COPDGene dataset

In the analysis of COPDGene study (dbGaP phs000179.v5.
p2), we focused on five correlated quantitative pulmonary
phenotypes: FEV1; FEV1 as a percent of predicted (FEV1 %
predicted); FVC; FVC as a percent of predicted (FVC %
predicted); and the ratio of FEV1 to FVC (FEV1/FVC). We
derived two binary smoking exposures from the number of
cigarettes smoked per day for gene–environment interac-
tions: current smoker exposure (current smokers vs. former
smokers) and heavy smoker exposure (current heavy smo-
kers vs. current moderate smokers). We defined moderate
current smokers with 1–14 cigarettes per day on average,
whereas heavy current smokers were defined as with >14
cigarettes per day on average. When using heavy smoker
exposure in the analysis, we excluded all subjects who were
former smokers.

Locus-specific ancestry or local ancestry was inferred
from 684,187 autosomal genotyped SNPs as previously
described [28]. Briefly, we used the LAMP-LD program
[29] to estimates local ancestry per individual using a HMM
algorithm comparing observed genotypes and haplotypes
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from reference ancestral populations. We parameterized the
algorithm with 15 HMM states, a window size of 50 SNPs,
and used 99 CEU and 108 YRI unrelated individuals from
the 1000 Genomes Project (Phase III, hg19) [30] as refer-
ence panels. Per SNP estimates of African ancestry were
further used in two post-processing steps. First, we averaged
the local ancestry per individual to derive the genome-wide
proportion of African ancestry (i.e., the global ancestry).
Second, we estimated local ancestry segments by merging
neighboring SNPs with identical values. We next filtered
out short ancestry segments of length <10,000 bases to
mitigate possible artifacts of the inference procedure that
might affect further admixture mapping analysis (LAMP-
LD authors, personal communication; 2017).

Step-wise model selection for admixture mapping

Consider a quantitative trait stored in a n-dimensional
vector y and a n ×m data matrix Z of local ancestry seg-
ments, where n is the number of individuals and m is the
number of local ancestry segments. Let zl be a column of
matrix Z corresponding to a single local ancestry segment
and xe being a n-dimensional column vector of a binary
environmental exposure. We aim at testing the statistical
interaction between the local ancestry segments zl and the
exposure xe on the phenotype y. As discussed in the Sup-
plementary Material, we are interested to assess a fixed
effect of interaction zl × xe using the standard Wald’s test,
while controlling for variance related to local ancestry,
global ancestry, and exposure that might confound the
estimate of effect. However, in regards to potentially non-
trivial structure in the data, due to both ancestry admixture
and potential heterogeneity of outcome across exposure
groups, we defined our association model using a stepwise
approach, where the model complexity was incremental
until reaching the desired criteria of validity. Following
standard practices [31], these criteria were designed (1) to
reach a genomic inflation parameter (λ close to 1) and (2) to
achieve an overall shape of the standard quantile–quantile
plot (Q–Q plot) of the −log10(P) matching the expected
uniform distribution of p-values for the majority of the tests.

In practice, before evaluating interaction effects, we first
assessed the robustness of a standard LMM when testing for
the marginal effect of local ancestry zl only:

y ¼ CβC þ βexe þ βgzg þ βlzl þ uc þ e ð1Þ

where C is a matrix of trait-specific covariates and βC is a
vector of their fixed effects, zg is a vector of global, and βe,
βg, β1 are fixed effects of exposure, global ancestry, and
local ancestry, respectively. The random effects include a
vector of the residual errors e and a vector of random-effect
uc encoding whether two given individuals belong to the

same medical center. We further added additional random-
effect components (described below) in the LMM, for
which the importance was assessed incrementally (Supple-
mentary Table S1). We next included our parameter of
interest, the local ancestry–exposure interaction effect, on
top of random-effect components selected at the previous
step and continued our assessment of additional compo-
nents until reaching the desired characteristics. Our full and
final LMM was defined as follows:

y ¼ CβC þ βexe þ βgzg þ δgzgxe
� �

þ βlzl þ δlzlxe½ � þ um þ ui þ uh þ uc þ e
ð2Þ

where, in addition to notation in Eq. (1), zg × xe and zl × xe
represent interactions between global and local ancestries
and exposure, respectively; δg and δl are fixed effects of
interactions between global ancestry and local ancestry and
exposure, respectively. The first vector of additional random
effects um captures the variance of local ancestry remaining
after taking into account the global ancestry as a fixed effect
(zg) [16, 32]. The variance–covariance matrix of um is the
ancestral relationship matrix (ARM) derived by the cross-
product operation on column-wise centered and scaled Z
matrix [32]. The second vector ui complements the previous
vector um and comes out due to testing the interaction effect
(δl) rather than the marginal effect (βl) [33]. The
variance–covariance matrix of ui is derived from ARM
based on stratification by binary environmental exposure
status (xe) [33]. We refer to this matrix as environmental
ARM or EARM. The third vector uh models the hetero-
geneity of phenotypic variance across the three smoking
groups. The variance–covariance matrix of uh is a diagonal
matrix, where entries are the same if they correspond to the
same group.

To make the genome-wide screenings computationally
efficient, we followed the standard two-step approach in
GWAS [34–37]. First, we estimated the variance–covariance
matrix of a trait by a LMM only once in the absence of local-
ancestry fixed effects. Second, we applied generalized least
squares to derive association test statistic for each local
ancestry segment [34]. The test of association was the
Wald’s test, which statistic is computed as ratio of estimated
effect size (the marginal effect size βl in Eq. 1 or the inter-
action effect size δl in Eq. 2) to its SE.

Multi-phenotype analysis

We first conducted single-trait admixture mapping of
gene–environment interactions for each of the five pul-
monary traits considered and each of the two exposures
(current smoker and current heavy smoker). However, these
five spirometric lung function measurements are all highly
correlated and likely share genetic association signals. To
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reduce the penalty for multiple testing and potentially
increase power, we focused our primary screening on a
multivariate association tests combining single-trait signals
separately for each exposure without assuming any prior on
the direction of the single-trait effects [36, 38–40]. In
practice, given five Z-scores for a local ancestry segment,
stored in a vector S5×1, we estimated the multivariate Z-
score Sjoint in two steps. We first estimated Σ5�5, the
variance–covariance matrix among Z-scores under the null
hypothesis of no association and then, for each local
ancestry segment, we derived the multivariate statistics
using the Mahalanobis distance, defined as:

Sjoint ¼ STΣ̂�1S ð3Þ

which squared statistics T ¼ S2joint follows a χ2 distribution
with 5 degrees of freedom under the null composite
hypothesis of no interaction effect on any of these five
traits. For the estimation of Σ, previous works suggested
using the complete Z-score data from the genome-wide
scan, i.e., Σ̂ ¼ STS, assuming that the vast majority of Z-
scores are distributed under the null [38, 40]. Here we made
the same assumption and additionally discarded large
single-trait Z-scores above a given threshold to reduce the
risk of bias. Further, we approximated Σ̂ from the resulting
truncated multivariate normal distribution by the maximum
likelihood estimation. We empirically found the best
threshold value equals 3 for our admixture mapping Z-
scores (Supplementary Material).

Follow-up analysis

We performed association and further fine-mapping analy-
sis using genotyped data, following up regions identified by
admixture mapping. Considering xg is a vector of genotypes
for a single SNP, we extended the interaction model (Eq. 2)
by adding two terms for marginal genetic (xg) and interac-
tion (xg × xe) effects. It is noteworthy that the exposure term
(xe) was already included in this model. We performed a
univariate Wald’s test with one degree of freedom to derive
the p-value for interaction effect between genotype and
exposure. By including a local ancestry term when testing
for the interaction effect of genotype, we accounted for
possible different Linkage Disequilibrium (LD) patterns for
European and African ancestral backgrounds [41]. Such
conditional analysis can reduce power but assures that the
interaction effect of genotype is driven by a biological
mechanism rather than a better SNP tagging in a particular
ancestral population.

As discussed in our previous work [20], we expected
SNPs in regions of local ancestry–smoking interactions to
show multiple-SNP effects on the trait as well as high allelic
frequency differentiation at SNPs between ancestral

populations. Hence, we performed a comparative study of
allelic frequencies between the two ancestral populations
and fine-mapping analysis to assess the potential presence
of multiple causal variants. First, we computed allele fre-
quency differences (ΔDAF) [42] at all SNPs to measure the
allelic heterogeneity between European and African popu-
lation groups from the 1000 Genomes Project (Phase III)
[30]. The ΔDAF measures were previously found to be
highly correlated with Weir and Cockerham’s FST in the
1000 Genomes sample [43]. We assessed cases of extreme
ΔDAF in the regions of interest by comparing the observed
value against the threshold proposed by Colona et al. [44] In
brief, that study grouped 36.8 million variants in African
and European populations from the 1000 Genomes Project
[30] into bins of non-overlapping sets of 5000 variants and
derived the distribution of the maximum ΔDAF for further
comparisons. Second, we applied a Bayesian method
implemented in the software package FINEMAP [45] to
estimate the posterior probability of each single SNP
interaction to be causal, conditionally on in-sample linkage
disequilibrium pattern. FINEMAP implements a shotgun
stochastic search algorithm to efficiently explore the most
likely causal configurations and we ran FINEMAP with the
default parameters on the maximum number of causal SNPs
(5), prior probabilities on the number of causal SNPs, and
the prior probabilities of a single SNP to be causal.

Results

Participants characteristics and description of traits

We used a dataset of 3300 African American research
volunteers from the COPDGene study [46]. Self-identified
non-Hispanic African Americans and non-Hispanic Eur-
opean Americans between 45 and 80 years of age with a
history of at least 10 pack-years of smoking were enrolled
from 21 medical centers across the United States. Details on
phenotyping, genome-wide genotyping of the cohort, and
inference of local ancestry are provided in Methods and
Supplementary Material.

Individual characteristics of the COPDGene dataset are
described in Table 1 for the whole sample and stratified by
current smoking status: non-smokers, moderate smokers
(1–14 cigarettes per day), and heavy smokers (>14 cigar-
ettes per day). The three smoker groups have similar overall
characteristics, although there are some differences due to
the COPDGene study enrollment protocol: the current
smokers are younger and have higher proportions of males;
non-smokers have higher numbers of accumulated pack-
years. After a stringent quality-control procedure (Supple-
mentary Figs. S1 and S2, and Supplementary Table S2), we
observed a total of 30,043 local ancestry segments. The
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distribution of proportions of local African ancestry (aver-
aged across individuals) is roughly uniform along the gen-
ome (Fig. 1a), confirming that the local ancestry data were
free from artifacts. The proportion of global African
ancestry ranged between 26.3% and 99.8% across indivi-
duals with an average of 80.3% (Fig. 1b). We confirmed
that individuals with higher proportions of African ancestry
tend to have lower pulmonary function at a highly sig-
nificant level (P < 0.001; Supplementary Table S3) for all
the traits, except FEV1/FVC. We also assessed the variance
heterogeneity among the smoking groups (not current
smokers, moderate current smokers, and heavy current
smokers) by its explicit modeling as random effects (Eq. 2).
Both exploratory data analysis (Supplementary Fig. S3) and

formal statistical tests (P < 0.0001 for all traits; Supple-
mentary Table S4) highlighted differences among these
three groups not only by mean, but also by variance (the
group of non-smokers has the largest variance).

Mixed model accounts for population structure and
variance heterogeneity

To address the methodological question of performing a test
of local ancestry–exposure interaction in admixed popula-
tion, we chose a data-driven approach where the robustness
of candidate models was assessed using the genomic control
parameter (λ) and the overall shape of the standard Q–Q
plot of the −log10(p-value). We started with the simplest

Fig. 1 The African ancestry of African American participants of the COPDGene project. a The distribution of local ancestry is plotted by
physical position in the genome on the X axis. For each local ancestry segment, the proportions of individuals with two African chromosomes
(light green color), one African chromosome (green color), and no African chromosomes (dark green color) are presented on the Y axis. b The
distribution of the global African ancestry among 3300 African American individuals in the COPDGene study is shown. The vertical red dashed
line depicts the mean value, 0.803.

Table 1 Characteristics of
African American participants in
the COPDGene project.

Former smokers Current moderate
smokers

Current heavy
smokers

All individuals

Current cigarettes per day 0 1–14 >14 –

Number of
individuals (%)

657 (20%) 1261 (38%) 1382 (42%) 3300 (100%)

Age enrolled 60 (9) 54 (6) 53 (6) 55 (7)

Gender, % male 48% 53% 63% 56%

Body mass index 30 (7) 29 (7) 29 (6) 29 (7)

Pack-years smoked 39 (22) 32 (20) 44 (21) 38 (22)

Smoking duration, years 34 (10) 37 (8) 36 (8) 36 (8)

Global African
ancestry, %

79% (12%) 81% (10%) 80% (11%) 80% (11%)

Dataset characteristics are presented for each smoking status separately and for all individuals. Values for a
quantitative characteristic are given as the mean (SD)
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model testing the marginal effect of local ancestry and
incrementally added terms necessary for robust testing of
local ancestry–exposure interaction, our main parameter of
interest.

We proposed to use a LMM including up to four random
effects: um, ui, uh, and uc, capturing structure due to shared
local ancestry, local ancestry–smoking interaction, smoking
status, and recruitment medical center, respectively. We
added each of these components into the model through a
stepwise procedure, assessing their relative contribution in
various combinations. When all components are present, the
model has the form given in Eq. 2. All variance–covariance
matrices for the random effects observed in real data are
illustrated in Supplementary Fig. S4, whereas additional
details of the model selection are provided in Supplemen-
tary Material and are summarized in Supplementary
Table S1.

We used the FEV1% predicted phenotype as an illus-
trative scenario and started with a marginal association
model for single-trait admixture mapping (Fig. 2a) (i.e.,
without ancestry–environment interaction) including only uc,
as there was strong heterogeneity in the distribution of traits
by medical center (Supplementary Table S4). This initial
model is given in Eq. 1. Marginal local ancestry test statistics
in the initial model showed substantial inflation (λ= 1.19).

We further accounted for correlation by genome-wide local
ancestry across individuals, which was done by modeling the
ARM (the um random effect as in Eq. 2). The addition of the
ARM component substantially mitigated the inflation (λ=
1.04). We next considered adding the heterogeneity com-
ponent (the uh random effect as in Eq. 2) that captured
substantial portion of variance of modeled traits (Supple-
mentary Table S4). The last additional component did not
impact the overall distribution of p-values (λ= 1.03), but
resulted in an improved power of admixture mapping
because of reduced amount of the residual variance after
modeling the heterogeneity. When comparing two models
with and without the heterogeneity component, the average
test statistic at associated ancestry segments (P < 3.06 ×
10−5) increased from 11.17 to 15.01, which is equivalent to
boosting the effective sample size by 34% [37].

We then expanded the LMM to address the model
components related to testing local ancestry–smoking
interactions (Eq. 2 and Supplementary Table S1). Following
the exploration of the marginal model, we examined the role
of four random effects by conducting admixture mapping
for a single trait, the FEV1% predicted phenotype, and the
current smoker exposure in different model configurations
(Fig. 2b). Overall, the association test statistic was sub-
stantially inflated (λ= 1.61) for the initial model with only

Fig. 2 Robustness of mixed-model admixture mapping assessed by
quantile–quantile (Q–Q) plots. The linear mixed model is examined
through different combinations of random genetic and heterogeneity
effects denoted in equations as um, ui, and uh, while labeled on the
plots as ARM, EARM, and Het. (see Eqs. 1–2 and Supplementary
Table S1). Admixture mapping is conducted for FEV1 % predicted
phenotype and current smoker status is used in the evaluation of

ancestry–smoking interactions. a When testing marginal effects of
ancestry, the distribution of the test statistic is not inflated only when
the genetic random effect (ARM) is presented in the model (λ= 1.04
or 1.02). bWhen testing ancestry–smoking interaction effects, all three
random effects (ARM, EARM, and Het.) are necessary to mitigate the
inflation (λ= 1.06).
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the uc random effect and without any of the other three
components um, ui, and uh in Eq. 2. Including the compo-
nents separately in the model, either the heterogeneity
component (uh), one genetic component with ARM (um), or
two genetic components (um and ui), was not sufficient to fix
the inflation (λ= 1.16, 1.6, and 1.39, respectively). The
association test statistic was well-behaved only when all
three components were added (λ= 1.06). Hence, our final
model for admixture mapping of local ancestry–smoking
(gene–environment) interaction (Eq. 2) has three additional
random effects um, ui, and uh, which capture structures due
to shared local ancestry, local ancestry–smoking interaction,
and outcome heterogeneity across smoking groups.

Local ancestry–smoking interactions detected by
admixture mapping

We conducted admixture mapping of local ancestry–
environment interaction for all five spirometric traits consider-
ing the two binary exposures independently (Supplementary
Figs. S5 and S6). Single-trait statistics showed limited inflation
for all analyses (λ= 0.93–1.09), except for FEV1/FVC and
current smoker exposure (λ= 1.12; Supplementary Figs. S7
and S8). For each exposure, single trait results were combined
to form a multi-trait test (Fig. 3). The two multi-trait analyses
show a well-controlled type I error rate (λ= 0.98, 1.02; Sup-
plementary Fig. S9). Following the eigenMT approach [20], we

Fig. 3 Admixture mapping identifies two genome-wide significant
and five suggestive loci of local ancestry–smoking interactions.
Manhattan plots show results of two admixture mappings of
ancestry–smoking interactions, where smoking is one of two binary
variables: a current smokers vs. non-smokers and b current
moderate smokers vs. current heavy smokers. The multivariate test

joins the single-trait test statistics from five traits under the
composite null hypothesis of no association and provides the multi-
trait p-values. Horizontal lines depict the effective Bonferroni thresh-
old (0.05/1635= 3.06 × 10−5) and the effective suggestive Bonferroni
threshold (0.5/1635= 3.06 × 10−4), where 1635 is the effective num-
ber of tests estimated by the eigenMT method [20].
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estimated the number of effective tests to be 1635 (Supple-
mentary Material) and thus reduced the multiple-testing burden
from the Bonferroni threshold (0.05/30,043= 1.51 × 10−6) to
the effective Bonferroni threshold (0.05/1635= 3.06 × 10−5).
We also considered the suggestive Bonferroni threshold (0.5/
1635= 3.06 × 10−4) to select additional candidate loci of
interest.

We identified two genome-wide significant and five
suggestive interaction association signals (Table 2). The
first genome-wide significant locus in the region chromo-
some 11p15.2-3 spanned 11 ancestry segments of average
length 37 Kb and 17 SNPs per segment. The top ancestry
segment Chr11: 12,341,061–12,373,680 of length 32,619
kb and 21 SNPs had a multi-trait positive interaction effect
with current smoker exposure with multi-trait Z= 5.34 and
P= 2.79 × 10−5. The signal was driven by all single-trait
associations, where all p-values passed the suggestive
Bonferroni threshold. The top single-trait association for
FEV1 % predicted showed Z= 4.53 and P= 5.86 × 10−6.
That top single-trait ancestry segment was 47 kb away from
the top multi-trait one, but the two segments were highly
correlated after adjusting for the global ancestry (the Pear-
son’s correlation coefficient, 0.98). The second genome-
wide significant locus in chromosome 2q37.3 included 11
ancestry segments of length 32 kb and 9 SNPs on average.
The strongest multi-trait and top single-trait (FEV1) asso-
ciation signals were both localized in the same ancestry
segment Chr2: 238,430,224–238,486,767 of length 56,543
kb and 21 SNPs. The positive interaction effects with the
current heavy smoker exposure showed Z= 5.34 and P=
2.90 × 10−6, and Z= 4.53 and P= 2.50 × 10−6 for multi-
trait and top single-trait associations, respectively.

The other five suggestive loci (Table 2) were mostly
detected in the interaction admixture mapping with current
heavy smoker exposure (13q12.3-13.1, 11q21, 7p15.2-3,
and 8q21.13), except one locus 1q44 from the mapping with
current smoking exposure. In contrast to the genome-wide
significant loci, multi-trait association signals were much
stronger than top single-trait signals for all suggestive loci

(the difference in p-values was several orders of magnitude
for some tests).

Genotype-smoking interactions reveal
differentiated genetic variants

For each region showing at least suggestive significance in
the multi-trait admixture mapping analysis, we assessed
potential interactions of single SNPs available in the region
around the top admixture signal. We conducted association
analysis for a total of 888 SNPs available across the seven
regions lying within ancestry segments (the average number
of SNPs per region was 126.9 and the average number of
SNPs per segment was 13.7). Here we focused on the single
trait showing the largest association signal in admixture
mapping. Overall, none of these SNPs passed a stringent
Bonferroni correction threshold accounting for all SNPs
tested in each region. However, the top SNPs especially in
the genome-wide significant loci helped to localize the
association signal (Table 3). In the first genome-wide sig-
nificant region 11p15.2-3 (Fig. 4), the top SNP rs933920
(hg19 chr11:g.12481110C> T) (P= 0.0036) is an intronic
variant in the PARVA gene (MIM 608120). In the second
genome-wide significant region 2q37.3 (Fig. 4), the first top
SNP rs7569427 (hg19 chr2:g.238413338A> G) (P= 0.02)
was an intronic variant in the MLPH gene (MIM 606526)
and the second top SNP rs2280289 (hg19 chr2:
g.238483729A> G) (P= 0.036) was a missense variant in
the RAB17 gene (MIM 602206).

To assess the level of allelic heterogeneity of SNPs in
these identified regions, we computed the allele frequency
differences (defined as ΔDAF in Materials and Methods).
The SNPs exhibited high levels of heterogeneity for all
regions (ΔDAF in 0.62 and 0.78). Overall, three out of our
seven loci (1q44, 2q37.3, and 8q21.13) matched the 0.7
threshold proposed by Colonna et al. [44], defining the 1%
of the genome displaying the most extreme differentiation
across populations. These differences in minimum allele
frequency between European and African ancestries can

Table 2 Top local ancestry segments-smoking interactions.

Locus Ancestry segment Exposure Multi-trait P Top single-trait P Top trait

11p15.2-3 12,075,829–12,845,835 Current smoker 2.8 × 10−5* 5.8 × 10−6* FEV1 % predicted

2q37.3 238,143,387–238,769,892 Current heavy smoker 2.9 × 10−5* 2.5 × 10−6* FEV1

13q12.3-13.1 31,623,839–32,256,475 Current heavy smoker 3.4 × 10−5 0.0052 FVC

11q21 94,360,812–94,825,729 Current heavy smoker 5.1 × 10−5 0.0028 FEV1

7p15.2-3 25,133,849–26,371,279 Current heavy smoker 1.3 × 10−4 2.82 × 10−4 FEV1 % predicted

8q21.13 81,871,222–82,335,354 Current heavy smoker 2.0 × 10−4 0.24 FVC

1q44 248,020,448–249,208,153 Current smoker 3.2 × 10−4 0.0029 FEV1/FVC

Top signals from two admixture mappings of ancestry–smoking interactions, where environment exposure is either current smoker or current
heavy smoker. Genome-wide significant association signals with p-value below the effective Bonferroni threshold 0.05/1635= 3.06 × 10−5 are
denoted with the “*” mark, where 1635 is the effective number of tests estimated by the eigenMT method [20]. The genome build hg19
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also be visually assessed on Fig. 4 and Supplementary
Figs. S10–13. Finally, we also evaluated the hypothesis of
multiple causal SNPS per region using the FINEMAP
software [23], but we were not able to find any strong
evidence for multiple causal SNPs (Supplementary
Table S5).

Replication of association signals in European
GWASs

We performed replication analyses of association signals
detected at individual SNP level and region level, for the
seven loci reported in Tables 2 and 3. We considered two
large studies of pulmonary phenotypes and COPD con-
ducted in individuals of European ancestry: the CHARGE
consortium (N= 50,047), which had genome-wide sum-
mary results for SNP-by-smoking interaction [47], and the
most recent and largest meta-analysis of UK Biobank and
SpiroMeta cohorts (COPD cases= 35,735, COPD controls
= 222,076; N= 400,102 for pulmonary function pheno-
types), which provides an up-to-date list of variants with
genome-wide significant marginal genetic effect [48, 49].

Matching our nine top SNPs with the CHARGE con-
sortium results [47], we found that three were missing,
being rare or monomorphic in European population. Inter-
action effects of three out of the six remaining SNPs were
replicated at the nominal significance level (P < 0.05)
(Supplementary Table S6) in SNP–smoking interaction
screening of FEV1/FVC, where packs-years was used as a
proxy for heavy smoking.

We next assessed the presence of marginal genetic effect at
our seven loci using the aforementioned meta-analysis of
pulmonary phenotypes [48] and COPD [49]. Although our
marginal signals of top local ancestry segments and SNPs
were weak (Supplementary Tables S7 and S8), we observed
that nine genome-wide significant SNPs from GWASs
[48, 49] were located <1Mb away from the three loci 2q37.3,
11p15.2-3, and 7p15.2-3 (Supplementary Table S9). In par-
ticular, two SNPs rs80145403 (hg19 chr11:g.12493292G>A)
and rs7114698 (hg19 chr11:g.12707876C> T) were within the
same PARVA and TEAD1 genes in Chromosome 11 as in our
SNP–smoking interaction analysis (Table 3). Notably, five
SNPs come from two loci that each has three distinct signals
estimated by the conditional analysis [49]. Such a scenario
with multiple SNPs driving either marginal or interaction
association is beneficial for our ancestry-based approach to
detect gene–environment interactions, and thus may explain
the signal overlap at the region level for two 11p15.2-3 and
2q37.3 loci.

Discussion

Broadening the diversity of ethnicities in genetic analysis
can provide important information for disease pathogenesis.
Leveraging local ancestry through admixture mapping
could improve power to discover marginal genetic and
gene–environment effects, although the technical and sta-
tistical challenges still remain. To address these challenges,
we introduced a multi-component LMM and empirically

Table 3 Top SNP-smoking interactions in regions identified by admixture mapping.

Locus SNP Position Type Gene Anc. Za Anc. Pa SNP Zb SNP Pb Ref./Alt.
alleles

Ref. allele frequency
CEU:YRI

11p15.2-3 rs933920 12,481,110 Intronic PARVA
[51, 52]

4.32 1.6 × 10−5 2.91 0.0036 C/T 0.99:0.89

11p15.2-3 rs4553350 12,759,834 Intronic TEAD1 4.20 2.7 × 10−5 −2.83 0.0046 C/T 0.55:0.95

2q37.3 rs7569427 238,413,338 Intronic MLPH 4.63 3.7 × 10−6 −2.33 0.020 A/G 0.94:0.28

2q37.3 rs2280289 238,483,729 Missense RAB17
[53, 54]

4.71 2.5 × 10−6 2.10 0.036 A/G 0.84:0.20

13q12.3-
13.1

rs1535532 32,114,398 Intergenic 2.18 0.030 2.32 0.020 A/G 0.67:0.62

11q21 rs11020968 94,602,414 Missense AMOTL1
[56]

2.77 0.0056 −2.11 0.035 C/T 0.84:1.00

7p15.2-3 rs10270076 25,363,037 Intergenic 3.31 9.3 × 10−4 −2.83 0.0046 A/G 0.57:0.29

8q21.13 rs7000934 82,123,005 Intergenic −1.17 0.24 −2.38 0.017 C/T 0:0.15

1q44 rs7533237 248,298,552 Intergenic −2.54 0.011 −2.83 0.0046 G/T 0:0.11

Top SNP-smoking interaction signals for seven loci identified by admixture mapping. Two top SNPs are listed for the two genome-wide significant
loci (the first four rows). The genome build hg19, dbSNP 142 is used to report SNP positions and reference/alternative alleles. Reference allele
frequencies are computed separately in two CEU (European) and YRI (African) populations. The effect allele in association testing corresponds to
the alternative allele. Anc. ancestry, Alt. alternative, Ref. reference
aZ-scores and p-values are reported for the effects of local ancestry–exposure interactions
bZ-scores and p-values are reported for the effects of SNP–exposure interactions
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demonstrated its robustness in admixture mapping on real
data in 3300 African American participants in the COPD-
Gene study. We detected two genome-wide significant and
five suggestive loci showing smoking-dependent effects of
local ancestry on spirometric lung function phenotypes.

Although the functional effects of variants in the iden-
tified genomic regions is unknown, these regions harbor
genes previously known for traits related to smoking. The
top SNP rs933920 in the first genome-wide significant locus
11p15.2-3 (P= 2.79 × 10−5) is located within the PARVA
gene, which produces a focal adhesion protein [50]. Two
previous studies reported that this gene was differentially
methylated in small airway epithelium [51] and buccal
mucosa [52] when stratified by current smoking status. The
second top SNP rs2280289 for the second genome-wide
significant region on 2q37.3 (P= 2.90 × 10−5) is a missense
variant in RAB17, which was previously associated with a
smoking cessation genotype success score [53, 54]. As for
the most relevant result found among the five suggestive

loci, the top SNP rs11020968 (hg19 chr11:g.94602414C> T)
in the locus 11q21 (P= 5.0 × 10−5) is a missense variant
for angiomotin-like protein 1 (AMOTL1; MIM 614657), a
tight junction protein hypothesized to play a role in COPD
through endothelial tight junction permeability and whose
expression is affected by cigarette smoking [55]. Additional
genes around other loci may warrant further investigation.

We further attempted to evaluate whether SNPs within
these identified regions show multiple-SNP effects and
exhibit high allelic differentiation, as our previous work on
gene–gene interaction admixture mapping suggested this
kind of genetic architecture [20]. Overall, allele frequency
heterogeneity between European and African ancestries was
very strong and persistent in the identified regions.
Although our fine-mapping analysis did not show evidence
for multiple causal variants, SNP–smoking interaction
analysis is known to have limited power [56]; thus, we
cannot rule out the possibility of multiple causal variants.
Indeed, the conditioning on the primary signal of local
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Fig. 4 Detailed regional association plots for three selected loci
11p15.2-3, 2q37.3, and 11q21. From top to bottom, each panel shows
(i) the regional association plot, (ii) linkage disequilibrium pattern, (iii)
annotated protein-coding genes, (iv) trans-continental differences in
allele frequency. (i) The Y axis represents −log10(P) of SNP asso-
ciation tests using a single phenotype most strongly associated with the
ancestry segment in the locus. The shaded area represents the strength
of local ancestry association in the multi-trait admixture mapping with
stronger associations painted by darker shades of grey. The blue dia-
monds represent the Bayes factors for assessing the evidence that a
SNP is causal estimated by FINEMAP; the bigger the diamond the

higher the Bayes factor. (ii) The r2-based LD heatmap is built using
genotypes of the COPDGene study and the gradient of red is pro-
portional to the r2. (iii) Protein-coding genes are queried from grch37.
ensembl.org (iv) Allele frequencies are estimated in the 1000 Genomes
Project for European and African populations. For each SNP in an
ancestry segment, the cyan indicates the frequency of the European
minor allele variant, while a vertical segment connects the European
and African frequencies of the allele. The segments are colored
according to the direction of the difference: red when the African
frequency is higher than the European frequency, or green for lower
African frequency.
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ancestry is likely to decrease the statistical power to detect
interactions at the SNP level even in larger samples [56].
Alternative methods, such as jointly modeling ancestry and
genotype association signals, might help to overcome this
limitation [57].

Our methodological contributions to admixture mapping
are multiple. First, we extended the concept of genetic
relationship matrix originally proposed to control population
structure in GWAS [34]: the ARM was similarly computed
on local ancestry data and further used in association tests.
Second, we adopted the population stratification approach
recently designed specifically for GWAS of gene–
environment interactions [33]: two matrices, the standard
ARM, but also a second environmental ARM or EARM,
were essential to control for spurious association results
when testing local ancestry–environment interactions.
Finally, we modeled the outcome heterogeneity among
groups stratified by environmental exposure. Modeling this
heterogeneity increased the power because of reduced resi-
dual phenotypic variance (up to 65%) and substantially
decreased the inflation of interaction test statistic. Admixture
mapping has a lower computational complexity compared
with GWAS and our complete single-trait analysis took up to
4 min on the standard desktop computer.

Our study also has limitations. COPDGene is one of the
largest studies of African American smokers, with a high
proportion of subjects with COPD, which makes suitable
replication cohorts challenging. Nevertheless, we were able
to reproduce some of the top SNP–smoking interactions in
the CHARGE consortium [47] at nominal significance
level. More importantly, our study identified three loci
2q37.3, 11p15.2-3, and 7p15.2-3 using a dataset of only
3300 African American individuals, whereas the same loci
only passed the genome-wide significance threshold of
standard univariate association in an independent replica-
tion cohort including up to 400,000 individuals [48, 49].
We also note that our screenings for local ancestry–smoking
interactions were limited to binary smoking exposures. We
explored a three-level exposure model; however, we found
that the parameters increase made the estimation computa-
tionally unstable [32]. We believe that such complex
gene–environment LMMs would require datasets with lar-
ger sample sizes [58]. Further, the method for admixture
mapping can also be optimized. When conducting asso-
ciation analysis, excluding the local ancestry segment under
testing from the ARM construction will be able improve
power [13], but is computationally more burdensome. We
attempted a more efficient out-of-chromosome strategy
commonly applied in GWAS [35], but we observed fairly
inflated test statistics (data not shown).

In conclusion, our study reports a powerful approach for
gene–environment interaction association studies, lever-
aging the unique genetic architecture of complex traits

measured in recently admixed populations. The proposed
statistical model has shown to be robust to population
structure and outcome variance heterogeneity. In our
application to the COPDGene study, we have found two
genome-wide significant local ancestry–smoking interac-
tions of lung function phenotypes that would have been
missed in standard single SNP interaction analyses. Overall,
our findings provide additional evidence of the importance
of ethnic diversity in genetic clinical studies.

Code and data availability

The COPDGene study, the dbGaP database, study accession
phs000179.v5.p2, https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs000179.v5.p2
Code used here for admixture mapping, https://gist.github.
com/variani/a28c18797c39a62bacab587e6e708529
The 1000 Genomes Project (Phase III, version 5, hg19),
http://csg.sph.umich.edu/abecasis/mach/download/1000G.
Phase3.v5.html
LAMP-LD software for ancestry inference, http://bogdan.
bioinformatics.ucla.edu/software/lamp/
Gaston R package for mixed models, https://cran.r-project.
org/package=gaston
Public GWAS summary-statistics from the CHARGE
consortium, the dbGaP database, study accession phs000930.
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OMIM, http://www.omim.org.
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